A Modified Radiometric Method for Measuring Antenna Radiation Efficiency
Publication date
2009-05-28Peer-Reviewed
YesOpen Access status
closedAccess
Metadata
Show full item recordAbstract
Radiation efficiency of antennas is shown to be measurable by a modified radiometric technique where the antenna's physical temperature is varied, rather than the noise temperature of its surroundings. The method is accurate, flexible and much more convenient for routine use. A means of avoiding errors caused by temperature-dependent antenna impedance is described. The accuracy of the method is verified by measuring the radiation efficiency of a horn antenna with a 3 dB attenuator to simulate a 50% efficient antenna, and by using microstrip patch antennas, whose measured efficiencies compared well with values computed from a transmission-line model.Version
No full-text in the repositoryCitation
McEwan NJ, Abd-Alhameed R, Abidin MNZ (2003) A Modified Radiometric Method for Measuring Antenna Radiation Efficiency. IEEE Transactions on Antennas and Propagation. 51(8): 2099- 2105.Link to Version of Record
https://doi.org/10.1109/TAP.2003.815407Type
Articleae974a485f413a2113503eed53cd6c53
https://doi.org/10.1109/TAP.2003.815407
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
Miniaturized tunable conical helix antennaZhu, F.; Ghazaany, Tahereh S.; Abd-Alhameed, Raed; Jones, Steven M.R.; Noras, James M.; Suggett, T.; Marker, S. (2014)A miniaturized conical helix antenna is presented, which displays vertical polarization with electrically small dimensions of 10mm×10mm×45mm. The resonance of the antenna is made tunable by adding a variable digital MEMS capacitor load at the bottom of the helix, giving a tuning range of 316 MHz to 400 MHz. The antenna demonstrates considerable impedance matching bandwidth and gain over the entire tuning frequency band. Most importantly, the antenna is capable of compact, flexible and easy integration into a wireless device package or for platform installation.
-
Model and design of small compact dielectric resonator and printed antennas for wireless communications applications. Model and simulation of dialectric resonator (DR) and printed antennas for wireless applications; investigations of dual band and wideband responses including antenna radiation performance and antenna design optimization using parametric studiesAbd-Alhameed, Raed; McEwen, N.J.; Mujtaba, Iqbal; Elmegri, Fauzi (University of BradfordFaculty of Engineering and Informatics, 2015)Dielectric resonator antenna (DRA) technologies are applicable to a wide variety of mobile wireless communication systems. The principal energy loss mechanism for this type of antenna is the dielectric loss, and then using modern ceramic materials, this may be very low. These antennas are typically of small size, with a high radiation efficiency, often above 95%; they deliver wide bandwidths, and possess a high power handling capability. The principal objectives of this thesis are to investigate and design DRA for low profile personal and nomadic communications applications for a wide variety of spectrum requirements: including DCS, PCS, UMTS, WLAN, UWB applications. X-band and part of Ku band applications are also considered. General and specific techniques for bandwidth expansion, diversity performance and balanced operation have been investigated through detailed simulation models, and physical prototyping. The first major design to be realized is a new broadband DRA operating from 1.15GHz to 6GHz, which has the potential to cover most of the existing mobile service bands. This antenna design employs a printed crescent shaped monopole, and a defected cylindrical DRA. The broad impedance bandwidth of this antenna is achieved by loading the crescent shaped radiator of the monopole with a ceramic material with a permittivity of 81. The antenna volume is 57.0 37.5 5.8 mm3, which in conjunction with the general performance parameters makes this antenna a potential candidate for mobile handset applications. The next class of antenna to be discussed is a novel offset slot-fed broadband DRA assembly. The optimised structure consists of two asymmetrically located cylindrical DRA, with a rectangular slot feed mechanism. Initially, designed for the frequency range from 9GHz to 12GHz, it was found that further spectral improvements were possible, leading to coverage from 8.5GHz to 17GHz. Finally, a new low cost dual-segmented S-slot coupled dielectric resonator antenna design is proposed for wideband applications in the X-band region, covering 7.66GHz to 11.2GHz bandwidth. The effective antenna volume is 30.0 x 25.0 x 0.8 mm3. The DR segments may be located on the same side, or on opposite sides, of the substrate. The end of these configurations results in an improved diversity performance.
-
Investigation, design and implementation of frequency tuneable antennas for mobile handset and UWB applications. Simulation and measurement of tunable antennas for handheld mobile handsets and UWB system, investigations of frequency tuneable range, antenna radiation performance and antenna design optimisation using parametric studiesAbd-Alhameed, Raed; Elfergani, Issa T. (University of BradfordSchool of Engineering, Design and Technology, 2012)