Loading...
Heat Transfer Characteristics of Natural Convection within an Enclosure Using Liquid Cooling System.
Gdhaidh, Farouq A.S.
Gdhaidh, Farouq A.S.
Publication Date
2016-02-26
End of Embargo
Supervisor
Rights

The University of Bradford theses are licenced under a Creative Commons Licence.
Peer-Reviewed
Open Access status
Accepted for publication
Institution
University of Bradford
Department
School of Engineering and Informatics
Awarded
2015
Embargo end date
Collections
Additional title
Abstract
In this investigation, a single phase fluid is used to study the coupling between natural convection heat transfer within an enclosure and forced convection through computer covering case to cool the electronic chip. Two working fluids are used (water and air) within a rectangular enclosure and the air flow through the computer case is created by an exhaust fan installed at the back of the computer case. The optimum enclosure size configuration that keeps a maximum temperature of the heat source at a safe temperature level (85℃) is determined. The cooling system is tested for varying values of applied power in the range of 15−40𝑊.
The study is based on both numerical models and experimental observations. The numerical work was developed using the commercial software (ANSYS-Icepak) to simulate the flow and temperature fields for the desktop computer and the cooling system. The numerical simulation has the same physical geometry as those used in the experimental investigations. The experimental work was aimed to gather the details for temperature field and use them in the validation of the numerical prediction.
The results showed that, the cavity size variations influence both the heat transfer process and the maximum temperature. Furthermore, the experimental results
ii
compared favourably with those obtained numerically, where the maximum deviation in terms of the maximum system temperature, is within 3.5%. Moreover, it is seen that using water as the working fluid within the enclosure is capable of keeping the maximum temperature under 77℃ for a heat source of 40𝑊, which is below the recommended electronic chips temperature of not exceeding 85℃. As a result, the noise and vibration level is reduced. In addition, the proposed cooling system saved about 65% of the CPU fan power.
Version
Citation
Link to publisher’s version
Link to published version
Link to Version of Record
Type
Thesis
Qualification name
PhD