Collections in this community

Recent Submissions

  • The case for mobile cancer care units: an NHS team's experience

    Booth, C.; Dyminksi, P.; Rattray, Marcus; Quinn, Gemma L.; Nejadhamzeeigilani, Zaynab; Bickley, L.; Seymore, T. (2021-05-07)
    This article reports the use of a mobile cancer care unit (Cancer Van) to provide continuity of care to patients with cancer who utilise the services of Airedale NHS Foundation Trust. The article contains data that shows the resilience of this service during the Covid19 pandemic and provides evidence that this type of service is beneficial for patient care.
  • 3D-FISH analysis of the spatial genome organization in skin cells in situ

    Mardaryev, Andrei N.; Fessing, Michael Y. (2020-04)
    Spatial genome organization in the cell nucleus plays a crucial role in the control of genome functions. Our knowledge about spatial genome organization is relying on the advances in gene imaging technologies and the biochemical approaches based on the spatial dependent ligation of the genomic regions. Fluorescent in situ hybridization using specific fluorescent DNA and RNA probes in cells and tissues with the spatially preserved nuclear and genome architecture (3D-FISH) provides a powerful tool for the further advancement of our knowledge about genome structure and functions. Here we describe the 3D-FISH protocols allowing for such an analysis in mammalian tissue in situ including in the skin. These protocols include DNA probe amplification and labeling; tissue fixation; preservation and preparation for hybridization; hybridization of the DNA probes with genomic DNA in the tissue; and post-hybridization tissue sample processing.
  • Targeting the TGF-β signaling pathway for resolution of pulmonary arterial hypertension

    Sharmin, Nahid; Nganwuchu, Chinyere C.; Nasim, Md. Talat (2021)
    Aberrant transforming growth factor-β (TGF-β) signaling activation is linked to pulmonary arterial hypertension (PAH). BMPR2 mutations perturb the balance between bone morphogenetic protein (BMP) and TGF-β pathways, leading to vascular remodeling, narrowing of the lumen of pulmonary vasculature, and clinical symptoms. This forum highlights the association of the TGF-β pathway with pathogenesis and therapeutic approaches.
  • Hypothalamic Rax+ tanycytes contribute to tissue repair and tumorigenesis upon oncogene activation in mice

    Mu, W.; Li, S.; Guo, X.; Wu, H.; Chen, Z.; Qiao, L.; Helfer, Gisela; Lu, F.; Liu, C.; Wu, Q.-F. (2021-04-16)
    Hypothalamic tanycytes in median eminence (ME) are emerging as a crucial cell population that regulates endocrine output, energy balance and the diffusion of blood-born molecules. Tanycytes have recently been considered as potential somatic stem cells in the adult mammalian brain, but their regenerative and tumorigenic capacities are largely unknown. Here we found that Rax+ tanycytes in ME of mice are largely quiescent but quickly enter the cell cycle upon neural injury for self-renewal and regeneration. Mechanistically, Igf1r signaling in tanycytes is required for tissue repair under injury conditions. Furthermore, Braf oncogenic activation is sufficient to transform Rax+ tanycytes into actively dividing tumor cells that eventually develop into a papillary craniopharyngioma-like tumor. Together, these findings uncover the regenerative and tumorigenic potential of tanycytes. Our study offers insights into the properties of tanycytes, which may help to manipulate tanycyte biology for regulating hypothalamic function and investigate the pathogenesis of clinically relevant tumors.
  • Label-Free Electrochemical Sensor for Rapid Bacterial Pathogen Detection Using Vancomycin-Modified Highly Branched Polymers

    Schulze, H.; Wilson, H.; Cara, I.; Carter, Steven; Dyson, Edward N.; Elangovan, R.; Rimmer, Stephen; Bachmann, T.T. (MDPI, 2021-03-08)
    Rapid point of care tests for bacterial infection diagnosis are of great importance to reduce the misuse of antibiotics and burden of antimicrobial resistance. Here, we have successfully combined a new class of non-biological binder molecules with electrochemical impedance spectroscopy (EIS)-based sensor detection for direct, label-free detection of Gram-positive bacteria making use of the specific coil-to-globule conformation change of the vancomycin-modified highly branched polymers immobilized on the surface of gold screen-printed electrodes upon binding to Gram-positive bacteria. Staphylococcus carnosus was detected after just 20 min incubation of the sample solution with the polymer-functionalized electrodes. The polymer conformation change was quantified with two simple 1 min EIS tests before and after incubation with the sample. Tests revealed a concentration dependent signal change within an OD600 range of Staphylococcus carnosus from 0.002 to 0.1 and a clear discrimination between Gram-positive Staphylococcus carnosus and Gram-negative Escherichia coli bacteria. This exhibits a clear advancement in terms of simplified test complexity compared to existing bacteria detection tests. In addition, the polymer-functionalized electrodes showed good storage and operational stability.
  • Laser capture microdissection on surgical tissues to identify aberrant gene expression in impaired wound healing in type 2 diabetes

    Williams, Rachel; Castellano-Pelicena, Irene; Al-Rikabi, Aaiad H.A.; Sikkink, Stephen K.; Baker, Richard; Riches-Suman, Kirsten; Thornton, M. Julie (2021-01-13)
    The global prevalence Type 2 diabetes mellitus (T2DM) is escalating at a rapid rate. Patients with T2DM suffer from a multitude of complications and one of these is impaired wound healing. This can lead to the development of non-healing sores or foot ulcers and ultimately to amputation. In healthy individuals, wound healing follows a controlled and overlapping sequence of events encompassing inflammation, proliferation, and remodelling. In T2DM, one or more of these steps becomes dysfunctional. Current models to study impaired wound healing in T2DM include in vitro scratch wound assays, skin equivalents, or animal models to examine molecular mechanisms underpinning wound healing and/or potential therapeutic options. However, these do not fully recapitulate the complex wound healing process in T2DM patients, and ex vivo human skin tests are problematic due to the ethics of taking punch biopsies from patients where it is known they will heal poorly. Here, a technique is described whereby expression profiles of the specific cells involved in the (dys)functional wound healing response in T2DM patients can be examined using surplus tissue discarded following amputation or elective cosmetic surgery. In this protocol samples of donated skin are collected, wounded, cultured ex vivo in the air liquid interface, fixed at different time points and sectioned. Specific cell types involved in wound healing (e.g., epidermal keratinocytes, dermal fibroblasts (papillary and reticular), the vasculature) are isolated using laser capture microdissection and differences in gene expression analyzed by sequencing or microarray, with genes of interest further validated by qPCR. This protocol can be used to identify inherent differences in gene expression between both poorly healing and intact skin, in patients with or without diabetes, using tissue ordinarily discarded following surgery. It will yield greater understanding of the molecular mechanisms contributing to T2DM chronic wounds and lower limb loss.
  • Emerging roles of protein O-GlcNAcylation in cardiovascular diseases: Insights and novel therapeutic targets

    Bolanle, I.O.; Riches-Suman, Kirsten; Williamson, Ritchie; Palmer, Timothy M. (2021-03)
    Cardiovascular diseases (CVDs) are the leading cause of death globally. While the major focus of pharmacological and non-pharmacological interventions has been on targeting disease pathophysiology and limiting predisposing factors, our understanding of the cellular and molecular mechanisms underlying the pathogenesis of CVDs remains incomplete. One mechanism that has recently emerged is protein O-GlcNAcylation. This is a dynamic, site-specific reversible post-translational modification of serine and threonine residues on target proteins and is controlled by two enzymes: O-linked β-N-acetylglucosamine transferase (OGT) and O-linked β-N-acetylglucosaminidase (OGA). Protein O-GlcNAcylation alters the cellular functions of these target proteins which play vital roles in pathways that modulate vascular homeostasis and cardiac function. Through this review, we aim to give insights on the role of protein O-GlcNAcylation in cardiovascular diseases and identify potential therapeutic targets in this pathway for development of more effective medicines to improve patient outcomes.
  • Revascularisation of type 2 diabetics with coronary artery disease: Insights and therapeutic targeting of O-GlcNAcylation

    Bolanle, I.O.; Riches-Suman, Kirsten; Loubani, M.; Williamson, R.; Palmer, T.M. (2021-05-06)
    Coronary artery bypass graft (CABG) using autologous saphenous vein continues to be a gold standard procedure to restore the supply of oxygen-rich blood to the heart muscles in coronary artery disease (CAD) patients with or without type 2 diabetes mellitus (T2DM). However, CAD patients with T2DM are at higher risk of graft failure. While failure rates have been reduced through improvements in procedure-related factors, much less is known about the molecular and cellular mechanisms by which T2DM initiates vein graft failure. This review gives novel insights into these cellular and molecular mechanisms and identifies potential therapeutic targets for development of new medicines to improve vein graft patency. One important cellular process that has been implicated in the pathogenesis of T2DM is protein O-GlcNAcylation, a dynamic, reversible post-translational modification of serine and threonine residues on target proteins that is controlled by two enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Protein O-GlcNAcylation impacts a range of cellular processes, including trafficking, metabolism, inflammation and cytoskeletal organisation. Altered O-GlcNAcylation homeostasis have, therefore, been linked to a range of human pathologies with a metabolic component, including T2DM. We propose that protein O-GlcNAcylation alters vascular smooth muscle and endothelial cell function through modification of specific protein targets which contribute to the vascular re-modelling responsible for saphenous vein graft failure in T2DM.
  • Role of microRNA-145 in DNA damage signalling and senescence in vascular smooth muscle cells of Type 2 diabetic patients

    Hemmings, K.E.; Riches-Suman, Kirsten; Bailey, M.A.; O'Regan, D.J.; Turner, N.A.; Porter, K.E. (MDPI, 2021-04-16)
    Increased cardiovascular morbidity and mortality in individuals with type 2 diabetes (T2DM) is a significant clinical problem. Despite advancements in achieving good glycaemic control, this patient population remains susceptible to macrovascular complications. We previously discovered that vascular smooth muscle cells (SMC) cultured from T2DM patients exhibit persistent phenotypic aberrancies distinct from those of individuals without a diagnosis of T2DM. Notably, persistently elevated expression levels of microRNA-145 co-exist with characteristics consistent with aging, DNA damage and senescence. We hypothesised that increased expression of microRNA-145 plays a functional role in DNA damage signalling and subsequent cellular senescence specifically in SMC cultured from the vasculature of T2DM patients. In this study, markers of DNA damage and senescence were unambiguously and permanently elevated in native T2DM versus non-diabetic (ND)-SMC. Exposure of ND cells to the DNA-damaging agent etoposide inflicted a senescent phenotype, increased expression of apical kinases of the DNA damage pathway and elevated expression levels of microRNA-145. Overexpression of microRNA-145 in ND-SMC revealed evidence of functional links between them; notably increased secretion of senescence-associated cytokines and chronic activation of stress-activated intracellular signalling pathways, particularly the mitogen-activated protein kinase, p38a. Exposure to conditioned media from microRNA-145 overexpressing cells resulted in chronic p38a signalling in naïve cells, evidencing a paracrine induction and reinforcement of cell senescence. We conclude that targeting of microRNA-145 may provide a route to novel interventions to eliminate DNA-damaged and senescent cells in the vasculature and to this end further detailed studies are warranted.
  • Normal values and test-retest variability of stimulated-echo diffusion tensor imaging and fat fraction measurements in the muscle

    Farrow, Matthew; Grainger, A.J.; Tan, A.L.; Buch, M.H.; Emery, P.; Ridgway, J.P.; Feiweier, T.; Tanner, S.F.; Biglands, J. (2019-09)
    Objectives: To assess the test-retest variability of both diffusion parameters and fat fraction (FF) estimates in normal muscle, and to assess differences in normal values between muscles in the thigh. Methods: 29 healthy volunteers (mean age 37 years, range 20-60 years, 17/29 males) completed the study. Magnetic resonance images of the mid-thigh were acquired using a stimulated echo acquisition mode-echoplanar imaging (STEAM-EPI) imaging sequence, to assess diffusion, and 2-point Dixon imaging, to assess FF. Imaging was repeated in 19 participants after a 30 min interval in order to assess test-retest variability of the measurements. Results: Intraclass correlation coefficients (ICCs) for test-retest variability were 0.99 [95% confidence interval, (CI): 0.98, 1] for FF, 0.94 (95% CI: 0.84, 0.97) for mean diffusivity and 0.89 (95% CI: 0.74, 0.96) for fractional anisotropy (FA). FF was higher in the hamstrings than the quadriceps by a mean difference of 1.81% (95% CI:1.63, 2.00)%, p < 0.001. Mean diffusivity was significantly lower in the hamstrings than the quadriceps (0.26 (0.13, 0.39) x10-3 mm2s-1, p < 0.001) whereas fractional anisotropy was significantly higher in the hamstrings relative to the quadriceps with a mean difference of 0.063 (0.05, 0.07), p < 0.001. Conclusions: This study has shown excellent test-retest, variability in MR-based FF and diffusion measurements and demonstrated significant differences in these measures between hamstrings and quadriceps in the healthy thigh. Advances in knowledge: Test-retest variability is excellent for STEAM-EPI diffusion and 2-point Dixon-based FF measurements in the healthy muscle. Inter- and intraobserver variability were excellent for region of interest placement for STEAM-EPI diffusion and 2-point Dixon-based FF measurements in the healthy muscle. There are significant differences in FF and diffusion measurements between the hamstrings and quadriceps in the normal muscle.
  • The effect of ageing on skeletal muscle as assessed by quantitative MR imaging: an association with frailty and muscle strength

    Farrow, Matthew; Biglands, J.; Tanner, S.F.; Clegg, A.; Brown, L.; Hensor, E.M.A.; O'Connor, P.; Emery, P.; Tan, A.L. (2020-02)
    Background: Skeletal muscles undergo changes with ageing which can cause sarcopenia that can result in frailty. Quantitative MRI may detect the muscle-deficit component of frailty which could help improve the understanding of ageing muscles. Aims: To investigate whether quantitative MRI measures of T2, fat fraction (FF), diffusion tensor imaging and muscle volume can detect differences within the muscles between three age groups, and to assess how these measures compare with frailty index, gait speed and muscle power. Methods: 18 ‘young’ (18–30 years), 18 ‘middle-aged’ (31–68 years) and 18 ‘older’ (> 69 years) healthy participants were recruited. Participants had an MRI of their dominant thigh. Knee extension and flexion power and handgrip strength were measured. Frailty (English Longitudinal Study of Ageing frailty index) and gait speed were measured in the older participants. Results: Young participants had a lower muscle MRI T2, FF and mean diffusivity than middle-aged and older participants; middle-aged participants had lower values than older participants. Young participants had greater muscle flexion and extension power, muscle volume and stronger hand grip than middle-aged and older participants; middle-aged participants had greater values than the older participants. Quantitative MRI measurements correlated with frailty index, gait speed, grip strength and muscle power. Discussion: Quantitative MRI and strength measurements can detect muscle differences due to ageing. Older participants had raised T2, FF and mean diffusivity and lower muscle volume, grip strength and muscle power. Conclusions: Quantitative MRI measurements correlate with frailty and muscle function and could be used for identifying differences across age groups within muscle.
  • Novel muscle imaging in inflammatory rheumatic diseases — a focus on ultrasound shear wave elastography and quantitative MRI

    Farrow, Matthew; Biglands, J.; Alfuraih, A.M.; Wakefield, R.J.; Tan, A.L. (2020-08)
    In recent years, imaging has played an increasing role in the clinical management of patients with rheumatic diseases with respect to aiding diagnosis, guiding therapy and monitoring disease progression. These roles have been underpinned by research which has enhanced our understanding of disease pathogenesis and pathophysiology of rheumatology conditions, in addition to their key role in outcome measurement in clinical trials. However, compared to joints, imaging research of muscles is less established, despite the fact that muscle symptoms are very common and debilitating in many rheumatic diseases. Recently, it has been shown that even though patients with rheumatoid arthritis may achieve clinical remission, defined by asymptomatic joints, many remain affected by lingering constitutional systemic symptoms like fatigue, tiredness, weakness and myalgia, which may be attributed to changes in the muscles. Recent improvements in imaging technology, coupled with an increasing clinical interest, has started to ignite new interest in the area. This perspective discusses the rationale for using imaging, particularly ultrasound and MRI, for investigating muscle pathology involved in common inflammatory rheumatic diseases. The muscles associated with rheumatic diseases can be affected in many ways, including myositis—an inflammatory muscle condition, and myopathy secondary to medications, such as glucocorticoids. In addition to non-invasive visual assessment of muscles in these conditions, novel imaging techniques like shear wave elastography and quantitative MRI can provide further useful information regarding the physiological and biomechanical status of the muscle.
  • Muscle deterioration due to rheumatoid arthritis: assessment by quantitative MRI and strength testing

    Farrow, Matthew; Biglands, J.; Tanner, S.; Hensor, E.M.A.; Buch, M.H.; Emery, P.; Tan, A.L. (2021-03-02)
    RA patients often present with low muscle mass and decreased strength. Quantitative MRI offers a non-invasive measurement of muscle status. This study assessed whether MRI-based measurements of T2, fat fraction, diffusion tensor imaging and muscle volume can detect differences between the thigh muscles of RA patients and healthy controls, and assessed the muscle phenotype of different disease stages. Thirty-nine RA patients (13 'new RA'-newly diagnosed, treatment naïve, 13 'active RA'-persistent DAS28 >3.2 for >1 year, 13 'remission RA'-persistent DAS28 1 year) and 13 age and gender directly matched healthy controls had an MRI scan of their dominant thigh. All participants had knee extension and flexion torque and grip strength measured. MRI T2 and fat fraction were higher in the three groups of RA patients compared with healthy controls in the thigh muscles. There were no clinically meaningful differences in the mean diffusivity. The muscle volume, handgrip strength, knee extension and flexion were lower in all three groups of RA patients compared with healthy controls. Quantitative MRI and muscle strength measurements can potentially detect differences within the muscles between RA patients and healthy controls. These differences may be seen in RA patients who are yet to start treatment, those with persistent active disease, and those who were in clinical remission. This suggests that the muscles in RA patients are affected in the early stages of the disease and that signs of muscle pathology and muscle weakness are still observed in clinical remission.
  • Quantitative MRI in myositis patients: comparison with healthy volunteers and radiological visual assessment

    Farrow, Matthew; Biglands, J.D.; Grainger, A.J.; O'Connor, P.; Hensor, E.M.A.; Ladas, A.; Tanner, S.F.; Emergy, P.; Tan, A.L. (2021-01-01)
    To assess whether magnetic resonance imaging (MRI)-based measurements of T2, fat fraction, diffusion tensor imaging, and muscle volume can detect differences between the muscles of myositis patients and healthy controls, and to identify how they compare with semi-quantitative MRI diagnosis. Sixteen myositis patients and 16 age- and gender-matched healthy controls underwent MRI of their thigh. Quantitative MRI measurements and radiologists' semi-quantitative scores were assessed. Strength was assessed using an isokinetic dynamometer. Fat fraction and T2 values were higher in myositis patients whereas muscle volume was lower compared to healthy controls. There was no difference in diffusion. Muscle strength was lower in myositis patients compared to healthy controls. In a subgroup of eight patients, scored as unaffected by radiologists, T2 values were still significantly higher in myositis patients. Quantitative MRI measurements can detect differences between myositis patients and healthy controls. Changes in the muscles of myositis patients, undetected by visual, semi-quantitative scoring, can be detected using quantitative T2 measurements. This suggests that MRI T2 values may be useful for the management of myositis patients.
  • Dermal fibroblasts cultured from donors with type 2 diabetes mellitus retain an epigenetic memory associated with poor wound healing responses

    Al-Rikabi, Aaiad H.A.; Tobin, Desmond J.; Riches-Suman, Kirsten; Thornton, M. Julie (2021-01)
    The prevalence of Type 2 diabetes mellitus (T2DM) is escalating globally. Patients suffer from multiple complications including the development of chronic wounds that can lead to amputation. These wounds are characterised by an inflammatory environment including elevated tumour necrosis factor alpha (TNF-α). Dermal fibroblasts (DF) are critical for effective wound healing, so we sought to establish whether there were any differences in DF cultured from T2DM donors or those without diabetes (ND-DF). ND- and T2DM-DF when cultured similarly in vitro secreted comparable concentrations of TNF-α. Functionally, pre-treatment with TNF-α reduced the proliferation of ND-DF and transiently altered ND-DF morphology; however, T2DM-DF were resistant to these TNF-α induced changes. In contrast, TNF-α inhibited ND- and T2DM-DF migration and matrix metalloprotease expression to the same degree, although T2DM-DF expressed significantly higher levels of tissue inhibitor of metalloproteases (TIMP)-2. Finally, TNF-α significantly increased the secretion of pro-inflammatory cytokines (including CCL2, CXCL1 and SERPINE1) in ND-DF, whilst this effect in T2DM-DF was blunted, presumably due to the tendency to higher baseline pro-inflammatory cytokine expression observed in this cell type. Collectively, these data demonstrate that T2DM-DF exhibit a selective loss of responsiveness to TNF-α, particularly regarding proliferative and secretory functions. This highlights important phenotypic changes in T2DM-DF that may explain the susceptibility to chronic wounds in these patients.
  • Adipose tissue: a source of stem cells with potential for regenerative therapies for wound healing

    Trevor, Lucy V.; Riches-Suman, Kirsten; Mahajan, A.L.; Thornton, M. Julie (2020-07)
    Interest in adipose tissue is fast becoming a focus of research after many years of being considered as a simple connective tissue. It is becoming increasingly apparent that adipose tissue contains a number of diverse cell types, including adipose-derived stem cells (ASCs) with the potential to differentiate into a number of cell lineages, and thus has significant potential for developing therapies for regenerative medicine. Currently, there is no gold standard treatment for scars and impaired wound healing continues to be a challenge faced by clinicians worldwide. This review describes the current understanding of the origin, different types, anatomical location, and genetics of adipose tissue before discussing the properties of ASCs and their promising applications for tissue engineering, scarring, and wound healing.
  • A learning development-faculty collaborative exploration of postgraduate research student mental health in a UK university

    Delderfield, Russell; Ndoma-Egba, Mathias; Riches-Suman, Kirsten; Boyne, J. (2020-10)
    Mental ill-health is an escalating problem in higher education. Not only does this impact students’ ability to learn, it can lead to poor completion, with learners opting to withdraw from studies, even if attainment has been satisfactory. The aim of this study was to gain insight about perceptions of poor mental health from postgraduate research students in a diverse UK university and canvas opinion regarding how the University could improve this. A short, pragmatic survey with basic quantitative and qualitative responses was distributed. This was analysed by a team comprising the learning developer responsible for postgraduate researcher learning development, academics and a doctoral student. The study found that poor mental health was evident, with over three quarters of respondents reporting some experience of mental ill-health. We identified five areas in need of attention: University Systems, Supervisor Training, Well-being Monitoring, Building Networks, and Finance. Sources of University-based stress were finance, administrative support, and an environment where a perception that poor mental health was an expectation rather than a problem was experienced. Students preferred to access support outside the academic environment. This is the first study of its kind at a diverse, plate-glass UK university, to consider research student mental ill-health, with a staff-student team working with data, and the learning developer spear-heading changes across postgraduate research. These findings have already influenced university strategy, staff training, and induction practices. The synthesis of the five areas could be used to visualise where further work is needed to improve mental health in these learners.
  • Therapeutic Targeting of the Proinflammatory IL-6-JAK/STAT Signalling Pathways Responsible for Vascular Restenosis in Type 2 Diabetes Mellitus.

    Moshapa, Flora Tshepo; Riches-Suman, Kirsten; Palmer, T.M. (2019)
    Type 2 diabetes mellitus (T2DM) is increasing worldwide, and it is associated with increased risk of coronary artery disease (CAD). For T2DM patients, the main surgical intervention for CAD is autologous saphenous vein grafting. However, T2DM patients have increased risk of saphenous vein graft failure (SVGF). While the mechanisms underlying increased risk of vascular disease in T2DM are not fully understood, hyperglycaemia, insulin resistance, and hyperinsulinaemia have been shown to contribute to microvascular damage, whereas clinical trials have reported limited effects of intensive glycaemic control in the management of macrovascular complications. This suggests that factors other than glucose exposure may be responsible for the macrovascular complications observed in T2DM. SVGF is characterised by neointimal hyperplasia (NIH) arising from endothelial cell (EC) dysfunction and uncontrolled migration and proliferation of vascular smooth muscle cells (SMCs). This is driven in part by proinflammatory cytokines released from the activated ECs and SMCs, particularly interleukin 6 (IL-6). IL-6 stimulation of the Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT) pathway is a key mechanism through which EC inflammation, SMC migration, and proliferation are controlled and whose activation might therefore be enhanced in patients with T2DM. In this review, we investigate how proinflammatory cytokines, particularly IL-6, contribute to vascular damage resulting in SVGF and how suppression of proinflammatory cytokine responses via targeting the JAK/STAT pathway could be exploited as a potential therapeutic strategy. These include the targeting of suppressor of cytokine signalling (SOCS3), which appears to play a key role in suppressing unwanted vascular inflammation, SMC migration, and proliferation.
  • Synthesis of sulfonamide-based ynamides and ynamines in water

    Zhao, L.; Yang, H.; Li, R.; Tao, Y.; Guo, X-F.; Anderson, E.A.; Whiting, A.; Wu, Na (Anna) (2021-01)
    Ynamides, though relatively more stable than ynamines, are still moisture-sensitive and prone to hydration especially under acidic and heating conditions. Here we report an environmentally benign, robust protocol to synthesize sulfonamide-based ynamides and arylynamines via Sonogashira coupling reactions in water, using a readily available quaternary ammonium salt as the surfactant.

View more