Bradford Scholars
Bradford Scholars is the University of Bradford online research archive. Access is free to anyone interested in research being conducted at Bradford. In the repository you will find a range of materials from journal articles and conference papers to research reports and theses.
Contact the repository team via openaccess@bradford.ac.uk with any queries about Open Access or how to deposit your research papers.
Communities in Bradford Scholars
Select a community to browse its collections.
Recent Submissions
Publication Analysis of a Degree Level Learners Through a Pandemic: The Importance of Vocation-Linked Education for Chemical Scientists in Full Time Education and on Apprenticeship Studies(Royal Society of Chemistry, 2025-07-02)In 2015 the UK introduced a degree level apprenticeship framework that included creation of a Laboratory Scientist apprenticeship standard to meet demands within the chemical workforce. Here, we review our experience of a Laboratory Scientist (Chemistry) degree apprenticeship against a traditional BSc programme through presenting a case study that compares the progression of the students enrolled on these two equivalent chemistry degrees. Both courses shared the same BSc degree curriculum and content, however, the traditional BSc course was delivered as a full-time course and the apprenticeship as a part-time, online course. The course content, learning objectives and assessment structures were identical for the majority of these two programmes. During the pandemic, the mode of delivery on the two courses became closely aligned, enabling a meaningful comparison of learner attainment. We found that the module enrolment pass rate was significantly higher for the part-time apprentice students, demonstrating that vocation-linked learning is a vital tool in our educational arsenal and which suggests more focus should be given to the support and growth of degree level apprenticeship programmes.Publication Self-Fluorescent Lone Tryptophan Nanoparticles as Theranostic Agents Against Alzheimer's Disease.(2022-03-09)Aggregation of β-amyloid (Aβ42) peptide in the neural extracellular space leads to cellular dysfunction, resulting in Alzheimer's disease (AD). The hydrophobic core of the amyloidogenic Aβ42 peptide contains aromatic residues that play an important role in the self-assembly and subsequent aggregation of the peptide. Hence, targeting these hydrophobic core residues by potent low molecular agents can be a promising therapeutic approach toward AD. In the current work, we have developed self-fluorescent solo tryptophan nanoparticles (TNPs) as nanotheranostic systems against AD. We demonstrated that TNPs could significantly inhibit as well as disrupt the fibrils formed by both Aβ42 peptide and another reductionist approach-based amyloid model dipeptide, phenylalanine-phenylalanine (FF). More importantly, these nanostructures were nontoxic to neural cells and could protect the neurons from Aβ42 peptide and FF aggregate-induced cytotoxicity. In addition, efficacy studies performed in animal model further revealed that the TNPs could rescue spatial and learning memory in intracerebroventricular streptozotocin-administration-induced AD phenotype in rats. Moreover, our pharmacokinetics study further established the BBB permeability and brain delivery potency of TNPs. The inherent excellent fluorescent properties of these nanoparticles could be exploited further to use them as imaging modalities for tagging and detecting FF and Aβ42 peptide fibrils. Overall, our results clearly illustrated that the solo TNPs could serve as promising nanotheranostic agents for AD therapy.Publication The Capacity of Drug-Metabolising Enzymes in Modulating the Therapeutic Efficacy of Drugs to Treat Rhabdomyosarcoma(2024-02-29)Rhabdomyosarcoma (RMS) is a rare soft tissue sarcoma (STS) that predominantly affects children and teenagers. It is the most common STS in children (40%) and accounts for 5–8% of total childhood malignancies. Apart from surgery and radiotherapy in eligible patients, standard chemotherapy is the only therapeutic option clinically available for RMS patients. While survival rates for this childhood cancer have considerably improved over the last few decades for low-risk and intermediate-risk cases, the mortality rate remains exceptionally high in high-risk RMS patients with recurrent and/or metastatic disease. The intensification of chemotherapeutic protocols in advanced-stage RMS has historically induced aggravated toxicity with only very modest therapeutic gain. In this review, we critically analyse what has been achieved so far in RMS therapy and provide insight into how a diverse group of drug-metabolising enzymes (DMEs) possess the capacity to modify the clinical efficacy of chemotherapy. We provide suggestions for new therapeutic strategies that exploit the presence of DMEs for prodrug activation, targeted chemotherapy that does not rely on DMEs, and RMS-molecular-subtype-targeted therapies that have the potential to enter clinical evaluation.Publication Nanotechnology Assisted Drug Delivery Strategies for Chemotherapy: Recent Advances and Future Prospects(2025-05-03)In pursuit of the treatment of cancer, nanotechnology engineering has emerged as the simplest and most effective means, with the potential to deliver antitumor chemotherapeutics at the targeted site. Employing nanotechnology for drug delivery provides diverse nanosize particles ranging from one to a thousand nanometers. Reduced size improves drug bioavailability by increasing drug diffusion and decreasing the efflux rate. These nanocarriers offer an enormous scope for modification following the chemical and biological properties of both the drug and its disease. Moreover, these nanoformulations assist in targeting pharmaceutically active drug molecules to the desired site and have gained importance in recent years. Their modern use has revolutionized the antitumor action of many therapeutic agents. Higher drug loading efficiency, thermal stability, easy fabrication, low production cost, and large-scale industrial production draw attention to the application of nanotechnology as a better platform for the delivery of drug molecules. Furthermore, the interaction of nanocarrier technology-assisted agents lowers a drug’s toxicity and therapeutic dosage, reduces drug tolerance, and enhances active drug concentration in neoplasm tissue, thus decreasing the concentration in healthy tissue. Nanotechnology-based medications are being widely explored and have depicted effective cancer management in vivo and in vitro systems, leading to many clinical trials with promising results. This review summarizes the innovative impact and application of different nanocarriers developed in recent years in cancer therapy. Subsequently, it also describes the essential findings and methodologies and their effects on cancer treatment. Compared with conventional therapy, nanomedicines can significantly improve the therapeutic effectiveness of antitumor drugs. Thus, the adverse effects associated with healthy tissues are decreased, and adverse effects are scaled back through enhanced permeability and retention effects. Lastly, future insights assisting nanotechnology in active therapeutics delivery and their scope in cancer chemotherapeutics have also been discussed.Publication Formulation and Characterization of Phytosomes as Drug Delivery System of Formononetin: An effective Anti-Osteoporotic Agent(2023-02-08)Formononetin (FNT), a methoxy isoflavone, is a potential phytoconstituent utilized for refurbishing fractures in bone tissue. Conceding to its involvement in first-pass metabolism followed by glucuronidation, its absorption efficacy is limited. Hence, it belongs to the BCS class II classification. We designed the present work to enhance FNT oral bioavailability by using Phospholipids (PL) as a promising carrier. Formononetin Phospholipid Complex (FNT-PC) was prepared by the solvent evaporation method and characterized. FNT-PC was prepared by solvent evaporation method and characterization (FNT-PC) was performed using aqueous/n-octanol solubility and partition coefficient, FTIR, NMR, SEM, and in vivo pharmacokinetic study in female SD rats at 50mg/kg. Physicochemical properties like aqueous/n-octanol solubility and partition coefficient were enhanced in FNT-PC. The FTIR spectrum confirmed there was no involvement of functional groups in the preparation of FNT-PC. Whereas, the NMR study resulted in the attachment of carbon (C-8) position of FNT by replacing the quaternary amine of PL to form FNT-PC. When scrutinized for its surface morphology, the FNT-PC exhibited the amorphous geometry that remarkably enhanced the dissolution of FNT (p<0.05) from its pure form. This dissolution effect was also affirmed by the per-oral administration of FNT-PC in female Sprague Dawley (SD) rats at 50 mg/kg dose. The pharmacokinetic profile showed the free FNT levels were markedly increased, correspondingly decreasing the conjugated FNT levels in rat plasma. To summarize, FNT-PC could substantially reduce the first-pass metabolism with enhanced free concentration, improving oral bioavailability for therapeutic use.