Show simple item record

dc.contributor.authorVourdas, Apostolos*
dc.date.accessioned2009-09-29T12:58:43Z
dc.date.available2009-09-29T12:58:43Z
dc.date.issued2003
dc.identifier.citationVourdas, A (2003). Factorization in finite quantum systems. Journal of Physics A: Mathematical and General. Vol. 36, N. 20, pp. 5645-5653.
dc.identifier.urihttp://hdl.handle.net/10454/3537
dc.descriptionNo
dc.description.abstractUnitary transformations in an angular momentum Hilbert space H(2j + 1), are considered. They are expressed as a finite sum of the displacement operators (which play the role of SU(2j + 1) generators) with the Weyl function as coefficients. The Chinese remainder theorem is used to factorize large qudits in the Hilbert space H(2j + 1) in terms of smaller qudits in Hilbert spaces H(2ji + 1). All unitary transformations on large qudits can be performed through appropriate unitary transformations on the smaller qudits.
dc.language.isoenen
dc.subjectHilbert space
dc.subjectUnitary transformations
dc.subjectQuantum systems
dc.titleFactorization in finite quantum systems.
dc.status.refereedYes
dc.typeArticle
dc.type.versionNo full-text in the repository
dc.identifier.doihttps://doi.org/10.1088/0305-4470/36/20/319
dc.openaccess.statusclosedAccess


This item appears in the following Collection(s)

Show simple item record