Show simple item record

dc.contributor.authorVourdas, Apostolos
dc.date.accessioned2009-09-29T12:58:43Z
dc.date.available2009-09-29T12:58:43Z
dc.date.issued2003
dc.identifier.citationVourdas, A (2003). Factorization in finite quantum systems. Journal of Physics A: Mathematical and General. Vol. 36, N. 20, pp. 5645-5653.en
dc.identifier.urihttp://hdl.handle.net/10454/3537
dc.description.abstractUnitary transformations in an angular momentum Hilbert space H(2j + 1), are considered. They are expressed as a finite sum of the displacement operators (which play the role of SU(2j + 1) generators) with the Weyl function as coefficients. The Chinese remainder theorem is used to factorize large qudits in the Hilbert space H(2j + 1) in terms of smaller qudits in Hilbert spaces H(2ji + 1). All unitary transformations on large qudits can be performed through appropriate unitary transformations on the smaller qudits.en
dc.language.isoenen
dc.relation.isreferencedbyhttp://dx doi.org/10.1088/0305-4470/36/20/319en
dc.subjectHilbert spaceen
dc.subjectUnitary transformationsen
dc.subjectQuantum systemsen
dc.titleFactorization in finite quantum systems.en
dc.status.refereedYesen
dc.typeArticleen


This item appears in the following Collection(s)

Show simple item record