BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A fibre optic system for distributed temperature sensing based on raman scattering.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    Haichao_Wang_Final.pdf (3.000Mb)
    Download
    Publication date
    2013-01-23
    Author
    Wang, Haichao
    Supervisor
    Not named
    Keyword
    Fibre optics
    Raman scattering
    Power cables
    Power cable monitoring
    Distributed Temperature Sensing (DTS)
    Rights
    Creative Commons License
    The University of Bradford theses are licenced under a Creative Commons Licence.
    Institution
    University of Bradford
    Department
    School of Computing, Informatics and media
    Awarded
    2012
    
    Metadata
    Show full item record
    Abstract
    This thesis is based on a research project to monitor the temperature profile along a power cable using the fibre optic Distributed Temperature Sensing (DTS) technology. Based on the temperature measured by a DTS system, real time condition monitoring of power cables can be achieved. In this thesis, there are three main research themes. 1. Develop a DTS system for industrial applications. The entire hardware system and measuring software are developed to be an industrial product. Multiple functions are provided for the convenience of users to conduct temperature monitoring, temperature history logging and off-line simulation. 2. Enhance the robustness of the DTS system. An algorithm for signal compensation is developed to eliminate the signal fluctuation due to disturbance from the hardware and its working environment. It ensures robustness of the system in industrial environments and applicability to different system configurations. 3. Improve the accuracy of the DTS system. A calibration algorithm based on cubic spline fitting is developed to cope with non-uniform fibre loss in the system, which greatly improved the accuracy of the temperature decoding in real applications with unavoidable nonlinear characteristics. The developed DTS system and the algorithms have been verified by continuous experiments for about one year and achieved a temperature resolution of 0.1 degree Celsius, a spatial resolution of 1 meter, and a maximum error of 2 degree Celsius in an optic fibre with the length of 2910 metres.
    URI
    http://hdl.handle.net/10454/5498
    Type
    Thesis
    Qualification name
    MPhil
    Collections
    Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.