Bradford Scholars is the University of Bradford online research archive. Access is free to anyone interested in research being conducted at Bradford. In the repository you will find a range of materials from journal articles and conference papers to research reports and theses.

Contact the repository team via openaccess@bradford.ac.uk with any queries about Open Access or how to deposit your research papers.

 


 

Shown below is a list of communities and the collections and sub-communities within them. Click on a name to view that community or collection home page.

  • Silicon-based 0.450-0.475 THz series-fed double dielectric resonator on-chip antenna array based on metamaterial properties for integrated-circuits

    Alibakhshikenari, M.; Virdee, B.S.; See, C.H.; Abd-Alhameed, Raed A.; Falcone, F.; Limiti, E. (2019-09)
    The antenna array designed to operate over 0.450-0.475 Terahertz comprises two dielectric resonators (DRs) that are stacked vertically on top of each other and placed on the surface of the slot antenna fabricated on a silicon substrate using standard CMOS technology. The slot created in the silicon substrate is meandering and is surrounded by metallic via-wall to prevent energy dissipation. The antenna has a maximum gain of 4.5dBi and radiation efficiency of 45.7% at 0.4625 THz. The combination of slot and vias transform the antenna to a metamaterial structure that provides a relatively small antenna footprint. The proposed series-fed double DRs on-chip antenna array is useful for applications in THz integrated circuits.
  • Study on isolation improvement between closely-packed patch antenna arrays based on fractal metamaterial electromagnetic bandgap structures

    Alibakhshikenari, M.; Virdee, B.S.; See, C.H.; Abd-Alhameed, Raed A.; Ali, Ammar H.; Falcone, F.; Limiti, E. (2018-11)
    A decoupling metamaterial (MTM) configuration based on fractal electromagnetic-bandgap (EMBG) structure is shown to significantly enhance isolation between transmitting and receiving antenna elements in a closely-packed patch antenna array. The MTM-EMBG structure is cross-shaped assembly with fractal-shaped slots etched in each arm of the cross. The fractals are composed of four interconnected-`Y-shaped' slots that are separated with an inverted-`T-shaped' slot. The MTM-EMBG structure is placed between the individual patch antennas in a 2 × 2 antenna array. Measured results show the average inter-element isolation improvement in the frequency band of interest is 17, 37 and 17 dB between radiation elements #1 & #2, #1 & #3, and #1 & #4, respectively. With the proposed method there is no need for using metallic-via-holes. The proposed array covers the frequency range of 8-9.25 GHz for X-band applications, which corresponds to a fractional-bandwidth of 14.5%. With the proposed method the edge-to-edge gap between adjacent antenna elements can be reduced to 0.5λ 0 with no degradation in the antenna array's radiation gain pattern. Across the array's operating band, the measured gain varies between 4 and 7 dBi, and the radiation efficiency varies from 74.22 and 88.71%. The proposed method is applicable in the implementation of closely-packed patch antenna arrays used in SAR and MIMO systems.
  • High-Performance 50μm Silicon-Based On-Chip Antenna with High Port-To-Port Isolation Implemented by Metamaterial and SIW Concepts for THz Integrated Systems

    Alibakhshikenari, M.; Virdee, B.S.; See, C.H.; Abd-Alhameed, Raed A.; Falcone, F.; Limiti, E. (2019-09-16)
    A novel 50μm Silicon-based on-chip antenna is presented that combines metamaterial (MTM) and substrate integrated waveguide (SIW) technologies for integration in THz circuits operating from 0.28 to 0.30 THz. The antenna structure comprises a square patch antenna implemented on a Silicon substrate with a ground-plane. Embedded diagonally in the patch are two T-shaped slots and the edges of the patch is short-circuited to the ground-plane with metal vias, which convert the structure into a substrate integrated waveguide. This structure reduces loss resulting from surface waves and Silicon dielectric substrate. The modes in the structure can be excited through two coaxial ports connected to the patch from the underside of the Silicon substrate. The proposed antenna structure is essentially transformed to exhibit metamaterial properties by realizing two T-shaped slots, which enlarges the effective aperture area of the miniature antenna and significantly enhances its impedance bandwidth and radiation characteristics between 0.28 THz to 0.3 THz. It has an average gain and efficiency of 4.5dBi and 65%, respectively. In addition, it is a self-isolated structure with high isolation of better than 30dB between the two ports. The on-chip antenna has dimensions of 800×800×60 μm3.
  • A comprehensive survey of "metamaterial transmission-line based antennas: design, challenges, and applications"

    Alibakhshikenari, M.; Virdee, B.S.; Azpilicueta, L.; Naser-Moghadasi, M.; Akinsolu, M.O.; See, C.H.; Liu, B.; Abd-Alhameed, Raed A.; Falcone, F.; Huyen, I.; et al. (2020-08)
    In this review paper, a comprehensive study on the concept, theory, and applications of composite right/left-handed transmission lines (CRLH-TLs) by considering their use in antenna system designs have been provided. It is shown that CRLH-TLs with negative permittivity (ε <; 0) and negative permeability (μ <; 0) have unique properties that do not occur naturally. Therefore, they are referred to as artificial structures called “metamaterials”. These artificial structures include series left-handed (LH) capacitances (C L ), shunt LH inductances (L L ), series right-handed (RH) inductances (LR), and shunt RH capacitances (CR) that are realized by slots or interdigital capacitors, stubs or via-holes, unwanted current flowing on the surface, and gap distance between the surface and ground-plane, respectively. In the most cases, it is also shown that structures based on CRLH metamaterial-TLs are superior than their conventional alternatives, since they have smaller dimensions, lower-profile, wider bandwidth, better radiation patterns, higher gain and efficiency, which make them easier and more cost-effective to manufacture and mass produce. Hence, a broad range of metamaterial-based design possibilities are introduced to highlight the improvement of the performance parameters that are rare and not often discussed in available literature. Therefore, this survey provides a wide overview of key early-stage concepts of metematerial-based designs as a thorough reference for specialist antennas and microwave circuits designers. To analyze the critical features of metamaterial theory and concept, several examples are used. Comparisons on the basis of physical size, bandwidth, materials, gain, efficiency, and radiation patterns are made for all the examples that are based on CRLH metamaterialTLs. As revealed in all the metematerial design examples, foot-print area decrement is an important issue of study that have a strong impact for the enlargement of the next generation wireless communication systems.
  • Mutual-coupling isolation using embedded metamaterial EM bandgap decoupling slab for densely packed array antennas

    Alibakhshikenari, M.; Khalily, M.; Virdee, B.S.; See, C.H.; Abd-Alhameed, Raed A.; Limiti, E. (2019-04)
    This article presents a unique technique to enhance isolation between transmit/receive radiating elements in densely packed array antenna by embedding a metamaterial (MTM) electromagnetic bandgap (EMBG) structure in the space between the radiating elements to suppress surface currents that would otherwise contribute towards mutual coupling between the array elements. The proposed MTM-EMBG structure is a cross-shaped microstrip transmission line on which are imprinted two outward facing E-shaped slits. Unlike other MTM structures there is no short-circuit grounding using via-holes. With this approach, the maximum measured mutual coupling achieved is -60 dB @ 9.18 GHz between the transmit patches (#1 & #2) and receive patches (#3 & #4) in a four-element array antenna. Across the antenna’s measured operating frequency range of 9.12 to 9.96 GHz, the minimum measured isolation between each element of the array is 34.2 dB @ 9.48 GHz, and there is no degradation in radiation patterns. The average measured isolation over this frequency range is 47 dB. The results presented confirm the proposed technique is suitable in applications such as synthetic aperture radar (SAR) and multiple-input multiple-output (MIMO) systems.

View more