BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Modelling study of wave damping over a sandy and a silty bed

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    Accepted CE.pdf (1.429Mb)
    Download
    Publication date
    2020-10
    Author
    Tong, L.
    Zhang, J.
    Zhao, L.
    Zheng, J.
    Guo, Yakun
    Keyword
    Wave damping rate
    Bottom boundary layer
    Viscous flow
    Liquefaction
    Sand ripple
    Rights
    © 2020 Elsevier. Reproduced in accordance with the publisher's self-archiving policy. This manuscript version is made available under the CC-BY-NC-ND 4.0 license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
    Peer-Reviewed
    Yes
    
    Metadata
    Show full item record
    Abstract
    Laboratory experiments have been carried out to investigate wave damping over the seabed, in which the excess pore pressure and free surface elevations are synchronously measured for examining the wave-induced soil dynamics and wave kinematics. Two types of soil, namely fine sand and silt, are tested to examine the role of soil in the wave damping. Observation of experiments shows that (i) soil liquefaction takes place for some tests with silty bed and soil particles suspend into the water layer when the bed is made of silt; (ii) sand ripples can be generated for experiments with sand bed. Measurements reveal that the wave damping greatly depends on the soil dynamic responses to wave loading and the wave damping mechanism over the silty seabed differs from that over the sand bed. On the one hand, the wave damping rate is greatly increased, when soil liquefaction occurs in the silty bed. On the other hand, the presence of sand ripples generated by oscillatory flow in the sand bed experiments also increases the wave damping to some extent. Furthermore, experimental results show that soil particle suspension in the silt bed test contributes to the wave damping. Theoretical analysis is presented to enhance discussions on the wave damping. The theoretical calculations demonstrate that the wave damping is mainly induced by the shear stress in the boundary layer for the cases when no liquefaction occurs. While for the cases when soil liquefaction takes place, the viscous flow in the liquefied layer contributes most towards to the wave damping.
    URI
    http://hdl.handle.net/10454/17957
    Version
    Accepted manuscript
    Citation
    Tong L, Zhang J, Zhao J et al (2020) Modelling study of wave damping over a sandy and a silty bed. Coastal Engineering. 161: 103756.
    Link to publisher’s version
    https://doi.org/10.1016/j.coastaleng.2020.103756
    Type
    Article
    Collections
    Engineering and Informatics Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.