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REPLACEMENT DECISIONS with MULTIPLE STOCHASTIC VALUES and 

DEPRECIATION 

 

Abstract 

We develop an analytical real-option solution to the after-tax optimal timing boundary for a 

replaceable asset whose operating cost and salvage value deteriorate stochastically. We construct 

a general replacement model, from which seven other particular models can be derived, along 

with deterministic versions. We show that the presence of salvage value and tax depreciation 

significantly lowers the operating cost threshold that justifies (and thus hastens) replacement. 

Although operating cost volatility increases defer replacement, increases in the salvage value 

volatility hasten replacement, albeit modestly, while increases in the correlation between costs 

and salvage value defer replacement.  Reducing the tax rate or depreciation lifetime, or allowing 

an investment tax credit, yield mixed results.   These results are also compared with those of less 

complete models, and deterministic versions, showing that failure to consider several stochastic 

variables and taxation in the replacement process may lead to sub-optimal decisions. 
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1.   Introduction 

For assets with a significant second-hand market value, such as vehicles, earth moving 

equipment and aircraft, or a notable scrap value such as ships, salvage value may be a crucial 

ingredient to the replacement decision because of the cash flow implications. The analytical 

solution to the after-tax optimal timing boundary is developed for a replaceable asset 

characterized by a deteriorating and stochastic operating cost and salvage value. Since, at 

replacement, the after-tax salvage value for the incumbent plus any residual depreciation tax 

credits partly offset the re-investment cost, the replacement policy reflects the after-tax trade-off 

between the sacrificed value of the incumbent and the net benefits rendered by the succeeding 

asset.  

From simulations on a deterministic NPV model, Robichek and Van Horne (1967) show that 

abandonment can significantly raise the project value because of the flexibility value embedded 

in the released funds. Enhancements are made by Dyl and Long (1969) by introducing a timing 

option, and by Gaumitz and Emery (1980) and Howe and McCabe (1983). In a stochastic 

dynamic programming formulation,  Bonini (1977)  models a stochastic operating cost and 

salvage value, explicitly.  

There are various empirical studies of the parameter values used for replacement models.  Rust 

(1987) derives the drifts of operating costs (including maintenance) from actual records, which 

are a deterministic function of time/age.  Lai et al. (2000) fit various lifetime distributions 

(including normal) to maintenance records, but do not calibrate uncertainty.  Keles and Hartman 

(2004) quantify operating costs, salvage value and investment costs discounted to time zero. 

Operating costs increase around 1-3% per year, salvage values decline linearly with age, 

investment costs are dependent on asset type, over a range of less than 8% for similar assets.   

In a review of literature, Hartman and Tan (2014) note that there only a few models which 

consider stochastic deterioration in continuous-time.  We observe that most real-option models 

which allow for stochastic variables, treat abandonment only implicitly. Salvage value and 

depreciation are interpreted by Mauer and Ott (1995) as functions of a stochastic operating cost 

as a way of reducing dimensionality to one, while Dobbs (2004) embeds the salvage value into a 

one-factor model. Ye (1990) allows combined maintenance and operating cost to follow an 
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arithmetic Brownian motion, with a fixed investment cost, no salvage value or depreciation.  

Yilmaz (2001) considers revenue produced by equipment to be stochastic, but maintenance to fix 

any equipment faults is deterministic.  These simplifications yield an analytical solution, but any 

trade-offs or co-variation amongst the factors is entirely ignored.  

A tractable solution for dealing with the two-stochastic-factor replacement model is developed 

by Adkins and Paxson (2011) that excludes depreciation and salvage value.  Zambujal-Oliveira 

and Duque (2011) propose a two-factor model with stochastic operating cost and (autonomous) 

stochastic salvage value, with depreciation following a negative exponential function
1
. Two-

factor models are proposed by Adkins and Paxson (2013a) and Adkins and Paxson (2013b), who 

consider the effect of three alternative depreciation schedules and technological progress on the 

replacement policy, respectively, but ignore salvage value. 

In this paper, we formulate a three-factor real-option replacement model, based on operating 

cost, salvage value and depreciation, to investigate the effect on the replacement policy not only 

from including salvage value as a factor but also from their interactions. Since the solution to the 

replacement timing-boundary is quasi-analytical, it also solves the one- and two-factor derivative 

models. We show that changes in salvage value and tax depreciation can significantly alter the 

optimal replacement timing decision, but reductions in the tax rate or depreciation lifetime do not 

necessarily lead to earlier replacements. Moreover, while increases in the operating cost 

volatility and correlation with salvage value result in replacement deferral, an increase in salvage 

value volatility brings the replacement timing forward. 

In summary, both S and D matter in replacements, which is intuitive, but C and S volatilities and 

correlation also matter, not considered in deterministic models. Our general model encompasses 

several other models, and enables easy comparisons of the results of different models. The 

number of possible replacements matters a lot, extending the approximate replacement timing 

from 25 to 38 years for our base case parameter values, as shown in Appendix, Part G. 

                                                 
1
 Their negative exponential depreciation results in a more rapid depreciation schedule than a declining balance 

method, but it is not clear which tax systems allow this method. There is no allowance for recapture of any excess 

salvage value over the depreciated tax basis of the asset upon disposal, which could be significant for such a rapid 

schedule.   
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The rest of the paper is organized as follows. In Section 2, we develop a quasi-analytical method 

for identifying the after-tax optimal timing boundary for the three-factor replacement model. A 

numerical illustration provided in Section 3 reveals significant features of the model, which is 

extended through a sensitivity analysis in Section 4. Section 5 concludes and offers some 

suggestions for further research.  

2.  Replacement Opportunity with Salvage and Tax Depreciation 

2.1  Valuation Function 

We determine the real-option replacement policy for a durable productive asset, subject to input 

decay in a seemingly monopolistic situation whose output yields a constant revenue
2
, assuming 

other flexibilities are inadmissible. Holding the asset remains optimal until, on an after-tax basis, 

the expected benefit of acquiring a successor net of replacement cost less any disposal value 

exceeds that from operating the incumbent. The relevant cash flows crucial to the replacement 

decision are those associated with the operating costs, the depreciation charge and the salvage 

value. While annual operating cost and salvage value, denoted by C  and S , respectively, are 

treated as stochastic factors, the annual depreciation charge, denoted by D , is a deterministic 

factor. The replacement policy, represented by an optimal timing boundary separating the 

decision regions of continuance and replacement, is defined over a three-dimensional cost-

salvage-depreciation (C-S-D) space. The tax rate   is applicable to all cash flows, both positive 

and negative, and regardless of whether they represent income or capital gains. At replacement, 

the operating cost, salvage value and depreciation level for the newly installed succeeding asset 

are set to their known initial levels of IC , IS  and ID , respectively. The replacement re-

investment cost is a known constant K . To avoid round-tripping, IS K . Asset re-investment is 

treated here as partly irreversible, since the firm recovers only a fraction of the original outlay if 

the asset is disposed at S . We assume that the revenue produced by the asset remains at a 

constant known level, with the restriction that it exceeds operating cost, thus insuring sufficient 

taxable income. 

                                                 
2
 It is straightforward to recast the model in terms of net revenue instead of operating costs. 
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The two uncertain factors are assumed to follow distinct geometric Brownian motion processes 

with drift. For  ,X C S : 

 d d d ,X X XX X t X z    (1) 

where 
X  is the instantaneous drift rate, 

X  the instantaneous volatility rate, and d Xz  is the 

increment of the standard Wiener process. Dependence between the two factors is described by 

the instantaneous covariance term 
C S  ,  Cov d ,d dC SC S CS t   with 1  . As the asset 

efficiency deteriorates with usage and age, we assume that the expected operating cost change 

C  is positive, measured as an annualized continuous rate; correspondingly, its salvage value 

declines with an expected change rate of , 0S   , depending on the salvage value 

characteristics.  In contrast to previous formulations, salvage value is not directly tied to the 

revenue and/or operating cost of the asset, since different second-hand buyers in different 

countries may have little concern with the revenue or operating costs of the previous owner, and 

often salvage value reflects scrap value like in ships, rather than current use value. 

The selected tax depreciation schedule is declining-balance, mainly because of its tractability
3
. 

This and alternative schedule forms are considered in a replacement setting by Adkins and 

Paxson (2013a). The depreciation level is described by the deterministic geometric process  

 d dDD D t,   (2) 

where 0 1D   is a known constant proportional depreciation rate. Being time dependent, the 

time elapsed since the last replacement, or the age of the incumbent, can be deduced directly 

from the value of D . The principal difference between the evolutionary forms of C  and S  

compared with D  is the absence of the volatility term in (2). If the re-investment cost K  is fully 

                                                 
3
 The MACRS (GDS) schedule in the U.S. is a declining-balance method until it is more beneficial to switch to 

straight line (when the asset is older, and may be considered for replacement).  It is feasible (but complicated) to 

model alternative tax depreciation schedules such as straight-line and sum-of-years-digits. 
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depreciable for tax purposes
4
, then 

I DD K .  The after-tax capital gain/loss on disposal  

( ( / )DS S D   , which is the gain/loss on S less the accumulated depreciation.
5
 

The asset value together with its embedded replacement option depends on the prevailing factor 

levels and is denoted by  1 1 , ,F F C S D . By assuming complete markets, the risk-neutral 

valuation relationship is determined from standard contingent claims analysis, Dixit and Pindyck 

(1994), and expressed by: 

 

  

2 2 2
2 2 2 21 1 11 1

2 22 2

1 1 1
1 1 0,

C C S S

C S D I

F F F
C CS S

C C S S

F F F
C S D rF P C D

C S D

   

    

  
 

   

  
        

  

 (3) 

where 0r   is the constant risk-free rate of interest, PI is the revenue assumed to be constant, 

and 
C  and 

S  are the respective risk-neutral drift rates, assumed to be equal to the  drift rates. 

We assume that 0Xr   . Following Adkins and Paxson (2011), the function satisfying (3) is: 

 
   

1 1 1

1 1

1 1I

C D

P C D
F AC S D

r r r

     

 

 
   

 
. (4) 

In (4), the expression 1 1 1

1 0AC S D     represents the replacement option value, so 
1 0A  ,  

while the remainder  represents the asset value in the absence of optionality. Since the likelihood 

of exercise is positively related to individual increases in , ,C S D , so all of the power parameter 

values 1 1 1, ,   are positive, see Adkins and Paxson (2011). Substituting (4) in (3) yields the 

characteristic root equation: 

 
     2 21 1

1 1 1 1 1 1 1 1 1 12 2

1 1 1

, , 1 1

0.

C C S S

C S D

Q

r

            

     

    

    
 (5) 

                                                 
4
 This assumes there is no bonus or special depreciation, or investment tax credit, or requirement to estimate a 

residual salvage value (especially since that is stochastic), which could reduce the depreciation base. 

5
 This is consistent with US tax on “excess salvage value” on certain assets, see Appendix, Part F.  See Hartman and 

Hartman (2001) for certain other “trade-in” replacement assets, where the new K tax basis is reduced by the excess 

salvage value, creating a challenging context for analysis, since the net K is no longer constant. 
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Replacement is optimally triggered when the factor levels , ,C S D  attain their threshold levels 

1 1 1
ˆ ˆ ˆ, ,C S D , respectively, where 1 1 1

ˆ ˆ ˆ, ,I I IC C S S D D   . This occurs when at exercise, the 

incumbent value and the successor value less the replacement cost net of salvage value and any 

depreciation recapture are in exact balance, eliminating the constant PI from both sides: 

      1 1 1 1 1 1 1
ˆ ˆ ˆˆ ˆ, , , , 1 /I I I DF C S D F C S D S D K       ,  

or explicitly, the value matching relationship is: 

 

 

 
 

1 1 1

1 1 1

1 1
1 1 1 1

1 1 1

ˆ ˆ1ˆ ˆ ˆ

1 ˆ ˆ1 / .

C D

I I
I I I D

C D

C D
AC S D

r r

C D
AC S D S D K

r r

  

  

 

 

 
  

 


 

 


      

 

 (6) 

Optimality is assured by the smooth-pasting conditions, one for each factor , ,C S D ,  which can 

be expressed in a reduced form by: 

 
 

 
1 1 1 1

1 1 1 1

1

ˆ 1ˆ ˆ ˆ 0
C

C
AC S D

r

   

 


 


, (7) 

 
 

 

 1 1

1 1

ˆ ˆ1 1
0

C

C S

r

 

  

 
 


, (8) 

 
 

   
1 1

1 1

ˆ ˆ1
0

C D D

C D r

r r

 

   


 

 
. (9) 

(7), (8) and (9) demonstrate our conjecture that 1 1 1, , 0    . Using (7) to eliminate 1A , (6) 

becomes: 

 
 

 

 1 1 1

1 1 1

1

1 1 1

1 1 1 1

ˆ 1 1
1

ˆ ˆ ˆ
II I I I

C C D

C CC S D D
K

r r rC S D

  

  

  
  

   

  
       

   

. (10) 

The C-S-D model is composed of four simultaneous equations: the reduced form value matching 

relationship (10), two reduced form smooth pasting conditions (8) and (9), and the characteristic 
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root equation (5). The optimal timing boundary, denoted by  1 1 1 1
ˆ ˆ ˆ, , 0,G C S D  can be determined 

by eliminating the parameters 
1 , 

1  and 
1  from the composite model made up of these four 

equations, or alternatively solving simultaneously four equations for 
1Ĉ ,

1 , 
1  and 

1 , given 

assumptions about 
1Ŝ and 

1D̂ (see the  Appendix, Part G). 

 

 If we conjecture that both 
1 1,   are small, 1 1 1 1 1 1

1 1 1
ˆ ˆ ˆ

I I IC S D C S D     
 , and then (10) becomes: 

 
    

 
1 1

1 1

ˆ ˆ1
ˆ ˆ1 / .

I I

D

C D

C C D D
K S D

r r

 
  

 

  
    

 
 (11) 

This implies that for the C-S-D model, an optimal replacement occurs only if on an after-tax 

basis, the net benefits from acquiring a successor exceed the replacement cost net of salvage 

value and recapture of depreciation. 

2.2 Single Replacement Opportunity 

If there exists only one available remaining replacement opportunity, then the value-matching 

relationship for the multiple replacement model has to be amended to exclude replacement 

option value for the succeeding asset to become: 

 

 

 
 

1 1 1 1 1
1 1 1 1

1 1

ˆ ˆ1ˆ ˆ ˆ

1 ˆ ˆ1 / ,

s s s s s
s s s s

C D

I I
s s D

C D

C D
A C S D

r r

C D
S D K

r r

    

 

 
  

 


 

 


      

 

 (12) 

where the subscript s  refers to the single replacement opportunity. Since the smooth-pasting 

conditions are identical to (7)-(9), except for the inclusion of the subscript s , the reduced form 

value-matching relationship is obtained by eliminating 1sA  from (12): 
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 

 
 

 1

1 1 1

1

ˆ 1 1
1

s I I
s s s

s C C D

C C D
K

r r r

  
  

   

 
     

  
. (13) 

This reveals that for a single replacement to be economically justified, the after-tax operating 

cost threshold has to exceed the re-investment cost plus the after-tax operating cost value for the 

replica less its depreciation tax shield value. In theory the difference between multiple and single 

replacement thresholds comparing (10) with (13), so 1 1
ˆ ˆ

sC C , is due to 
1 1 1

1 1 1

1 1 1

1
ˆ ˆ ˆ

I I IC S D

C S D

  

  
  in (10).  

Note the real option value upon replacement 1 1 1

1 I I IAC S D   from the (6) multiple model does not 

appear on the RHS of (12), the value matching equation for the single replacement. 

For any salvage value threshold, the operating cost threshold for the multiple opportunity 

replacement model is always less than that for the single opportunity model, since its re-

investment cost can be recouped over multiple replacements instead of only one.  

The single replacement policy is determined by solving the four equations (i) the reduced form 

value-matching relationship (13), (ii) and (iii) two reduced form smooth-pasting conditions, 

modified, (8) and (9), and (iv) the characteristic root equation  1 1 1 1, , 0s s sQ      (5) for 1
ˆ

sC , 
1s

, 1s  and 1s , given assumptions about 
1

ˆ
sS and 

1
ˆ

sD . 

2.3 Model Variants 

A merit of a quasi-analytical method is its capacity for reproducing particular forms of the C-S-D 

model. In the Appendix, Part A, we derive the two- and one-factor variants, the replacement 

salvage C-S model, the replacement depreciation C-D model, and the replacement C model, as 

well as the deterministic solution. As an illustration, if the salvage value is zero, then the C-S-D 

model converts to C-D with both 1Ŝ  and 1  set to equal zero. By omitting depreciation, the C-S 

model would be appropriate for asset where depreciation is not relevant, such as those fully 

expensed for tax purposes at installation, or in countries with no income tax, or tax holidays, 

while the exclusion of salvage value in the C-D model would be relevant for assets having no 

alternative use or disposal value, such as obsolete fittings and equipment. A full listing of all 
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models and their constituent equations is presented in Table 1, subscript 2 represents C-S, 3 C-D 

and 4 C . 

Table 1 

Constituent Equations for the Various Models 

Multiple Opportunity C-S-D Model 1 

Reduced Form Value-Matching Relationship: 

 

 

 1 1 1

1 1 1

1

1 1 1

1 1 1 1

ˆ 1 1
1

ˆ ˆ ˆ
II I I I

C C D

C CC S D D
K

r r rC S D

  

  

  
  

   

  
       

   
 

Two Reduced Form Smooth-Pasting Conditions: 

 

 

 1 1

1 1

ˆ ˆ1 1

C

C S

r

 

  

 



 

 

   
1 1

1 1

ˆ ˆ1

C D D

C D r

r r

 

   




 
 

Characteristic Root Equation: 

     2 21 1
1 1 1 1 1 1 1 1 1 12 2

1 1 1

, , 1 1

0

C C S S

C S D

Q

r

            

     

    

    
 

 

Single Opportunity C-S-D Model 1s 

Reduced Form Value-Matching Relationship: 

 

 
 

 1

1 1 1

1

ˆ 1 1
1

s I I
s s s

s C C D

C C D
K

r r r

  
  

   

 
     

  
 

Two Reduced Form Smooth-Pasting Conditions: 

 

 

 1 1

1 1

ˆ ˆ1 1s s

s C s

C S

r

 

  

 



 

 

   
1 1

1 1

ˆ ˆ1s s

s C s D D

C D r

r r

 

    




 
 

Characteristic Root Equation: 
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     2 21 1
1 1 1 1 1 1 1 1 1 12 2

1 1 1

, , 1 1

0

s s s C s s C S s s S s s

C s S s D s

Q

r

            

     

    

    
 

Multiple Opportunity C-S Model 2 

Reduced Form Value-Matching Relationship: 

 

 

 2 2

2 2

2

2 2

2 2 2

ˆ 1 1
1

ˆ ˆ
II I

C C

C CC S
K

r rC S

 

 

 
 

  

  
     

  
 

Reduced Form Smooth-Pasting Condition: 

 

 

 2 2

2 2

ˆ ˆ1 1

C

C S

r

 

  

 



 

Characteristic Root Equation: 

     2 21 1
2 2 2 2 21 2 2 2 2 2 22 2

, 1 1 0C C S S C SQ r                         

Single Opportunity C-S Model 2s 

Reduced Form Value-Matching Relationship: 

 

 
 

 2

2 2

2

ˆ 1 1
1

s I

s s

s C C

C C
K

r r

 
 

  

 
   

 
 

Reduced Form Smooth-Pasting Condition: 

 

 

 2 2

2 2

ˆ ˆ1 1s s

s C s

C S

r

 

  

 



 

Characteristic Root Equation: 

     2 21 1
2 2 2 2 2 2 2 2 22 2

2 2

, 1 1

0

s s C s s C S s s S s s

C s S s

Q

r

           

   

    

   
 

Multiple Opportunity C-D Model 3 

Reduced Form Value-Matching Relationship: 

 

 

 3 3

3 3

3

3 3

3 1 1

ˆ 1 1
1

ˆ ˆ
II I I

C C D

C CC D D
K

r r rC D

 

 

  
 

   

  
      

   
 

Reduced Form Smooth-Pasting Condition: 
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 

   
3 3

3 3

ˆ ˆ1

C D D

C D r

r r

 

    




 
 

Characteristic Root Equation: 

   21
3 3 3 3 3 3 32

, 1 0C C DQ r               

Single Opportunity C-D Model 3s 

Reduced Form Value-Matching Relationship: 

 

 
 

 3

3 3

3

ˆ 1 1
1

s I I
s s

s C C D

C C D
K

r r r

  
 

   

 
    

  
 

Reduced Form Smooth-Pasting Condition: 

 

   
3 3

3 3

ˆ ˆ1s s

s C s D D

C D r

r r

 

    




 
 

Characteristic Root Equation: 

   21
3 3 3 3 3 3 32

, 1 0s s C s s C s D sQ r               

Multiple Opportunity C Model 4 

Reduced Form Value-Matching Relationship: 

 

 

 4

4

4

4

4 1

ˆ 1 1
1

ˆ
II

C C

C CC
K

r rC





 


  

  
    

  
 

Characteristic Root Equation: 

   21
4 4 4 4 42

1 0C CQ r           

Single Opportunity C Model 4s 

Reduced Form Value-Matching Relationship: 

 

 
 

 4

4

4

ˆ 1 1
1

s I

s

s C C

C C
K

r r

 


  

 
  

 
 

Characteristic Root Equation: 

   21
4 4 4 4 42

1 0s C s s C sQ r           

Note that 4 4s   
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“Mauer and Ott (1995), Dobbs (2004) and Adkins and Paxson (2011) are more or less the C 

model, Zambujal-Olivera and Duque (2011) the C-S-D model but with an uncorrelated S 

and an unusual D,  Adkins and Paxson (2013 a,b) are the C-D model.  Adkins and Paxson 

(2015) is the C-S model, but with a stochastic net revenue rather than C. The traditional C-

S-D deterministic model is in Lutz and Lutz (1951).  There are numerous deterministic 

articles using C-S, or C-D, or C, which are cited in  surveys such as Hartman and Tan 

(2014). 

3.  Illustrative Results for the Timing Boundary 

Since the optimal timing boundary reflects a trade-off amongst the thresholds for each of the 

three factors, the boundary occupies a three dimensional space, even if one
6
 of the factors is 

deterministic. While an element of choice exists for displaying the three dimensional optimal 

timing boundary, we depict the boundary as a representative set within a two-dimensional space. 

Specifically, a salvage value threshold is initially pre-specified, and then for this given threshold 

level, the optimal timing boundary is found for the two remaining factors, operating costs and 

depreciation, by varying the depreciation threshold level. This procedure is repeated several 

times for alternative pre-specified salvage value thresholds. In this way, a representative set of 

optimal timing boundaries can be constructed. Since depreciation is a deterministic variable, its 

threshold level implies a certain timing level or asset age, 1T̂ , that is: 
1

1

1ˆ ln .
ˆ

I

D

D
T

D

 
  

 
  Because 

time seems to be perceptibly a more natural quantity than depreciation, the optimal timing 

boundaries are expressed in a two dimensional space of operating costs and time. The numerical 

illustrations are computed using the base data set presented in Table 2. We assume that the whole 

amount of the re-investment cost K  is allowable for depreciation, so 
I DD K . The merit of 

using this condition is that changes in either the declining balance rate or the re-investment cost 

are automatically converted into the initial level of depreciation.  

                                                 
6
 If two of the factors in a three-factor model are deterministic, their threshold levels would be related through a time 

variable and the three dimensional optimal timing boundary could be fully represented by a two dimensional 

function. 
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 Table 2 

Base Case Parameter Values 

  Description      Parameter  Value 

Replacement re-investment cost K  100 

Initial operating cost for replica 
IC  10 

Initial salvage value for replica 
IS  60 

Initial depreciation value for replica 
ID  10 

Risk-neutral operating cost drift rate 
C  4% 

Risk-neutral salvage value drift rate 
S  -5% 

Depreciation rate 
D  10% 

Operating cost volatility 
C  25% 

Salvage value volatility 
S  25% 

Operating cost and salvage value correlation coefficient 
 0% 

Risk-free interest rate r  7% 

Tax rate   30% 

This table reports our choice of base case parameter values
7
, assumed to be constant over time. 

3.1  Multiple Opportunity C-S-D Boundary 

Various optimal timing boundaries for the C-S-D model (and subsets) are illustrated in Figure 1. 

These are depicted by the generic curves AB, where the subscript refers to a particular salvage 

threshold level, from its minimum of 0 to its maximum of 60, in steps of 20. The C-D model is 

obtained for 1
ˆ 0S  , so its boundary is depicted by A0B0. Figure 1 also illustrates the generic 

boundaries CD for when 1
ˆ 0D  , so C0D0 depicts the after-tax one factor solution for the C 

model, and C20+D20+ depicts the after-tax one factor solution for the C-D model.  Representative 

values along each boundary are shown in Table 3. The continuance and replacement decision 

                                                 
7
 See Appendix, Part E, for some evidence that these parameter values may be in a reasonable range for some 

equipment replacements. 
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regions lie below and above each boundary, respectively. When the prevailing salvage value 

equals the indicated threshold level, replacement is the optimal decision if the pair of prevailing 

operating cost and asset age belongs to the replacement region, and continuance if otherwise. 

      Figure 1 

Optimal Timing Boundary for the Multiple Opportunity C-S-D Model 

 

The operating cost threshold levels 1Ĉ  depicted in this figure by the boundaries AB are evaluated using the Table 2 

values, for the recorded salvage threshold level 1Ŝ  and time threshold levels 1T̂ , where  1 1
ˆ ˆln I DT D D  .  

The threshold levels are determined by eliminating 
1 , 

1  and 
1  from (5), (8), (9), and (10), see also Table 3.  The 

threshold levels for zero depreciation 1
ˆ 0D   are depicted by CD. The continuance and replacement regions lie 

below and above each boundary, respectively.   

 

The slopes for the boundaries AB are all positive but non-linear. For a given salvage value, the 

operating cost threshold increases with asset age and younger assets are replaced at lower 

operating cost thresholds than older assets. As the asset ages, the operating cost threshold 
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increases, but at a decreasing rate, with the rate declining to zero for an infinitely aged asset. The 

increase in the operating cost threshold as the asset ages is due to the need to capture more value 

from the incumbent because of the fall in the residual depreciation tax shield. Also, the 

boundaries AB are vertically stacked, with those for lower salvage value thresholds lying above 

those for higher levels. As the salvage value threshold level falls, the operating cost threshold for 

a given asset age increases owing to the need to capture more value from the incumbent because 

of the rise in the net re-investment cost. As a result, the effect of omitting either the salvage value 

or the depreciation charge from the model is to significantly raise the operating cost threshold, 

and their inclusion tends to hasten the next act of replacement. 

Previously, we conjecture that for the after-tax value improvement rendered by the re-investment 

to exceed the net re-investment cost, both 
1  and 

1  have to be small. From Table 3, we observe 

that this requirement is met for our data set, and moreover, that the values of 
1  and 

1  

respectively decline towards zero as 1Ŝ  and 1D̂  tend to zero such that both 1 1

1
ˆ/IS S

 
 and 1 1

1
ˆ/ID D

 
 

remain close to one. This suggests that it is the operating cost that exerts the greatest pressure on 

the differential option value. 

Table 3 

Representative Values along the Multiple Opportunity C-S-D Boundaries 

 
1
ˆ 0T   1

ˆ 2.5T   1
ˆ 5T   1

ˆ 10T   1
ˆ 20T   1

ˆ 40T   1T̂    

Discriminatory boundary values for 1
ˆ 0S   

1Ĉ  29.540 30.176 30.700 31.478 32.322 32.818 32.919 

1  1.3895 1.3832 1.3785 1.3722 1.3664 1.3636 1.3632 

1  0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

1  0.02490 0.01890 0.01442 0.00849 0.00303 0.00041 0.00000 

Discriminatory boundary values for 1
ˆ 20S   

1Ĉ  25.080 25.699 26.219 27.008 27.889 28.424 28.537 

1  1.4230 1.4147 1.4084 1.4001 1.3923 1.3886 1.3879 
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1  0.03404 0.03303 0.03223 0.03110 0.02995 0.02931 0.02918 

1  0.03004 0.02270 0.01725 0.01010 0.00358 0.00048 0.00000 

Discriminatory boundary values for 1
ˆ 40S   

1Ĉ  21.648 22.225 22.722 23.493 24.378 24.932 25.052 

1  1.4659 1.4550 1.4468 1.4358 1.4254 1.4203 1.4194 

1  0.08126 0.07856 0.07641 0.07334 0.07017 0.06836 0.06799 

1  0.03585 0.02699 0.02045 0.01190 0.00419 0.00056 0.00000 

Discriminatory boundary values for 1
ˆ 60S   

1Ĉ  18.963 19.478 19.932 20.654 21.509 22.060 22.182 

1  1.5180 1.5043 1.4938 1.4795 1.4660 1.4591 1.4579 

1  0.14410 0.13901 0.13490 0.12894 0.12268 0.11906 0.11830 

1  0.04238 0.03184 0.02407 0.01395 0.00489 0.00066 0.00000 

        

 The operating cost threshold levels 1Ĉ  presented in this table are evaluated using the information shown in Table 2 

for the recorded salvage threshold level 1Ŝ  and time threshold level 1T̂ , where  1 1
ˆ ˆln I DT D D  .  The 

threshold levels are determined by eliminating 1 , 1  and 1  from (5), (8), (9), and (10).  

3.2 Single Opportunity C-S-D Model 

The various timing boundaries for the single opportunity C-S-D model are illustrated in Figure 2. 

These have a similar shape as the multiple opportunity boundaries, except that their locations are 

very different, as the y axis runs from 30-55, instead of 15-35 (Figure 1). A comparison of 

Figures 1 and 2 reveals that the operating cost threshold for any given pair of salvage value and 

asset age is highest for the single opportunity model, so any trajectory starting from the initial 

levels is always bound to hit the multiple opportunity boundary first. This is because the re-

investment cost in the multiple opportunity model is partially offset by the option value of 
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several future replacements, while for the single opportunity model there is no option of another 

replacement.  

Figure 2 

Optimal Timing Boundary for the Single Opportunity C-S-D Model 

 

The operating cost threshold levels 1
ˆ

sC  depicted in this figure by the boundaries AB are evaluated using the Table 2 

values, for the recorded salvage threshold level 1
ˆ

sS  and time threshold levels 1
ˆ

sT , where  1 1
ˆ ˆlns I s DT D D  .  

The threshold levels are determined by eliminating 
1s , 

1s  and 
1s  from (5), (8), (9), after the inclusion of the 

subscript s , and (13). The continuance and replacement regions lie below and above each boundary, respectively. 

 

3.3  The C-S Model 

The C-S boundary for the multiple and single opportunity variants, depicted respectively by AB 

and DE, over the range for 2
ˆ0 IS S  , is shown in Figure 3, since unlike the C-D boundary, it is 

not directly observable from Figure 1. Each boundary separates the continuance region below the 

curve from the replacement region above. The nearly linear negative slope of the boundaries 
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reflects the nature of the trade-off between the two thresholds.  This arises due to the way that an 

increase in salvage value, through reductions in the net re-investment cost, partially offsets a 

decrease in the operating cost because there is less need to capture value from the incumbent. It 

also reveals that higher rather than lower salvage values have a greater significance in deciding 

between continuance and replacement, and its importance in making the decision wanes as the 

salvage value approaches zero. We also observe the single opportunity boundary DE lying 

entirely above the multiple opportunity boundary AB, again for the reason that for the former 

representation, the re-investment cost has to be fully recouped over only one occasion.  

Representative values along AB are provided in Table 4. 

Table 4 

Representative Values along the Multiple Opportunity C-S Boundary 

2Ŝ  2Ĉ  2  
2  

 

60.0 25.812 1.4447 0.10075 

 50.0 27.223 1.4278 0.07867 

 40.0 28.755 1.4122 0.05893 

 30.0 30.409 1.3980 0.04138 

 20.0 32.193 1.3851 0.02582 

 10.0 34.132 1.3736 0.01207 

 0.0 36.397 1.3632 0.00000 

 The operating cost threshold levels 2Ĉ  presented in this table are evaluated using the information shown in Table 2 

for the recorded salvage threshold level 2Ŝ . The threshold levels are determined by eliminating 2  and 2  from 

(5), (A.18) and (A.19).  

 

 

Figure 3 
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Boundaries for the Multiple and Single Opportunity C-S Model 

 

The operating cost threshold levels 2Ĉ  depicted in this figure by the boundaries AB for the multiple replacement 

opportunity and by DE for the single replacement opportunity model are evaluated using the Table 2 values for the 

specified salvage threshold level 2Ŝ . The threshold levels for the multiple opportunity model are determined by 

eliminating 
2  and 

2  from  2 2 2, , 0 0Q      , (5), (A.18) and (A.19); the respective equations for the 

single opportunity model are reported in Table 1. The profiles AC and DF depict the boundaries AB and DE, 

respectively for a zero salvage level 0S  ; the respective operating cost thresholds are 36.397 and 53.619.  The 

continuance and replacement regions lie below and above each boundary, respectively. 

 

Figure 3 also illustrates the boundaries, AC and DF, for the multiple and single opportunity 

variants when the salvage value is zero, which is identical to the after-tax version of the solution 

for a one-factor (cost) model.  The boundary AC lies entirely above AB, and DF above DE, 

except when the salvage value threshold is zero. This establishes the importance of not omitting 
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a non-zero salvage value from the formulation. Ignoring the salvage value tends to defer 

replacement, more than is ideally required, and this deferment grows in magnitude with the 

extent of the salvage value at replacement. 

3.4  Summary  

Our numerical illustration has shown the importance of the salvage value and the tax 

depreciation allowance in the replacement policy, since their mistaken omission produces an 

overly conservative policy whereby the incumbent is retained for longer than is economically 

justified. Further, comparing the C-S and C-S-D models provide a useful framework for 

evaluating the consequences of using less complete models. 

4.  Sensitivity Analysis 

 In this section, we investigate the effects of changes in some of the parameter values in Table 2 

on the timing boundary for the C-S-D and the C-D (where S=0) models, since no new insights 

were obtained from sensitivity analysis for the C-S model
8
. All sensitivities display the same 

sign for every model, with the notable exception of the effect of the salvage value volatility on 

the operating cost threshold for the C-S-D and C-S models. 

4.1  Initial Levels 

The effect of variations in the re-investment cost and the initial operating cost, respectively, for 

salvage value thresholds of 0 and 60 results are as expected, and shown in the Appendix, Part B. 

In response to an increase in either the re-investment cost or the initial operating cost, there is a 

significant accompanying rise in the operating cost threshold, since more value iV  has to be 

captured from the incumbent to compensate for the unfavorable change. The effect of a change 

in the initial salvage value on the operating cost threshold is similar but weak, except of course 

that an increase in the initial level means that less value has to be captured from the incumbent, 

and there is a resulting fall in the operating cost threshold. If this weak response is universal, 

                                                 
8
 Full results are available from the corresponding author. 
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then in their negotiations with suppliers, prospective owners should devote more attention to 

obtaining an improved offer on the initial operating cost and re-investment cost rather than the 

initial salvage value, since the salvage value is only realized at the next act of replacement and 

discounted owing to the time value of money. 

4.2  Volatility 

The timing boundary response to variations in the operating cost volatility is illustrated in Figure 

4, for salvage value thresholds of 0
9
 and 60. This reveals the expected result that a volatility 

increase produces a rise in the operating cost threshold because of the positive effect of 

uncertainty on the value of waiting, which has to be compensated by extracting more value from 

the incumbent.  Further, we observe that the magnitude of the operating cost threshold due to the 

volatility increase is least when the salvage value threshold is high, or to a lesser extent when the 

age threshold is low. Not only does a higher salvage value threshold level reduce the operating 

cost threshold level, but it also mitigates against a rise in the operating cost volatility.  Figure 5 

illustrates the effect of salvage value volatility changes on the operating cost threshold, only for a 

salvage value threshold of 60 because when 1
ˆ 0S  , then 

1 0  , and so volatility changes have 

no impact on the timing boundary. The surprising result is that a salvage value volatility increase 

produces a fall in the operating cost threshold for all asset ages, even though the effect is quite 

modest. In this case, uncertainty has a negative effect on the value of waiting, or a positive effect 

on the value of hastening, if , .5C S  . By hastening the act of replacement, less value is being 

captured from the incumbent, which suggests that the replacement option also decreases in value. 

One way of interpreting this finding is that it represents a form of protection policy, since over 

the next time interval, a fall in cash flow due to an operating cost deterioration may be 

accompanied by a fall in the salvage value whose severity intensifies for increases in the salvage 

value volatility.  The effect of increases of salvage volatility on the C threshold is limited 

because the salvage volatility affects only S upon replacement every 30 years or so, while the 

cost volatility affects a periodic operating cost.   

                                                 
9
 The model composition changes radically for a zero volatility, so its full consideration is given in Appendix, Part 

C. 
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Figure 4 

Effect of Operating Cost Volatility on the Multiple Opportunity C-S-D Boundary 

 

 

Except for the variations in the operating cost volatility level C , the operating cost threshold levels 1Ĉ , shown in 

this figure, are evaluated using the Table 2 values for the specified salvage threshold level 1Ŝ  and time threshold 

levels 1T̂ , where  1 1
ˆ ˆln I DT D D  .  The threshold levels are determined by eliminating 

1 , 
1  and 

1  from 

(5), (8), (9), and (10). 
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Figure 5 

Effect of Salvage Value Volatility on the Multiple Opportunity C-S-D Boundary 

 

 

Except for the variations in the salvage value volatility level S , the operating cost threshold levels 1Ĉ , shown in 

this figure, are evaluated using the Table 2 values for the specified salvage threshold level 1Ŝ  and time threshold 

levels 1T̂ , where  1 1
ˆ ˆln I DT D D  .  The threshold levels are determined by eliminating 

1 , 
1  and 

1  from 

(5), (8), (9), and (10). 

 

4.3 Correlation 

Figure 6 illustrates the effects of variations in the correlation coefficient   between C  and S  

on the timing boundary, but only for a salvage value threshold of 60. Normally, we would expect 
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  to be negative since poorly performing assets with an increasing operating cost can only 

command a low salvage value. Figure 6 reveals that as the correlation coefficient increases the 

operating cost threshold increases, which suggests a deferral of the replacement act and the need 

to capture more value from the incumbent. This finding is counter-intuitive since if   is 

negative, then an operating cost rise is likely to be accompanied with a salvage value fall, which 

leads to a rise in net re-investment cost. Now, these outcomes are unfortunate not only due to the 

simultaneous operating cost rise and the salvage value fall, but also because they are not 

mutually compensatory.  A plausible explanation for the decrease in operating cost threshold due 

to a fall in the correlation coefficient is that it is signaling the likely adverse consequences arising 

from changes in the operating cost and salvage value. The fall in the operating cost threshold 

observed from a drop in the correlation coefficient is interpreted as acting as a kind of protection 

policy against suffering from both types of loss.  

Figure 6 

Effect of the Correlation Coefficient on the Multiple Opportunity C-S-D Boundary 
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Except for the variations in the operating cost salvage value correlation level  , the operating cost threshold levels 

1Ĉ , shown in this figure, are evaluated using the Table 2 values for the specified salvage threshold level 
1Ŝ  and 

time threshold levels 1T̂ , where  1 1
ˆ ˆln I DT D D  .  The threshold levels are determined by eliminating 

1 , 
1  

and 
1  from (5), (8), (9), and (10). 

4.4 Tax Attributes 

Tax authorities have at least four basic policy variables that can be altered to affect investment 

expenditures: the type of allowable depreciation, the depreciation rate, the overall tax rate, and 

the investment tax credit.  We study the middle two policy variables, and indirectly the last 

variable. The amount of tax incurred from operating the asset is influenced directly by the tax 

rate  , and indirectly by the expected depreciation lifetime, given by 1/ D . We consider the 

indirect effect first. 

By increasing the depreciation tax shield, we would expect any increase in the declining balance 

rate 
D  to hasten the replacement act. Figure 7 illustrates the effects of changes in 

D  on the 

timing boundary for only 1
ˆ 60S  , since the profiles for other salvage value thresholds are very 

similar except for a vertical shift. The profiles for the three different declining balance rates 

depicted in Figure 7 reveal a mixed picture. An increase in the declining balance rate does yield a 

fall in the operating cost threshold for older assets  1
ˆ 20T   and for newly installed assets; but 

for assets having an in-between age, the operating cost threshold rises. This contrasting behavior 

can be explained through considering the value-matching relationship (6). If the threshold for the 

depreciation charge is close to its initial level and the asset is young, then the tax shield for the 

incumbent neutralizes the tax shield for the replica, so the re-investment cost is reduced by an 

amount equaling the residual depreciation tax shield. Similarly, if the depreciation threshold is 

close to zero and the asset is old, the incumbent tax shield and the residual tax shield neutralize 

each other, so the re-investment cost is reduced by an amount equaling the replica depreciation 

shield. These two effects are less intense for assets of in-between years, and so the reduction in 

the re-investment cost is less, and this is reflected in a lower operating cost threshold. 

Figure 7 
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Effect of Depreciation Rate on the Multiple Opportunity C-S-D Boundary 

 

 

Except for the variations in the depreciation rate D , the operating cost threshold levels 1Ĉ , shown in this figure, 

are evaluated using the Table 2 values for the specified salvage threshold level 1Ŝ  and time threshold levels 1T̂ , 

where  1 1
ˆ ˆln I DT D D  .  The threshold levels are determined by eliminating 

1 , 
1  and 

1  from (5), (8), (9), 

and (10).  

 

Figure 8 illustrates the effect of a tax rate change on the replacement policy for 1
ˆ 60S  . 

Although we expect a tax rate increase to make the asset less attractive and to raise the operating 

cost because of the need to capture additional value from the incumbent, this finding is observed 

only for assets older than 2½ years. For newly installed assets, the operating cost threshold falls 

for a tax rate increase, since the increase raises the residual depreciation tax and so lowers the net 

re-investment cost, while the depreciation tax shields for the incumbent and the succeeding asset 

largely cancel each other out. As the asset ages, the residual depreciation tax shield becomes less 
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significant and the replacement policy is influenced more by the operating cost. A decline in the 

tax rate until zero is accompanied by an operating cost threshold fall for a given salvage value 

threshold only for older rather than very young assets. 

     Figure 8 

Effect of Tax Rate on the Multiple Opportunity C-S-D Boundary 

 

Except for the variations in the tax rate  , the operating cost threshold levels 1Ĉ , shown in this figure, are 

evaluated using the Table 2 values for the specified salvage threshold level 1Ŝ  and time threshold levels 1T̂ , where 

 1 1
ˆ ˆln I DT D D  .  The threshold levels are determined by eliminating 

1 , 
1  and 

1  from (5), (8), (9), and 

(10). 

Altering the tax rate   to zero makes the depreciation charge irrelevant as far as the replacement 

policy is concerned. If 0  , then the depreciation term is eliminated from the value matching 

relationship for the C-S-D model, so (6) becomes: 
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 1 1 1 11
1 1 1 1 1

ˆ
ˆ ˆ ˆI

I I

C C

C C
AC S AC S S K

r r

   

 
    

 
. (14) 

Now, (14) is similar in form to the value-matching relationship for the C-S model, (A.17). If the 

capital expenditure could be fully expensed for tax purposes (or in the US, a 100% deduction of 

the investment cost for certain new assets from pre-tax income, proposed for 2011), then (14) 

would be expressed as: 

 
   

   1 1 1 11

1 1 1 1 1

ˆ 1 1ˆ ˆ ˆ1 1
I

I I

C C

C C
AC S AC S S K

r r

    
 

 

 
      

 
. (15) 

It is easy to demonstrate that the solutions for the two revised expressions, (14) and (15), are 

identical. This implies that the timing boundary is invariant to the tax rate when the re-

investment cost is fully expensed for tax purposes, so the replacement policy is not distorted by 

the tax rate level. This finding for the stochastic replacement model endorses the conclusion of 

Smith (1963) that is based on a deterministic NPV evaluation.  The operating cost threshold for 

the case where the re-investment cost for the succeeding asset is fully expensed for tax purposes 

is lower provided that the incumbent is retired at half its expected life or later. Except for assets 

that are retired at a very young age, a tax policy based on fully expensing the entire capital 

expenditure leads to a more generous outcome for owners, who now become incentivized to 

hasten asset replacement
10

. 

5 Conclusion 

We apply a quasi-analytical method to find the after-tax timing boundary for replacing an 

incumbent asset when both its operating cost and salvage value deteriorate and are stochastic. 

The method copes with three factors in the absence of a dimension reducing transformation, and 

without recourse to onerous numerical methods, and has the versatility for reproducing 

particularized forms of the three-factor model and also for delivering general findings.  

                                                 
10

 In Appendix, Part D, we discuss the effects of variation in the drift and interest rates on the thresholds that justify 

immediate replacement. 



31 

 

There are advantages from including the salvage value as a distinct factor in the replacement 

model. First,  since the presence of the salvage value in the formulation significantly lowers the 

operating cost threshold, its mistaken omission unnecessarily prolongs the lifetime of the 

incumbent and produces a replacement policy that is uneconomic, ignored by many authors such 

as Adkins and Paxson (2011, 2013a).  Second, the actual optimal replacement policy depends on 

which factors are uncertain, so understanding the operational context is critical to making a 

proper decision. Even though a positive variation in the operating cost volatility yields the 

recognized outcome that deferral has value, the operating cost threshold responds negatively to 

either a positive change in the salvage value volatility, albeit by a modest amount, or a negative 

change in the correlation coefficient. We refer to this finding as the value of hastening the act of 

replacement. Its existence is due to the presence of the salvage value as a distinct uncertain factor 

as well as the interaction between the two uncertain factors, and is explained as a type of 

protection policy that helps to guard against the double disadvantage of an operating cost 

increase and a salvage value decrease simultaneously occurring. 

The omission of depreciation in replacement models leads to uneconomic decisions, and also 

including depreciation in a capital budgeting model allows consideration of the impact of tax 

policy changes on the operating cost threshold. Although a higher declining balance rate or a 

lower tax rate is expected to lower the operating cost threshold because of the benefits in 

advancing the cash flow, this is not universal. A tax depreciation rate increase only produces a 

lower operating cost threshold if the asset is very young or very old, while a tax rate fall only 

lowers the threshold provided that the asset is not young. An alteration in tax policy designed to 

motivate re-investment is not going to be uniformly effective. Finally, if the entire re-investment 

cost is allowed to be fully expensed for tax purposes, then this results in an accelerated 

replacement policy except for the youngest assets. This simple rule has the merit of incentivizing 

owners to replace more frequently, balanced by the government sacrifice of deferring tax 

revenues.  

There are numerous qualifications in the proposed replacement methodology, and analysis:  

investment costs are considered constant or deterministic; replacements are assumed to be 

identical so not allowing for technical innovation; no account has been given to alternative 

evolutionary processes; the possibility of sudden failure has been ignored; the replacement 
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decision for the asset under consideration is examined in isolation from the other assets of the 

firm; results have not been shown for the value of the asset in place, including the real 

replacement option value (so optimal replacement policies are not necessarily identical for 

maximizing the value of assets in place); alternatives from infinite multiple to single 

replacements have not been explicitly considered; competition among firms has been ignored; 

and no empirical comparisons have been made with actual replacement decisions, for specific 

firms or for industries.   

Further research is required to investigate these matters, to examine the feasibility of a quasi-

analytical method for overcoming these shortcomings, such as stochastic investment costs, 

technological innovation and/or failure, strategic considerations, and the real value of assets in 

place, and the possibility of revealing new insights in optimal replacement policy, at the risk of 

raising model complexity and lowering transparency. 

 

  



33 

 

References 

Adkins, R., and D. Paxson. "Renewing assets with uncertain revenues and operating costs." 

Journal of Financial and Quantitative Analysis 46 (2011), 785-813. 

—. "The effect of tax depreciation on the stochastic replacement policy." European Journal of 

Operational Research 229 (2013a), 155-164. 

—. "Stochastic equipment capital budgeting with technological progress." European Financial 

Management 20 (2013b), 1031-1049.___. "The effects of an uncertain abandonment value on the 

investment decisions", European Journal of Finance, 2016, forthcoming. 

Bonini, C. P. "Capital investment under uncertainty with abandonment options." Journal of 

Financial and Quantitative Analysis 12 (1977), 39-54. 

Dixit, A. and R. Pindyck. Investment under Uncertainty. Princeton, N.J.: Princeton Univeristy 

Press (1994). 

Dobbs, I. M. "Replacement investment: Optimal economic life under uncertainty." Journal of 

Business Finance & Accounting 31 (2004), 729-757. 

Dyl, E. A., and H. W. Long. "Abandonment value and capital budgeting: comment." Journal of 

Finance 24 (1969), 88-95. 

Gaumitz, J. E., and D. R. Emery. "Asset growth, abandonment value and the replacement 

decision of like-for-like capital assets." Journal of Financial and Quantitative Analysis 15 

(1980), 407-419. 

Hartman, J.C. and R.V. Hartman. "After-tax economic replacement analysis." The Engineering 

Economist 46 (2001), 181-204. 

Hartman, J.C. and C.H. Tan. "Equipment replacement analysis: A literature review and 

directions for future research." The Engineering Economist 59 (2014), 136-153. 



34 

 

Howe, K. M., and G. M. McCabe. "On optimal asset abandonment and replacement." Journal of 

Financial and Quantitative Analysis 18 (1983), 295-305. 

Keles, P. and J.C. Hartman. "Case study: bus fleet replacement." The Engineering Economist 49 

(2004), 253-278. 

Kulp, A. and J.C. Hartman. “Optimal tax depreciation with loss carry-forward and backward 

options.” European Journal of Operational Research 208 (2011), 161-169. 

Lai, K., Leung, F., Tao, B., and S. Wang. “Practices of preventive maintenance and replacement 

for engines: A case study.” European Journal of Operational Research 124 (2000), 294-306. 

Lutz, F. and V. Lutz. The Theory of Investment of the Firm. Princeton, N.J., Princeton 

University Press (1951). 

Mauer, D. C., and S. H. Ott. "Investment under uncertainty: The case of replacement investment 

decisions." Journal of Financial and Quantitative Analysis 30 (1995), 581-605. 

Robichek, A. A., and J. C. Van Horne. "Abandonment Value and Capital Budgeting." Journal of 

Finance 22 (1967), 577-589. 

Rust, J. “Optimal replacement of GMC bus engines: An empirical model of Harold Zurcher.” 

Econometrica 55 (1987), 999-1033. 

Smith, V. L. "Tax depreciation policy and investment theory." International Economic Review 4 

(1963), 80-91. 

Ye, M.H., “Optimal replacement policy with stochastic maintenance and operation costs.” 

European Journal of Operational Research 44 (1990), 84-94. 

Yilmaz, F. “Conditional investment policy under uncertainty and irreversibility.” European 

Journal of Operational Research 132 (2001), 681-686. 



35 

 

Zambujal-Oliveira, J., and J. Duque. "Operational asset replacement strategy: A real options 

approach." European Journal of Operational Research 210 (2011), 318-325.   

 

 


