Positional adaptation reveals multiple chromatic mechanisms in human vision.
McGraw, Paul V. ; McKeefry, Declan J. ; Whitaker, David J. ; Vakrou, Chara
McGraw, Paul V.
McKeefry, Declan J.
Whitaker, David J.
Vakrou, Chara
Publication Date
2004
End of Embargo
Supervisor
Rights
Peer-Reviewed
Yes
Open Access status
closedAccess
Accepted for publication
Institution
Department
Awarded
Embargo end date
Collections
Additional title
Abstract
Precortical color vision is mediated by three independent opponent or cardinal mechanisms that linearly combine receptoral outputs to form L/M, S/(L+M), and L+M channels. However, data from a variety of psychophysical and physiological experiments indicate that chromatic processing undergoes a reorganization away from the basic opponent model. Frequently, this post-opponent reorganization is viewed in terms of the generation of multiple ¿higher order¿ chromatic mechanisms, tuned to a wide variety of axes in color space. Moreover, adaptation experiments have revealed that the synthesis of these mechanisms occurs at a level in the cortex following the binocular integration of the inputs from each eye. Here we report results from an experiment in which the influence of chromatic adaptation on the perceived visual location of a test stimulus was explored using a Vernier alignment task. The results indicate that not only is positional information processed independently within the L/M, S/(L+M), and L+M channels, but that when adapting and test stimuli are extended to non-cardinal axes, the existence of multiple chromatically tuned mechanisms is revealed. Most importantly, the effects of chromatic adaptation on this task exhibit little interocular transfer and have rapid decay rates, consistent with chromatic as opposed to contrast adaptation. These findings suggest that the reorganization of chromatic processing may take place earlier in the visual pathway than previously thought.
Version
No full-text in the repository
Citation
McGraw, P. V., McKeefry, D. J., Whitaker, D. and Vakrou, C. (2004). Positional adaptation reveals multiple chromatic mechanisms in human vision. Journal of Vision. Vol. 4, No. 7, pp. 626-636.
Link to publisher’s version
Link to published version
Link to Version of Record
Type
Article