BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Inward rectifier potassium current (IK1) and Kir2 composition of the zebrafish (Danio rerio) heart

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    Main article (1.000Mb)
    Download
    Publication date
    2015-12
    Author
    Hassinen, M.
    Haverinen, J.
    Hardy, Matthew E.
    Sheils, H.A.
    Vornanen, M.
    Keyword
    Zebrafish; Heart; Inward rectifier potassium current; Kir2 channel
    Rights
    © 2015 Springer. Reproduced in accordance with the publisher's self-archiving policy. The final publication is available at Springer via https://doi.org/10.1007/s00424-015-1710-8
    Peer-Reviewed
    yes
    
    Metadata
    Show full item record
    Abstract
    Electrophysiological properties and molecular background of the zebrafish (Danio rerio) cardiac inward rectifier current (IK1) were examined. Ventricular myocytes of zebrafish have a robust (−6.7±1.2 pA pF−1 at −120 mV) strongly rectifying and Ba2+-sensitive (IC50=3.8 μM) IK1. Transcripts of six Kir2 channels (drKir2.1a, drKir2.1b, drKir2.2a, drKir2.2b, drKir2.3, and drKir2.4) were expressed in the zebrafish heart. drKir2.4 and drKir2.2a were the dominant isoforms in both the ventricle (92.9±1.5 and 6.3±1.5 %) and the atrium (28.9±2.9 and 64.7±3.0 %). The remaining four channels comprised together less than 1 and 7 % of the total transcripts in ventricle and atrium, respectively. The four main gene products (drKir2.1a, drKir2.2a, drKir2.2b, drKir2.4) were cloned, sequenced, and expressed in HEK cells for electrophysiological characterization. drKir2.1a was the most weakly rectifying (passed more outward current) and drKir2.2b the most strongly rectifying (passed less outward current) channel, whilst drKir2.2a and drKir2.4 were intermediate between the two. In regard to sensitivity to Ba2+ block, drKir2.4 was the most sensitive (IC50=1.8 μM) and drKir2.1a the least sensitive channel (IC50=132 μM). These findings indicate that the Kir2 isoform composition of the zebrafish heart markedly differs from that of mammalian hearts. Furthermore orthologous Kir2 channels (Kir2.1 and Kir2.4) of zebrafish and mammals show striking differences in Ba2+- sensitivity. Structural and functional differences needs to be taken into account when zebrafish is used as a model for human cardiac electrophysiology, cardiac diseases, and in screening cardioactive substances.
    URI
    http://hdl.handle.net/10454/16502
    Version
    Accepted manuscript
    Citation
    Hassinen M, Haverinen J, Hardy ME, Shiels HA and Vornanen M (2015) Inward rectifier potassium current (IK1) and Kir2 composition of the zebrafish (Danio rerio) heart. Pflugers Archiv – European Journal of Physiology. 467(12): 2437-2446.
    Link to publisher’s version
    https://doi.org/10.1007/s00424-015-1710-8
    Type
    Article
    Collections
    Life Sciences Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.