Studies in the synthesis of pyrimidines, pyrazoles, and pyrazolo pyrimidines. New syntheses of 1, 3 and 5 substituted pyrazolo [3, 4-d] pyrimidines, including glycosides related to naturally occurring pyrimidines, imidazoles, purines and their nucleoside derivatives.
View/ Open
Hildick.pdf (11.72Mb)
Download
Publication date
2010-07-23T14:14:32ZAuthor
Hildick, Brian G.Supervisor
Shaw, G.Keyword
PyrimidinesImidazoles
Purines
Chemical synthesis
Pyrazoles
Pyrazolo pyrimidines
Chemotherapeutic activity
Rights
The University of Bradford theses are licenced under a Creative Commons Licence.
Institution
University of BradfordDepartment
Board of Physical SciencesAwarded
1978
Metadata
Show full item recordAbstract
Some compounds, analogous to those found in naturally occurring systems, are found to possess chemotherapeutic activity. Some, in the form of their nucleoside or nucleotide derivatives, are valuable antimetabolites in that they may block normal RNA or DNA polymerisation, or may be incorporated into nucleic acids to form fraudulent, but not necessarily defective, polymers. Modification of natural ring systems, with a view to promoting chemotherapeutic activity is therefore of considerable interest; variation in the position and nature of the modification or ring substituent having a marked effect on chemotherapeutic activity. It is the purpose of this thesis to suggest methods for the facile synthesis of various uracils, pyrazoles and pyrazolo [3,4-d] - pyrimidines with alkyl, aryl and glycosyl substituents such that the nature of the ring substituents is easily varied. To this end a number of ethoxymethylene reagents were prepared which, by reaction with primary amines and hydrazines, would give acyclic intermediates capable of easy cyclisation into the uracil, pyrazole and pyrazolo [3,4-d] pyrimidine ring systems. Variation in the nature of specific substituents being determined by the choice of amine or hydrazine, other substituents being varied by modification of the original reagent.Type
ThesisQualification name
PhDCollections
Related items
Showing items related by title, author, creator and subject.
-
The microtubule depolymerizing agent CYT997 causes extensive ablation of tumor vasculature in vivoBurns, C.J.; Fantino, E.; Powell, A.K.; Shnyder, Steven; Cooper, Patricia A.; Nelson, S.; Christophi, C.; Malcontenti-Wilson, C.; Dubljevic, V.; Harte, M.F.; et al. (2011)The orally active microtubule-disrupting agent (S)-1-ethyl-3-(2-methoxy-4-(5-methyl-4-((1-(pyridin-3-yl)butyl)amino)pyrimidin-2- yl)phenyl)urea (CYT997), reported previously by us (Bioorg Med Chem Lett 19:4639-4642, 2009; Mol Cancer Ther 8:3036-3045, 2009), is potently cytotoxic to a variety of cancer cell lines in vitro and shows antitumor activity in vivo. In addition to its cytotoxic activity, CYT997 possesses antivascular effects on tumor vasculature. To further characterize the vascular disrupting activity of CYT997 in terms of dose and temporal effects, we studied the activity of the compound on endothelial cells in vitro and on tumor blood flow in vivo by using a variety of techniques. In vitro, CYT997 is shown to potently inhibit the proliferation of vascular endothelial growth factor-stimulated human umbilical vein endothelial cells (IC(50) 3.7 +/- 1.8 nM) and cause significant morphological changes at 100 nM, including membrane blebbing. Using the method of corrosion casting visualized with scanning electron microscopy, a single dose of CYT997 (7.5 mg/kg i.p.) in a metastatic cancer model was shown to cause destruction of tumor microvasculature in metastatic lesions. Furthermore, repeat dosing of CYT997 at 10 mg/kg and above (intraperitoneally, b.i.d.) was shown to effectively inhibit development of liver metastases. The time and dose dependence of the antivascular effects were studied in a DLD-1 colon adenocarcinoma xenograft model using the fluorescent dye Hoechst 33342. CYT997 demonstrated rapid and dose-dependent vascular shutdown, which persists for more than 24 h after a single oral dose. Together, the data demonstrate that CYT997 possesses potent antivascular activity and support continuing development of this promising compound.
-
Imatinib radiosensitizes bladder cancer by targeting homologous recombinationQiao, B.; Kerr, M.; Groselj, B.; Teo, M.T.; Knowles, M.A.; Bristow, R.G.; Phillips, Roger M.; Kiltie, A.E. (2013)Radiotherapy is a major treatment modality used to treat muscle-invasive bladder cancer, with patient outcomes similar to surgery. However, radioresistance is a significant factor in treatment failure. Cell-free extracts of muscle-invasive bladder tumors are defective in nonhomologous end-joining (NHEJ), and this phenotype may be used clinically by combining radiotherapy with a radiosensitizing drug that targets homologous recombination, thereby sparing normal tissues with intact NHEJ. The response of the homologous recombination protein RAD51 to radiation is inhibited by the small-molecule tyrosine kinase inhibitor imatinib. Stable RT112 bladder cancer Ku knockdown (Ku80KD) cells were generated using short hairpin RNA technology to mimic the invasive tumor phenotype and also RAD51 knockdown (RAD51KD) cells to show imatinib's pathway selectivity. Ku80KD, RAD51KD, nonsilencing vector control, and parental RT112 cells were treated with radiation in combination with either imatinib or lapatinib, which inhibits NHEJ and cell survival assessed by clonogenic assay. Drug doses were chosen at approximately IC40 and IC10 (nontoxic) levels. Imatinib radiosensitized Ku80KD cells to a greater extent than RAD51KD or RT112 cells. In contrast, lapatinib radiosensitized RAD51KD and RT112 cells but not Ku80KD cells. Taken together, our findings suggest a new application for imatinib in concurrent use with radiotherapy to treat muscle-invasive bladder cancer. Cancer Res; 73(5); 1611-20. (c)2012 AACR.
-
Melanin distribution in human epidermis affords localized protection against DNA photodamage and concurs with skin cancer incidence difference in extreme phototypesFajuyigbe, D.; Lwin, S.M.; Diffey, B.L.; Baker, Richard; Tobin, Desmond J.; Sarkany, R.P.E.; Young, A.R. (2018-07)Epidermal DNA damage, especially to the basal layer, is an established cause of keratinocyte cancers (KCs). Large differences in KC incidence (20- to 60-fold) between white and black populations are largely attributable to epidermal melanin photoprotection in the latter. The cyclobutane pyrimidine dimer (CPD) is the most mutagenic DNA photolesion; however, most studies suggest that melanin photoprotection against CPD is modest and cannot explain the considerable skin color-based differences in KC incidence. Along with melanin quantity, solar-simulated radiation-induced CPD assessed immediately postexposure in the overall epidermis and within 3 epidermal zones was compared in black West Africans and fair Europeans. Melanin in black skin protected against CPD by 8.0-fold in the overall epidermis and by 59.0-, 16.5-, and 5.0-fold in the basal, middle, and upper epidermis, respectively. Protection was related to the distribution of melanin, which was most concentrated in the basal layer of black skin. These results may explain, at least in part, the considerable skin color differences in KC incidence. These data suggest that a DNA protection factor of at least 60 is necessary in sunscreens to reduce white skin KC incidence to a level that is comparable with that of black skin.