Publication

Cooperative mechanisms of fast-ion conduction in gallium-based oxides with tetrahedral moieties.

Kendrick, E.
Kendrick, John
Knight, K.S,
Islam, M.S.
Slater, P.R.
Publication Date
2007
End of Embargo
Supervisor
Rights
Peer-Reviewed
Yes
Open Access status
closedAccess
Accepted for publication
Institution
Department
Awarded
Embargo end date
Additional title
Abstract
The need for greater energy efficiency has garnered increasing support for the use of fuel-cell technology, a prime example being the solid-oxide fuel cell1, 2. A crucial requirement for such devices is a good ionic (O2- or H+) conductor as the electrolyte3, 4. Traditionally, fluorite- and perovskite-type oxides have been targeted3, 4, 5, 6, although there is growing interest in alternative structure types for intermediate-temperature (400¿700 °C) solid-oxide fuel cells. In particular, structures containing tetrahedral moieties, such as La1-xCaxMO4-x/2(M=Ta,Nb,P) (refs 7,8), La1-xBa1+xGaO4-x/2 (refs 9,10) and La9.33+xSi6O26+3x/2 (ref. 11), have been attracting considerable attention recently. However, an atomic-scale understanding of the conduction mechanisms in these systems is still lacking; such mechanistic detail is important for developing strategies for optimizing the conductivity, as well as identifying next-generation materials. In this context, we report a combined experimental and computational modelling study of the La1-xBa1+xGaO4-x/2 system, which exhibits both proton and oxide-ion conduction9, 10. Here we show that oxide-ion conduction proceeds via a cooperative 'cog-wheel'-type process involving the breaking and re-forming of Ga2O7 units, whereas the rate-limiting step for proton conduction is intra-tetrahedron proton transfer. Both mechanisms are unusual for ceramic oxide materials, and similar cooperative processes may be important in related systems containing tetrahedral moieties.
Version
No full-text in the repository
Citation
Kendrick, E., Kendrick, J., Knight, K.S. and Islam, M.S. et al. (2007). Cooperative mechanisms of fast-ion conduction in gallium-based oxides with tetrahedral moieties. Nature Materials. Vol. 6, No. 11, pp. 871-875.
Link to publisher’s version
Link to published version
Link to Version of Record
Type
Article
Qualification name
Notes