Loading...
Thumbnail Image
Publication

Prostanoid-mediated Inhibition of IL-6 Trans-Signalling in Pulmonary Arterial Hypertension: a Role for Suppressor of Cytokine Signalling 3?

Durham, Gillian A.
Publication Date
2019
End of Embargo
Rights
Creative Commons License
The University of Bradford theses are licenced under a Creative Commons Licence.
Peer-Reviewed
Open Access status
Accepted for publication
Institution
University of Bradford
Department
School of Pharmacy and Medical Sciences Faculty of Life Sciences
Awarded
2019
Embargo end date
Collections
Abstract
Pulmonary arterial hypertension (PAH) is a rare, devastating disease with no cure. Current treatment consists of a cocktail of vasodilators which relieve symptoms of PAH but do not treat the cause. Thus, there is a need for novel drugs that target the underlying pathological causes of PAH. PAH is a multi-factorial, but one key contributor is the pro-inflammatory cytokine IL-6 which stimulates pro-inflammatory and pro-angiogenic signalling mediated by the JAK/STAT pathway. One way in which IL-6 signalling via JAK/STAT is inhibited is via SOCS3 in a type of negative feedback loop whereby IL-6 induces transcription of SOCS3, which then attenuates further JAK/STAT signalling. SOCS3 can also be induced by cAMP. This is interesting as prostanoids, a type of drug used in the treatment of PAH due to its vasodilator effects and the only type to show any efficacy improving the life expectancy of PAH patients, acts by mobilising cAMP. Thus, prostanoid stimulation of cAMP could potentially limit IL-6 signalling via the induction of SOCS3. This is a novel mechanism of prostanoids which has not previously been considered. This study investigated the capability of prostanoids to limit the pro-inflammatory/pro-angiogenic effects of IL-6 that enable PAH to develop. Initial experiments confirmed that vascular endothelial cells responded to prostanoids which increased SOCS3 and limited IL-6 signalling activity. Further experiments utilising SOCS3 KO endothelial cell models demonstrated prostanoid inhibition of IL-6 signalling was due in part to SOCS3. In conclusion, this project has confirmed that prostanoids do limit the pro-inflammatory effects induced by IL-6 and that this is in part due to SOCS3. Although the exact mechanism is yet to be discovered, it will be beneficial in the treatment of PAH as it provides currently unexploited drug targets which can be considered for future PAH therapies.
Version
Citation
Link to publisher’s version
Link to published version
Link to Version of Record
Type
Thesis
Qualification name
PhD
Notes