Bradford Scholars is the University of Bradford online research archive. Access is free to anyone interested in research being conducted at Bradford. In the repository you will find a range of materials from journal articles and conference papers to research reports and theses.

Contact the repository team via with any queries about Open Access or how to deposit your research papers.



Shown below is a list of communities and the collections and sub-communities within them. Click on a name to view that community or collection home page.

  • Experimental investigations and finite element analyses of interface heat partition in a friction brake system. New modelling paradigm for describing friction brake systems to support studies of interface temperature, contact pressure, heat flux distribution and heat partition ratio by experiment and FE simulation

    Qi, Hong Sheng; Wood, Alastair S.; Qui, Le (University of BradfordFaculty of Engineering and Informatics, 2018)
    Operating temperature range is one of the primary design considerations for developing effective disc brake system performance. Very high braking temperatures can introduce effects detrimental to performance such as brake fade, premature wear, brake fluid vaporization, bearing failure, thermal cracks, and thermally-excited vibration [2]. This project is concerned with investigating deficiencies and proposing improvements in brake system Finite Element (FE) models in order to provide high quality descriptions of thermal behaviour during braking events. The work focuses on brake disc/pad models and the degree of rotational freedom allowed for the pad. Conventional models [10] allow no motion/or free motion of the pad. The present work investigates the effect on disc/pad interface temperature and pressure distributions of limited relaxations of this rotational restriction. Models are proposed, developed and validated that facilitate different rotational degrees of freedom (DoF) of the pad. An important influencing factor in friction brake performance is the development of an interface tribo-layer (ITL). It is reasonable to assume that allowing limited rotational motion of the pad will impact the development of the ITL (e.g. due to different friction force distributions) and hence influence temperature. Here the ITL is modelled in the numerical simulations as a function of its thickness distribution and thermal conductivity. Different levels of ITL thermal conductivity are defined in this work and results show that conductivity significantly a1qwffects interface temperature and heat partition ratio. The work is based around a set of test-rig experiments and FE model developments and simulations. For the experimental work, a small-scale test rig is used to investigate the friction induced bending moment effect on the pad/disc temperature. Significant non-uniform wear is observed across the friction surface of the pad, and reasons for the different wear rates are proposed and analyzed together with their effect on surface temperature. Following on from experiment a suite of models is developed in order to evidence the importance of limited pad motion and ITL behaviours. A 2D coupled temperature-displacement FE model is used to quantify the influence of different pad rotational degrees of freedom and so provide evidence for proposing realistic pad boundary settings for 3D models. Normal and high interface thermal conductance is used in 2D models and results show that the ITL thermal conductivity is an important factor influencing the maximum temperature of contact surfaces and therefore brake performance. The interface heat partition ratio is calculated by using the heat flux results and it is confirmed that this value is neither constant nor uniform across the interface surfaces. Key conclusions from the work are (i) that ITL thermal conductivity is an important factor influencing the interface temperature/heat flux distribution and their maximum values, (ii) that allowed motion of the pad significantly affects the interface pressure distribution and subsequently the temperature distribution, (iii) that the transient heat partition in friction braking is clearly quite different to the conventional friction-pair steady heat partition (the heat partition ratio is not uniformly distributed along the interface) and (iv) that the thickness of the ITL increases through braking events, reducing the heat transfer to the disc, and so providing a possible explanation for increasing pad temperature observed over the life time of a brake pad.
  • Prostanoid-mediated Inhibition of IL-6 Trans-Signalling in Pulmonary Arterial Hypertension: a Role for Suppressor of Cytokine Signalling 3?

    Palmer, Timothy M.; Williams, Jamie J.L.; Nasim, Md. Talat; Elies, Jacobo; Durham, Gillian A. (University of BradfordSchool of Pharmacy and Medical Sciences Faculty of Life Sciences, 2019)
    Pulmonary arterial hypertension (PAH) is a rare, devastating disease with no cure. Current treatment consists of a cocktail of vasodilators which relieve symptoms of PAH but do not treat the cause. Thus, there is a need for novel drugs that target the underlying pathological causes of PAH. PAH is a multi-factorial, but one key contributor is the pro-inflammatory cytokine IL-6 which stimulates pro-inflammatory and pro-angiogenic signalling mediated by the JAK/STAT pathway. One way in which IL-6 signalling via JAK/STAT is inhibited is via SOCS3 in a type of negative feedback loop whereby IL-6 induces transcription of SOCS3, which then attenuates further JAK/STAT signalling. SOCS3 can also be induced by cAMP. This is interesting as prostanoids, a type of drug used in the treatment of PAH due to its vasodilator effects and the only type to show any efficacy improving the life expectancy of PAH patients, acts by mobilising cAMP. Thus, prostanoid stimulation of cAMP could potentially limit IL-6 signalling via the induction of SOCS3. This is a novel mechanism of prostanoids which has not previously been considered. This study investigated the capability of prostanoids to limit the pro-inflammatory/pro-angiogenic effects of IL-6 that enable PAH to develop. Initial experiments confirmed that vascular endothelial cells responded to prostanoids which increased SOCS3 and limited IL-6 signalling activity. Further experiments utilising SOCS3 KO endothelial cell models demonstrated prostanoid inhibition of IL-6 signalling was due in part to SOCS3. In conclusion, this project has confirmed that prostanoids do limit the pro-inflammatory effects induced by IL-6 and that this is in part due to SOCS3. Although the exact mechanism is yet to be discovered, it will be beneficial in the treatment of PAH as it provides currently unexploited drug targets which can be considered for future PAH therapies.
  • Managing risk; how doctors, nurses and pharmacists optimise the use of medicines in acute hospitals in Northern Ireland: a grounded theory study.

    Lucas, Beverley J.; Blenkinsopp, Alison; Friel, Anne B.M. (University of BradfordSchool of Pharmacy and Medical Sciences, Faculty of Life Sciences, 2018)
    Medicines optimisation requires healthcare professionals to work collaboratively to meet the medication needs of patients. A grounded theory was produced which explains how doctors, nurses and pharmacists work to optimise the use of medicines in acute hospital settings in Northern Ireland. Seventeen semi-structured, one-to-one interviews were conducted with doctors, nurses and pharmacists. Concurrent data collection and analysis was carried out using coding, particular to grounded theory, adopting a constant comparative approach, writing memos and using theoretical sampling as described by Strauss and Corbin (1998). The core category was managing risk. Participants had an implicit understanding of the need to continually manage risk when working with the complex and the routine. They used personal and systemic checks and balances which could be viewed either as duplication of effort or indicative of a culture of safety. Multi-professional interdependencies and support for new, professional, non-medical roles were highlighted. Working together was a further strategy to ensuring each patient gets the right medicine. Establishing an agreed framework for working with medicines at ward level could support the safer use of medicines. It is anticipated that this theory will contribute to the design of systems involved in medicines use in acute hospitals in Northern Ireland.
  • Development of digital imaging technologies for the segmentation of solar features and the extraction of filling factors from SODISM images

    Qahwaji, Rami S.R.; Ipson, Stanley S.; Alasta, Amro F.A. (University of BradfordSchool of Electrical Engineering and computer. Science Faculty of Engineering and Informatics, 2018)
    Solar images are one of the most important sources of available information on the current state and behaviour of the sun, and the PICARD satellite is one of several ground and space-based observatories dedicated to the collection of that data. The PICARD satellite hosts the Solar Diameter Imager and Surface Mapper (SODISM), a telescope aimed at continuously monitoring the Sun. It has generated a huge cache of images and other data that can be analysed and interpreted to improve the monitoring of features, such as sunspots and the prediction and diagnosis of solar activity. In proportion to the available raw material, the little-published analysis of SODISM data has provided the impetus for this study, specifically a novel method of contributing to the development of a system to enhance, detect and segment sunspots using new hybrid methods. This research aims to yield an improved understanding of SODISM data by providing novel methods to tabulate a sunspot and filling factor (FF) catalogue, which will be useful for future forecasting activities. The developed technologies and the findings achieved in this research will work as a corner stone to enhance the accuracy of sunspot segmentation; create efficient filling factor catalogue systems, and enhance our understanding of SODISM image enhancement. The results achieved can be summarised as follows: i) Novel enhancement method for SODISM images. ii) New efficient methods to segment dark regions and detect sunspots. iii) Novel catalogue for filling factor including the number, size and sunspot location. v) Novel statistical method to summarise FFs catalogue. Image processing and partitioning techniques are used in this work; these methods have been applied to remove noise and detect sunspots and will provide more information such as sunspot numbers, size and filling factor. The performance of the model is compared to the fillers extracted from other satellites, such as SOHO. Also, the results were compared with the NOAA catalogue and achieved a precision of 98%. Performance measurement is also introduced and applied to verify results and evaluate proposal methods. Algorithms, implementation, results and future work have been explained in this thesis.
  • Design and Linearization of Energy Efficiency Power Amplifier in Nonlinear OFDM Transmitter for LTE-5G Applications. Simulation and measurements of energy efficiency power amplifier in the presence of nonlinear OFDM transmitter system and digital predistortion based on Hammerstein-Wiener method

    Abd-Alhameed, Raed A.; Mohammed, Buhari A. (University of BradfordFaculty of Engineering and Informatics, 2019)
    This research work has made an effort to understand a novel line of radio frequency power amplifiers (RFPAs) that address initiatives for efficiency enhancement and linearity compensation to harmonize the fifth generation (5G) campaign. The objective is to enhance the performance of an orthogonal frequency division multiplexing-long term evolution (OFDM-LTE) transmitter by reducing the nonlinear distortion of the RFPA. The first part of this work explores the design and implementation of 15.5 W class AB RF power amplifier, adopting a balanced technique to stimulate efficiency enhancement and redeeming exhibition of excessive power in the transmitter. Consequently, this work goes beyond improving efficiency over a linear RF power amplifier design; in which a comprehensive investigation on the fundamental and harmonic components of class F RF power amplifier using a load-pull approach to realise an optimum load impedance and the matching network is presented. The frequency bandwidth for both amplifiers was allocated to operate in the 2.620-2.690 GHz of mobile LTE applications. The second part explores the development of the behavioural model for the class AB power amplifier. A particular novel, Hammerstein-Wiener based model is proposed to describe the dynamic nonlinear behaviour of the power amplifier. The RF power amplifier nonlinear distortion is approximated using a new linear parameter approximation approach. The first and second-order Hammerstein-Wiener using the Normalised Least Mean Square Error (NLMSE) algorithm is used with the aim of easing the complexity of filtering process during linear memory cancellation. Moreover, an enhanced adaptive Wiener model is proposed to explore the nonlinear memory effect in the system. The proposed approach is able to balance between convergence speed and high-level accuracy when compared with behavioural modelling algorithms that are more complex in computation. Finally, the adaptive predistorter technique is implemented and verified in the OFDM transceiver test-bed. The results were compared against the computed one from MATLAB simulation for OFDM and 5G modulation transmitters. The results have confirmed the reliability of the model and the effectiveness of the proposed predistorter.

View more