Loading...
Thumbnail Image
Publication

A mussel-inspired antibacterial hydrogel with high cell affinity, toughness, self-healing, and recycling properties for wound healing

Deng, X.
Huang, B.
Wang, Q.
Wu, W.
Coates, Philip D.
Sefat, Farshid
Lu, C.
Zhang, W.
Zhang, X.
Publication Date
2021-03
End of Embargo
Supervisor
Rights
© 2020 ACS. This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Sustainable Chemistry and Engineering, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acssuschemeng.0c06672.
Peer-Reviewed
Yes
Open Access status
openAccess
Accepted for publication
2021-01
Institution
Department
Awarded
Embargo end date
Additional title
Abstract
Antibacterial hydrogels have been intensively studied due to their wide practical potential in wound healing. However, developing an antibacterial hydrogel that is able to integrate with exceptional mechanical properties, cell affinity, and adhesiveness will remain a major challenge. Herein, a novel hydrogel with antibacterial and superior biocompatibility properties was developed using aluminum ions (Al3+) and alginate− dopamine (Alg-DA) chains to cross-link with the copolymer chains of acrylamide and acrylic acid (PAM) via triple dynamic noncovalent interactions, including coordination, electrostatic interaction, and hydrogen bonding. The cationized nanofibrillated cellulose (CATNFC), which was synthesized by the grafting of long-chain quaternary ammonium salts onto nanofibrillated cellulose (NFC), was utilized innovatively in the preparation of antibacterial hydrogels. Meanwhile, alginate-modified dopamine (Alg-DA) was prepared from dopamine (DA) and alginate. Within the hydrogel, the catechol groups of Alg-DA provided a decent fibroblast cell adhesion to the hydrogel. Additionally, the multitype cross-linking structure within the hydrogel rendered the outstanding mechanical properties, self-healing ability, and recycling in pollution-free ways. The antibacterial test in vitro, cell affinity, and wound healing proved that the as-prepared hydrogel was a potential material with all-around performances in both preventing bacterial infection and promoting tissue regeneration during wound healing processes.
Version
Accepted manuscript
Citation
Deng X, Huang B, Wang Q et al (2021) Mussel-inspired antibacterial hydrogel with high cell affinity, toughness, self-healing and recycling properties for wound healing. ACS Sustainable Chemistry and Engineering. 9(8): 3070-3082.
Link to publisher’s version
Link to published version
Type
Article
Qualification name
Notes