BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A Cloud-Based Intelligent and Energy Efficient Malware Detection Framework. A Framework for Cloud-Based, Energy Efficient, and Reliable Malware Detection in Real-Time Based on Training SVM, Decision Tree, and Boosting using Specified Heuristics Anomalies of Portable Executable Files

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    PhD Thesis (4.027Mb)
    Download
    Publication date
    2017
    Author
    Mirza, Qublai K.A.
    Supervisor
    Awan, Irfan U.
    Keyword
    Malware detection
    File heuristics
    Support vector machine (SVM)
    Decision tree
    Boosting
    Cloud computing
    Energy efficiency
    Real-time detection
    Automated static analysis
    Portable executable (PE)
    Rights
    Creative Commons License
    The University of Bradford theses are licenced under a Creative Commons Licence.
    Institution
    University of Bradford
    Department
    School of Electrical Engineering and Computer Science, Faculty of Engineering & Informatics
    Awarded
    2017
    
    Metadata
    Show full item record
    Abstract
    The continuity in the financial and other related losses due to cyber-attacks prove the substantial growth of malware and their lethal proliferation techniques. Every successful malware attack highlights the weaknesses in the defence mechanisms responsible for securing the targeted computer or a network. The recent cyber-attacks reveal the presence of sophistication and intelligence in malware behaviour having the ability to conceal their code and operate within the system autonomously. The conventional detection mechanisms not only possess the scarcity in malware detection capabilities, they consume a large amount of resources while scanning for malicious entities in the system. Many recent reports have highlighted this issue along with the challenges faced by the alternate solutions and studies conducted in the same area. There is an unprecedented need of a resilient and autonomous solution that takes proactive approach against modern malware with stealth behaviour. This thesis proposes a multi-aspect solution comprising of an intelligent malware detection framework and an energy efficient hosting model. The malware detection framework is a combination of conventional and novel malware detection techniques. The proposed framework incorporates comprehensive feature heuristics of files generated by a bespoke static feature extraction tool. These comprehensive heuristics are used to train the machine learning algorithms; Support Vector Machine, Decision Tree, and Boosting to differentiate between clean and malicious files. Both these techniques; feature heuristics and machine learning are combined to form a two-factor detection mechanism. This thesis also presents a cloud-based energy efficient and scalable hosting model, which combines multiple infrastructure components of Amazon Web Services to host the malware detection framework. This hosting model presents a client-server architecture, where client is a lightweight service running on the host machine and server is based on the cloud. The proposed framework and the hosting model were evaluated individually and combined by specifically designed experiments using separate repositories of clean and malicious files. The experiments were designed to evaluate the malware detection capabilities and energy efficiency while operating within a system. The proposed malware detection framework and the hosting model showed significant improvement in malware detection while consuming quite low CPU resources during the operation.
    URI
    http://hdl.handle.net/10454/16043
    Type
    Thesis
    Qualification name
    PhD
    Collections
    Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.