BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Ethical tissue: a not-for-profit model for human tissue supply

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Publication date
    2011-02
    Author
    Adams, Kevin
    Martin, Sandie W.
    Keyword
    Ethics; Licensing; UK National Health Service; Human Tissue Act; Human tissue; Tissue banking; Cost recovery
    Peer-Reviewed
    Yes
    
    Metadata
    Show full item record
    Abstract
    Following legislative changes in 2004 and the establishment of the Human Tissue Authority, access to human tissues for biomedical research became a more onerous and tightly regulated process. Ethical Tissue was established to meet the growing demand for human tissues, using a process that provided ease of access by researchers whilst maintaining the highest ethical and regulatory standards. The establishment of a licensed research tissue bank entailed several key criteria covering ethical, legal, financial and logistical issues being met. A wide range of stakeholders, including the HTA, University of Bradford, flagged LREC, hospital trusts and clinical groups were also integral to the process.
    URI
    http://hdl.handle.net/10454/14049
    Version
    No full-text in the repository
    Citation
    Adams K and Martin S (2011) Ethical tissue: a not-for-profit model for human tissue supply. Cell and Tissue Banking. 12(1): 9-10.
    Link to publisher’s version
    https://doi.org/10.1007/s10561-010-9203-7
    Type
    Article
    Collections
    Life Sciences Publications

    entitlement

     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Adipose tissue-derived mesenchymal stem cells for breast tissue regeneration

      Banani, M.A.; Rahmatullah, M.; Farhan, N.; Hancox, Zoe; Yousaf, Safiyya; Arabpour, Z.; Salehi Moghaddam, Z.; Mozafari, M.; Sefat, Farshid (Future Medicine, 2021-02)
      With an escalating incidence of breast cancer cases all over the world and the deleterious psychological impact that mastectomy has on patients along with several limitations of the currently applied modalities, it's plausible to seek unconventional approaches to encounter such a burgeoning issue. Breast tissue engineering may allow that chance via providing more personalized solutions which are able to regenerate, mimicking natural tissues also facing the witnessed limitations. This review is dedicated to explore the utilization of adipose tissue-derived mesenchymal stem cells for breast tissue regeneration among postmastectomy cases focusing on biomaterials and cellular aspects in terms of harvesting, isolation, differentiation and new tissue formation as well as scaffolds types, properties, material–host interaction and an in vitro breast tissue modeling.
    • Thumbnail

      The prediction of blood–tissue partitions, water–skin partitions and skin permeation for agrochemicals

      Abraham, M.H.; Gola, J.M.R.; Ibrahim, A.; Acree, W.E. Jr.; Liu, Xiangli (2014-07)
      BACKGROUND: There is considerable interest in the blood–tissue distribution of agrochemicals, and a number of researchershave developed experimental methods for in vitro distribution. These methods involve the determination of saline–blood andsaline–tissue partitions; not only are they indirect, but they do not yield the required in vivo distribution.RESULTS: The authors set out equations for gas–tissue and blood–tissue distribution, for partition from water into skin andfor permeation from water through human skin. Together with Abraham descriptors for the agrochemicals, these equationscan be used to predict values for all of these processes. The present predictions compare favourably with experimental in vivoblood–tissue distribution where available. The predictions require no more than simple arithmetic.CONCLUSIONS: The present method represents a much easier and much more economic way of estimating blood–tissuepartitions than the method that uses saline–blood and saline–tissue partitions. It has the added advantages of yielding therequired in vivo partitions and being easily extended to the prediction of partition of agrochemicals from water into skin andpermeation from water through skin.
    • Thumbnail

      An anatomical study of porcine peripheral nerve and its potential use in nerve tissue engineering

      Zilic, L.; Garner, P.E.; Yu, Tong; Roman, S.; Haycock, J.W.; Wilshaw, Stacy-Paul (2015-09)
      Current nerve tissue engineering applications are adopting xenogeneic nerve tissue as potential nerve grafts to help aid nerve regeneration. However, there is little literature that describes the exact location, anatomy and physiology of these nerves to highlight their potential as a donor graft. The aim of this study was to identify and characterise the structural and extracellular matrix (ECM) components of porcine peripheral nerves in the hind leg. Methods included the dissection of porcine nerves, localisation, characterisation and quantification of the ECM components and identification of nerve cells. Results showed a noticeable variance between porcine and rat nerve (a commonly studied species) in terms of fascicle number. The study also revealed that when porcine peripheral nerves branch, a decrease in fascicle number and size was evident. Porcine ECM and nerve fascicles were found to be predominately comprised of collagen together with glycosaminoglycans, laminin and fibronectin. Immunolabelling for nerve growth factor receptor p75 also revealed the localisation of Schwann cells around and inside the fascicles. In conclusion, it is shown that porcine peripheral nerves possess a microstructure similar to that found in rat, and is not dissimilar to human. This finding could extend to the suggestion that due to the similarities in anatomy to human nerve, porcine nerves may have utility as a nerve graft providing guidance and support to regenerating axons.
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.