Loading...
Thumbnail Image
Publication

Random projectors with continuous resolutions of the identity in a finite-dimensional Hilbert space

Publication Date
2019-10
End of Embargo
Supervisor
Rights
(c) 2019 IoP Publishing. Full-text reproduced in accordance with the publisher's self-archiving policy.
Peer-Reviewed
Yes
Open Access status
openAccess
Accepted for publication
2019-09-27
Institution
Department
Awarded
Embargo end date
Additional title
Abstract
Random sets are used to get a continuous partition of the cardinality of the union of many overlapping sets. The formalism uses Möbius transforms and adapts Shapley's methodology in cooperative game theory, into the context of set theory. These ideas are subsequently generalized into the context of finite-dimensional Hilbert spaces. Using random projectors into the subspaces spanned by states from a total set, we construct an infinite number of continuous resolutions of the identity, that involve Hermitian positive semi-definite operators. The simplest one is the diagonal continuous resolution of the identity, and it is used to expand an arbitrary vector in terms of a continuum of components. It is also used to define the function on the 'probabilistic quadrant' , which is analogous to the Wigner function for the harmonic oscillator, on the phase-space plane. Systems with finite-dimensional Hilbert space (which are naturally described with discrete variables) are described here with continuous probabilistic variables.
Version
Accepted manuscript
Citation
Vourdas A (2019) Random projectors with continuous resolutions of the identity in a finite-dimensional Hilbert space. Journal of Physics A: Mathematical and General. 52: 455202.
Link to publisher’s version
Link to published version
Type
Article
Qualification name
Notes
Research Development Fund Publication Prize Award winner, October 2019.