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·  Abstract 

Ammar Hussein Ali Ali 

Design and Implementation of Radio Frequency Power Feeding Networks for 
Antenna Array Applications.  

Simulation and Measurements of Multiport, Equal and Unequal, Fixed and 
Reconfigurable Radio Frequency Power Feeding Networks for Narrow and Ultra-
Wideband Applications. 

Keywords: Wilkinson power divider, Uniplanar power divider, Multi-layer power 
divider, Multi-port power divider, Ultra-wideband power divider, Reconfigurable 
power divider, Equal and unequal power divider, Antenna array, Feeding 
network, Quarter-wavelength transformer. 

 

Power dividers are vital components and widely used in radio technology, such 
as antenna arrays, power amplifiers, multiplexers and mixers. A good example is 
the well-known Wilkinson power divider with its distinctive feeding network 
characteristics. A comprehensive review indicated that limited research is carried 
out in the area of planar multiport and reconfigurable power dividers in terms of 
the power levels between output ports. 

The main objectives of this work were to develop a small size power divider, a 
planer multi-output ports power divider and a power divider with a reconfigurable 
power division ratio. These power dividers were designed to operate over either 
an ultra-wideband frequency (3.1-10.6 GHz) or WLAN bands (2.4 or 5.2 GHz).  

A novel multi-layered topology solved the complexity of interconnecting isolation 
resistors by introducing an additional layer below the ground layer. The prototype 
was fabricated and tested to validate the results. The measurements and 
simulation were in good agreement.  

Finally, a novel uniplanar power divider with reconfigurable output power level 
difference was developed. The configurability feature was achieved by tuning the 
quarter wave transformer using one varactor diode. The power divider was 
applied to improve a full duplex system cancellation performance at the receiver 
element caused by interference from in-site transmitting antennas.  

This study investigated fixed power dividers, multi-output power dividers and 
reconfigurable power dividers. The measurements validated by the simulation 
results and applications proved the designed power dividers could be used in 
practical applications.   
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·  Chapter 1 

Thesis Introduction 

 

1.1 Background 

Power dividers are vital components in electromagnetic circuits, providing 

matched three port transmission lines where each line has a length of a quarter 

of a wavelength at the designed centre frequency. The original concept was 

introduced in 1960 by E.J. Wilkinson [1]. He introduced a resistor between the 

output ports and improved the return loss and output ports isolation of the 

conventional T-junction power divider. However, this design gave a narrow 

operational bandwidth. Some later studies have developed methods to increase 

the feasible bandwidth such as adding extra sections [2], introducing stubs to 

sections [3-6], and using a defected ground plane [7]. Commercial ultra-wideband 

(UWB) system applications, such as antenna arrays, are increasingly developing 

and demanding that the power divider should satisfy bandwidth requirements 

while providing a high level of isolation between output ports, and a constant 

insertion loss [8].  

 

Wilkinson power dividers are not easy to implement as a planar structure for 

layouts with more than two output ports since the isolation resistors need to be 

connected in a star configuration and thus they require crossovers. That makes 

it difficult to implement single stage planar structures. A lot of studies have been 

reported methods to overcome this problem. The common method is by 

implementing several cascaded stages [9] but few of them have been successful 
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in implementing planar structures [10]. However, power dividers with cascaded 

stage structures will suffer from additional conductor losses due to additional 

transmission line lengths and sometimes amplitude imbalance.  

 

Some applications require reconfigurable power dividers such as antenna array 

feeding networks for beamforming [11], diversity applications to obtain a better 

signal to noise ratio [12] and power amplifier feeds designed to improve efficiency 

[13]. Wilkinson power dividers with unequal division ratio split the input power by 

using two asymmetric quarter wave transformers [2]. In applications where a high 

power division ratio is required, one of the quarter wave transformers may have 

high characteristic impedance, i.e. it becomes a narrower transmission line, which 

is more difficult to implement accurately due to fabrication tolerance. Such a line 

also suffers from low power handling capacity. Several techniques have been 

introduced to overcome that problem such as a defected ground structure 

microstrip line [14-18], using a coplanar waveguide with electromagnetic 

bandgap [19, 20], offsetting a double-sided parallel strip line [21], increasing the 

distance of the offset or by decreasing the strip line width that makes the power 

handling worse. Also, applying a groove alongside a microstrip line can be used 

to increase a microstrip line impedance [22]. The last technique needs an 

additional fabrication process to properly applying the groove accurately.  

 

1.2 Aims and Objectives  

The aim of this research is to investigate and contribute to the RF feeding network 

for antenna array applications to get a better understanding and to enhance 

various feeding networks. The aspects investigated in this research included 
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ultra-wideband, multi-output ports and reconfigurable power dividers for 

microwave applications. 

 

Objectives identified to achieve these aims were to: 

1. Conduct a comprehensive study of the major techniques of Wilkinson 

power divider feeding and manifestations for fixed and reconfigurable 

feeding networks.  

2. Perform an analytical study of Wilkinson power dividers to find a solution 

to feeding network limitations. 

3. Fully modelling different Wilkinson power dividers using CST Microwave 

studio software.   

4. Conduct experimental measurements and validate results with simulation.  

 

The major contributions of this work are:  

 

1. A UWB Wilkinson power divider is presented in section 3.1. The 

modified model is compared to other UWB power divider models using 

simulation data and measurements. Different structures are 

considered to achieve a miniature design. It is found that the proposed 

structure is better in performance and smaller in size compared to other 

published works.  

2. A novel design for microstrip-fed multi-output ports planar Wilkinson 

power divider is proposed, designed and fabricated in section 3.2. The 

proposed power divider operates in a wideband frequency range with 

a low insertion loss imbalance. The power divider adopts a three -
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layered structure and microstrip feeding technique solving isolation 

resistor interconnection crossover problem for dividers having more 

than two output ports. Two different permittivity substrates were 

selected to simplify the design structure.  

3. A novel reconfigurable Wilkinson power divider with an equal split to 8 

dB power difference between output ports is presented in section 3.3. 

The proposed power divider adopts the microstrip coupled line 

technique to implement a high impedance quarter wave transformer 

section with unequal output power values.  A varactor diode is placed 

between the coupled line to achieve the reconfigurability feature.  

4. A full-duplex communication system is presented in section 5.4 in 

which antenna cancellation techniques are studied that can be used to 

achieve the self-interference cancellation. The full duplex system 

consists of three monopole antennas, two of them as transmit 

antennas and the other as a receive antenna. In addition, the 

performance of the system is tested by measurements.  

 

1.3 Organization of the Thesis 

Chapter 2 : This chapter provides a comprehensive study of different power 

dividers and antennas. The first part focuses on understanding the basic 

concepts and analysing Wilkinson power dividers using even-odd mode analysis. 

In addition, it provides an insight into multi-output ports and unequal power 

dividers.   The second part explores many antenna types and focuses on 

understanding their properties.  
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Chapter 3 : This chapter opens with a historical review of the Wilkinson power 

divider. Different structures for UWB power dividers are studied, designed and 

implemented.  In addition, a novel multi-output ports power divider and its design 

procedure is presented in the second section of this chapter. The last section 

presents a novel reconfigurable power divider. 

 

Chapter 4 : This chapter presents three different antenna types, which have been 

simulated and fabricated. The conducted measurement showed good agreement 

with simulation. The first antenna is a coaxial fed rectangular patch antenna 

designed to resonate at 5.2 GHz. The second antenna is a microstrip-fed Yagi-

Uda antenna designed to support the 2.4 GHz WLAN applications. The third 

antenna is a microstrip-fed dual-band antenna designed to support both 2.4 and 

5.2 GHz WLAN applications. A brief description and design equation are included 

for each antenna.  

 

Chapter 5 : A practical application is presented in chapter five for each power 

divider designed in chapter three. This chapter is divided into four sections. The 

first section presents an application using the rectangular patch antenna array 

with embedded feeding network. The second section presents an antenna array 

consisting of four Yagi-Uda antennas benefiting from the multi-output ports power 

divider as a feeding network. The third section presents a dual-band antenna 

array as an application for the UWB power divider. The last section presented a 

simple full duplex communication system using self-interference cancellation 

technique achieved by using the reconfigurable power divider designed in 

chapter three. 
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Chapter 6 : This chapter gives the conclusion for the whole thesis and provides 

the outcomes of this work. In addition, suggestions for future work that can extend 

the archived results are presented in this chapter.    
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·  Chapter 2 

Literature Review 

 

2.1 Power Dividers Fundamentals 

Power dividers are passive components used in many microwave and RF circuits 

for power dividing or power combining. In the power division mode, an input signal 

is divided into two or more output signals, while a power combiner accepts two 

or more input signals and combines them. The divider may have three or more 

ports and ideally considered lossless. Power dividers with two output ports can 

generally be classified into two types. According to the output power division ratio 

as equal power dividers or known as 3 dB power dividers and unequal power 

divider that provide output signals with an unequal magnitude depending on the 

division ratio. The second calcification for power divider is according to the output 

power phase difference as in phase and out of phase power dividers.  

 

Power dividers are typically considered as three port networks. The scattering 

parameter matrix (S-matrix) of an arbitrary three-port network has nine 

independent elements: 

 

11 12 13

21 22 23

31 32 33

S S S

S S S S

S S S

====
� �� �� �� �
� �� �� �� �� �� �� �� �� �� �� �� � � �� �� �� �
� �� �� �� �� �� �� �� �  

(2.1) 

 

The device must be reciprocal and its S-matrix will be symmetric (Sij = Sji) if it is 

passive and contains no anisotropic materials. Usually, to avoid power loss, a 
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junction that is lossless and matched at all ports is preferable. It is impossible to 

construct such a three-port lossless reciprocal network that is matched at all 

ports. 

 

If all ports are matched, then Sii is equal zero, and if the network is reciprocal, 

then the S-matrix of (2.1) is reduced to: 

 

=

� �
� �� �� � � �
� �� �

12 13

12 23

13 23

0
0

0

S S

S S

S S

S

 

(2.2) 

 

If the network is also lossless, then the following conditions apply: 

 

2 2

12 13 1S S� �
 (2.3) 

 

2 2

12 23 1S S� �
 (2.4) 

 

2 2

13 23 1S S� �
 (2.5) 

 

*
12 23 0S S �  (2.6) 

  

*
23 12 0S S �  (2.7) 
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*
12 13 0S S �  (2.8) 

 

Equations (2.6) to (2.8) are showing that at least two of the three parameters S12, 

S13 or S23 must be zero. However, this condition will be always inconsistent with 

one of the equations (2.3) to (2.5), implying that a three-port network cannot be 

simultaneously lossless, reciprocal and matched at all ports. If anyone of these 

three conditions is relaxed, then a physically realizable device is possible [2]. 

 

Alternatively, a lossless and reciprocal three-port network can be physically 

realized if only two of its ports are matched. If ports one and two are the matched 

ports, then the S-matrix is written as: 

 

=

� �
� �� �� � � �
� �� �

12 13

12 23

13 23 33

0
0

S S

S S

S S S

S

 

(2.9) 

 

To be lossless, the following conditions must be satisfied: 

 

*
13 23 0S S �  (2.10) 

 

* *
12 13 23 33 0S S S S� �  (2.11) 

 

* *
23 12 33 13 0S S S S� �  (2.12) 
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2 2

12 13 1S S� �
 (2.13) 

 

2 2

12 23 1S S� �
 (2.14) 

 

2 2 2

13 23 33 1S S S� � �
 (2.15) 

 

Equations (2.13) and (2.14) show that |S13| = |S23|, so equation (2.10) leads to 

the result that S13 = S23 = 0. Then, |S12| = |S33| = 1.  

 

2.1.1 T-Junction Power Divider 

The T-junction power divider can be implemented in virtually any type of 

transmission line medium. It is considered a simple three-port network that can 

be used for power combining or power division. The conventional T-junction 

power divider is lossless but suffers from the issue of not being matched at all 

ports. Moreover, there is no isolation between output ports.  

 

A junction of three transmission lines can model the lossless T-junction divider, 

as shown in Figure 2.1 [2]. In general, there may be fringing fields and higher 

order modes associated with the discontinuity at such a junction, leading to stored 

energy that can be accounted for by a lumped susceptance that is denoted by B 

in the following equation. In order for the divider to be matched to the input line 

of a characteristic impedance of Z0, the admittance can be written as: 
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1 2 0

1 1 1
inY jB

Z Z Z
= + + == + + == + + == + + =

 
(2.16) 

 

The characteristic impedances are real if the transmission lines are assumed to 

be lossless or of a low loss, then equation (2.16) can be reduced to the following 

equation if assuming B = 0: 

 

1 2 0

1 1 1
Z Z Z

+ =+ =+ =+ =
 

(2.17) 

 

In practice, if B is not negligible, some type of discontinuity compensation or a 

reactive tuning element can be usually used to cancel this susceptance, at least 

over a narrow frequency range. 

 

 

Figure 2.1. Transmission line model of a lossless T-junction power divider. 

 

Various power division ratios can be provided by selecting different impedances 

for the output ports (Z1 and Z2). Thus, an equal split (known as 3 dB power 
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divider), can be made by using two 100 �  output lines to have a 50 �  input line. 

To bring the impedance of the output lines back to the desired levels, quarter-

wave transformers can be used. The input line will be matched when the output 

lines are matched. However, there will be a mismatch looking into the output ports 

and there will be no isolation between them. 

 

To find the output characteristic impedances for a lossless T-junction power 

divider so that the output powers ratio is 2:1 and a source impedance of 50 � , 

the power at the input port needs to be found. 

 

2
0

0

1
2in

V
P

Z
====

 
 

 

and 

 

2
0

1
1

1 1
2 3 in

V
P P

Z
= == == == =

 
 

  

2
0

2
2

1 2
2 3 in

V
P P

Z
= == == == =

 
 

 

so the characteristic impedance for output ports is:  

 

1 03 150�Z Z= == == == =   

  

and 
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2 0

3
75�

2
Z Z= == == == =   

 

so  

 

75 *150
50�

75 150inZ = == == == =
++++

  

 

Concluding from that the input impedance is matched to the 50 �  source 

impedance. 

 

An impedance of 30 �  can be seen (50 �  in parallel to 75 � ) when looking into 

the 150 �  output line, while a 37.5 �  can be seen when looking into the 75 �  

output line (50 �  in parallel to 150 � ). Looking into these ports, the reflection 

coefficients are seen as: 

 

  1

30 150
0.666

30 150
-

G = = -
+

 that is equivalent to -3.52 dB.  

   

  2

37.5 150
0.6

37.5 150
-

G = = -
+

 that is equivalent to -4.44dB.  

 

If a three-port power divider contains lossy components, it can be made to be 

matched at all ports, although the two output ports may not be isolated [23]. The 

circuit for such divider is illustrated using lumped-element resistors in Figure 2.2 

[2]. An equal-split divider is shown, but unequal power division ratios are also 

possible. 
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Figure 2.2. An equal split three-port resistive power divider. 

 

The resistive divider of Figure 2.2 can be easily analysed using circuit theory. 

Assuming that all ports are terminated in the characteristic impedance Z0, the 

impedance Z, seen looking into the Z0/3 resistor followed by a terminated output 

line, is: 

0 0
0

4
3 3
Z Z

Z Z= + == + == + == + =
 

(2.18) 

 

then the input impedance of the divider is: 

 

0 0
0

2
3 3in

Z Z
Z Z= + == + == + == + =

 
(2.19) 

 

This shows that the input is matched to the feeding line. The output ports are also 

matched because of the network is symmetric from all three ports. Thus:  

 

11 22 33 0S S S= = == = == = == = =  (2.20) 
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If the voltage at port one is V1, then by using the voltage division, the voltage V 

at the centre of the junction is: 

 

0
1 1

0 0

2 / 3 2
/ 3 2 / 3 3

Z
V V V

Z Z
= == == == =

++++  
(2.21) 

 

and the output voltages are, again found by the voltage division: 

 

0
2 3 1

0 0

3 1
/ 3 4 2

Z
V V V V V

Z Z
= = = == = = == = = == = = =

++++  
(2.22) 

 

Thus, S21 = S31 = S23 = 1/2, so the output powers are 6 dB below the input power 

level. The network is reciprocal, so the S-matrix is symmetric, and it can be written 

as: 

 

=
� �
� �� �� � � �
� �� �

0 1 1
1 1 0 1
2 1 1 0

S

 

(2.23) 

 

The power delivered to the input of the divider is: 

 

2
1

0

1
2in

V
P

Z
====

 
(2.24) 
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While half of the supplied power is dissipated in the resistors as the output power 

can be calculated as shown: 

 

2 2
1 1

2 3
0 0

(1 2 )1 1 1
2 8 4 in

V V
P P P

Z Z
= = = == = = == = = == = = =

 
(2.25) 

 

2.1.2 Wilkinson Power Divider 

The lossless T-junction power divider suffers from the disadvantage of not being 

matched at all ports, and it does not have isolation between output ports. The 

resistive divider can be matched at all ports, but even though it is not lossless, 

isolation is still not achieved. A lossy three-port network can be made having all 

ports matched, with isolation between output ports. The Wilkinson power divider 

is such a network, with the useful property of appearing lossless when the output 

ports are matched; that is, only reflected power from the output ports is dissipated 

[2]. 

 

The Wilkinson power divider can be made with arbitrary power division, but the 

equal-split will be considered first. This divider is often made in a microstrip line 

form and this type of transmission line will be considered in this thesis.  

 

The corresponding transmission line circuit for equal split and equal phase power 

divider is shown in Figure 2.3 [2]. This circuit can be analysed by reducing it to 

two simpler circuits driven by symmetric and antisymmetric sources at the output 

ports. For simplicity, all impedances can be normalised to the characteristic 
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impedance Z0, and the circuit is redrawn as shown in Figure 2.4 [2], with voltage 

generators at the output ports. 

 

 

Figure 2.3. The equivalent transmission line circuit for the equal-split and phase 

Wilkinson power divider. 

 

 

Figure 2.4. The normalized and symmetric form of the equal-split and phase 

Wilkinson power divider.  

 

The three-port network is symmetric across the middle plane. The two input port 

resistors of a normalized value of two are combined in parallel to generate one 

normalized resistor of a normalized value of one that represents the matched 
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source impedance. The � /4 transmission line shows a normalised characteristic 

impedance Z, and the isolation resistor has a normalised value of r. For equal 

splitting power divider the following conditions should be achieved: 

 

02Z Z=  

(2.26) 

 

and 

 

02r Z=  

(2.27) 

 

The S-matrix for the Wilkinson power divider can be found using even-odd mode 

analysis that uses circuit symmetry and superposition. For the even mode 

analysis, the output ports excitation considered to be equal and their value is 2V0, 

so there is no current flows through the r/2 resistors. Besides that, there is no 

current flows through the short circuit between the inputs of the two � /4 

transformer lines at port one. According to that, the equivalent circuit in Figure 

2.4 is simplified into bisection as shown in Figure 2.5 [2] with open circuits. The 

ground side of the circuit is not shown to simplify the diagram.  

 

Figure 2.5. Bisection of the normalized and symmetric form circuit of the equal-

split and phase Wilkinson power divider for even mode excitation. 
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 Looking into port two, the impedance is: 

 

� ��
� �

� �

�
 

(2.28) 

 

The transmission line works as a � /4 transformer. So, if Z=� �  , port two will be 

matched for even mode excitation, and then, 	 �
� � 
 	 �  since � ��

� � � . The r/2 

resistor can be neglected as its other end is open circuited in the even mode.  If 

x=0 at port one and x=- � /4 at port 2, the voltage on the transmission line can be 

written as: 

 

( ) ( )j x j xV x V e eb b+ -= +G  

(2.29) 

 

then 

 

1 0

1
(0) (1 )

1
eV V V jV+ G -

= = + G =
G +  

(2.30) 

 

and 

 

2 0( / 4) (1 )eV V jV Vl += - = - G =  (2.31) 

 

The reflection coefficient �  is that seen at port one, looking at the resistor of 

normalised value 2Z0, so: 
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2 2

2 2

-
G =

+  
(2.32) 

 

thus 

1 0 2eV jV= -  (2.33) 

 

For the odd mode excitation, the voltage generator of port two is equal 2V0, which 

is equal to the negative value of the voltage generator of port three. That 

produces a voltage null along the middle of the equivalent circuit in Figure 2.4. 

The bisection circuit of Figure 2.4 is shown in Figure 2.6 [2] for the odd mode 

analysis, by grounding the network at two points on its middle plane. 

 

 

Figure 2.6. Bisection of the normalized and symmetric form circuit of the equal-

split and phase Wilkinson power divider for odd mode excitation. 

 

Looking into port two, there is an impedance of r/2 in parallel with the � /4 long 

transmission line that is shorted at port one, and it seems an open circuit at port 

two. That means port two is matched in the odd mode excitation if r equals two. 

Thus 	 �

 � 	 �  and 	 �


 � �  , which means all of the power is transmitted to the r/2 

resistors and none is going to port one. 
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To find the input impedance at port one, Figure 2.7 [2] is used that illustrates an 

equivalent circuit of Wilkinson power divider when port one and three are 

terminated to matched loads. It is similar to an even mode excitation since the 

value of the voltage generators at the output ports are equal. There is no current 

flowing through the resistor of the normalized value of two, and it could be 

removed. The simplified circuit is shown in Figure 2.8 [2]. The two parallel � /4 

transformers are terminated in normalised loads, and the impedance is calculated 

by: 

 

21
( 2) 1

2inZ = =
 

(2.34) 

 

 

Figure 2.7.  Terminated output ports Wilkinson power divider.  

 

 

Figure 2.8. Bisection of the terminated output ports Wilkinson power divider.  
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From the above analysis, the S-parameters can be summarised as:  

 

11 0S =  (Zin=0 at port 1)  

  

22 33 0S S= =  

(matched output ports for even and odd 

modes) 

  

1 1
21 12

2 2 2

e o

e o

V V j
S S

V V
+

= = = -
+  

(symmetry due to reciprocity) 

  

31 13
2

j
S S= = -

 
(symmetry of output ports) 

  

23 32 0S S= =  (due to short or open at bisection) 

 

Therefore, the S-matrix is written as:  

 

0
2 2

0 0
2

0 0
2

j j

jS

j

=

- -� �
� �
� �-� �� �� � � �
� �-
� �� �  

(2.35) 

 

It can be seen from the above equations that all ports are matched when the 

divider is terminated with matched loads. Besides that, it can be seen that no 

power is dissipated in the resistor when the network is driven at port one and the 
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outputs are matched. Therefore, the Wilkinson power divider is lossless when the 

output ports are matched. The reflected power at port two and three is lost in the 

resistor. There is a high isolation between port two and port three because S23 = 

S32= 0. 

 

The Wilkinson power divider can be also generalized to an N-way output divider 

or combiner [1] as shown in Figure 2.9.   

 

 

Figure 2.9. An N-way Wilkinson power divider diagram. 

 

This circuit can be matched at all ports with high isolation between output ports. 

However, the disadvantage is that the divider requires crossovers for the isolation 

resistors when N is more than three, which makes the fabrication difficult in a 

planer form [2].  

 

/2 0Z NZl =  (2.36) 
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0R Z=  (2.37) 

 

Wilkinson power dividers can be also designed as an unequal power splitter, in 

which one of the quarter wave transformers has higher impedance compared to 

the other one. Figure 2.10 [2] shows a circuit diagram for unequal split Wilkinson 

power divider. If the power division ration between output ports is: 

 

2 3

2

P
K

P
=

 
(2.38) 

 

then the following equation applies:  

 

2

03 0 3

1 K
Z Z

K
+

=  (2.39) 

  

2 2
02 03 0 (1 )Z K Z Z K K= = +  

(2.40) 

  

2

0

1K
R Z

K

� �+
= 	 


� �  
(2.41) 

 

3 0 /R Z K=  

(2.42) 

 

2 0R Z K=  

(2.43) 
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Figure 2.10. Unequal split Wilkinson power divider circuit diagram. 

 

Equations (2.36) to equation (2.41) also can be applied for the equal split 

Wilkinson power divider by considering K2 equals one. In addition, it is noted that 

the output ports are connected to R2 and R3 instead of connecting it to Z0 in the 

equal split Wilkinson power divider and their value equals 50 �  in the equal split 

Wilkinson power divider design. 

 

2.2 Antenna Fundamentals 

Antennas are devices for radiating or receiving radio waves. They are an 

essential transitional structure between transmission line (guiding device) and 

free-space. The antenna could take to operation forms, one transmitting 

electromagnetic energy from the source to space which is known as a transmitter 

antenna, or from the space to the receiver, which is known as a receiver antenna. 

The antenna radiation pattern is used to describe the electromagnetic radiation 

distribution and it is achieved by studying the current flow on the antenna. Figure 

2.11 [24] shows the antenna operating as a transition device.  
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Figure 2.11. Antenna as a transition device. 

 

There are many types of antenna configuration; Figure 2.12 illustrates some wire 

antenna configurations. There are many shapes of wire antennas such as a 

straight wire, loop antenna and helical antenna. Loop antennas may take several 

forms such as circular, ellipse, rectangular and any other shapes, but the circular 

loop is the most commonly used one because it is simple to construct. 

 

 

Figure 2.12. Wire antenna configurations: dipole and loop antennas.  

 

Figure 2.13 shows different types of patch antennas such as a rectangular 

microstrip-fed antenna and a coaxial-fed circular patch antenna. They are 

commonly used antennas because it eases to analyse, easy to fabricate and 

have attractive radiation characteristics, especially low cross-polarization 

radiation. Besides that, microstrip antennas are low profile, convenient for planar 

and nonplanar surfaces, simple and inexpensive to fabricate.  
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Figure 2.13. Rectangular and circular patch antennas. 

 

An ideal antenna is one which will radiate all the delivered power from the 

transmitter to a certain desired direction or several directions. In practice, such 

an ideal antenna is not available but very high-performance antennas may be 

closely approachable. Various types of antenna are available, which have not 

been discussed that have different forms in order to achieve the desired 

characteristics for the particular application. The equivalent circuit for a 

transmitting antenna is shown in Figure 2.14 [24]. 

 

 

Figure 2.14. The equivalent circuit for a transmitting antenna.  
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The source considered an ideal signal generator, the transmission line has a 

characteristic impedance of ZC. Antenna impedance ZA is given by the following 

equations: 

 

A A AZ R jX= += += += +  (2.44) 

 

A L rR R R= += += += +  (2.45) 

 

Where, RA is the antenna resistance and RL is the load resistance, which includes 

dielectric loss and conduction loss, while Rr stands for radiation resistance and 

XA is antenna reactance.  

 

By matching antenna impedance ZA and transmission line characteristic 

impedance ZC, the standing wave is decreased, and the energy storage capacity 

of the transmission line is minimised. A maximum power is delivered to the 

antenna from the source as a result of that. 

 

This condition is calculated by conjugate matching: 

 

g A L rR R R R= = += = += = += = +
 (2.46) 

 

g AX X= -= -= -= -
 (2.47) 
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In these equations, Rg is the source resistance, Xg represents source reactance 

and XA represents antenna reactance. The power reflected from the antenna 

towards the source, as shown in Figure 2.14 is known as S-parameter. The S-

parameter shows the relationship between input power and output power for the 

antenna with respect to frequency. The S-parameter or S11 is also known as the 

reflection coefficient, which represents the reflected power from the antenna [24]. 

 

2.2.1 Radiation Pattern 

According to IEEE standards, the radiation pattern is defined as “the spatial 

distribution of a quantity that characterizes the electromagnetic field generated 

by an antenna” [25]. The radiation pattern can be represented either graphically 

or mathematically. Generally, there are three types of antenna radiation patterns: 

isotropic, directional and omnidirectional. Practically, an isotropic radiation 

pattern antenna cannot be created; theoretically, it is considered as lossless 

antenna and it has equal radiation intensity in all spherical directions.  An antenna 

that receives or radiates electromagnetic waves in a certain direction more than 

in other directions is known as a directional antenna. The radiation pattern is 

shown by lobes, which can be classified into main and side lobes. The lobe that 

contains the strongest radiation intensity is known as the main lobe and also 

known as a major lobe, while the rest are known as minor lobes. The main lobe 

half power beamwidth is the angular separation between half-power points that 

are also known as 3 dB points. Minor lobes can be classified into side lobes and 

back lobe as shown in Figure 2.15 [24]. The back lobe refers to a minor lobe, 

which is in the opposite direction of the main lobe. Minor lobes show radiation 

towards undesired directions that should be minimised in antenna designs. Minor 
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lobe levels (side lobe or back lobe ratio) are used for expressing the ratio of the 

power density between the minor lobes and the main lobe. Low minor lobe level 

is a very important feature in antenna array designs. Finally, the omnidirectional 

radiation pattern is a special case of a directional pattern, that generates, a non-

directional pattern, in a given plane and a directional pattern in any orthogonal 

plane [24]. 

 

 

Figure 2.15. Directional antenna radiation pattern. 

 

2.2.2 Field Regions 

The antenna radiation area is divided into three regions. The first one is a reactive 

near-field region while the second one is a radiating near field or known as 

Fresnel region and the third one is a far-field or known as Fraunhofer region. All 

regions are shown in Figure 2.16 [24]. There are different preferences among the 

three regions. The reactive near-field region is the area immediately surrounding 

the antenna and the distance is determined by: 
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3

1

D
R

�
====

 
(2.48) 

 

Where D is the largest antenna dimension and �  stands for the wavelength. The 

radiating near-field region is the portion between the reactive near-field region 

and the far-field region, wherein the angular field distribution varies according to 

the distance from the antenna [24]. The inner boundary space is calculated by:  

 

3
2 0.62R D �³³³³  (2.49) 

 

and the outer boundary is the distance calculated by: 

 

2
2 2R D �<<<<  (2.50) 

 

The far-field region is the antenna radiation space where the angular field 

distribution is completely independent of the radial distance from the antenna. 

The distance is estimated by:  

 

2
2 2R D �³³³³  (2.51) 
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Figure 2.16. Field regions of an antenna. 

 

2.2.3 Radiation Power Density 

The average power radiated by an antenna in a particular direction is defined as 

the radiation power density, Pr (W/m2). The following equation describes the 

relationship between power density and field intensities [24]. 

 

[[[[ ]]]] 21 1
2 2

q f q f
hrP ( , , ) * ( , , )r E H E r= ´ == ´ == ´ == ´ =

 
(2.52) 

 

Where E represents the electric field intensity, H refers to the magnetic field 

intensity, and �  is the intrinsic impedance of the transmission medium. 

 

2.2.4 Radiation Intensity 

Antenna radiation power per unit solid angle is defined as the radiation intensity, 

U (W/unit solid angle) [24], as expressed in the following equation:  
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2
rPU r====  (2.53) 

 

In the above equation, r is the distance to the antenna. The total power radiated 

by an antenna, Prad, is obtained by integrating the radiation intensity over the 

entire solid angle of 4� , as given in the following equation:  

 

2

0 0

p p

q q f
W

= W =

 
 
�P sinrad Ud U d d
 

(2.54) 

 

Where d�  is the element of solid angle. 

 

2.2.5 Directivity 

The antenna directivity is the ratio of a radiation intensity towards a particular 

direction, to the average radiation intensity over all directions [26]. The average 

radiation intensity is estimated using the total power radiated divided by 4� . The 

directivity of a non-isotropic antenna is the ratio of its radiation intensity in a 

specified direction over that of an isotropic antenna, as expressed in the following 

equation:  

0

4p
= =

Prad

U U
D

U  
(2.55) 

 

In the previous equation, Prad is the total radiated power. When the direction is 

not clarified, the antenna directivity means the direction of maximum radiation 

intensity [24]. 
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0

4p
= =max max

max Prad

U U
D

U  
(2.56) 

 

2.2.6 Gain 

The gain of an antenna is the ratio of radiation intensity in a specified direction, 

to the radiation intensity from an isotropic radiator with the same power fed to it. 

The isotropic radiation intensity equals the antenna input power divided by 4�  

[25]. Comparing to the antenna directivity, the antenna gain parameter also takes 

into account the antenna efficiency and directional capabilities. The following 

equation describes the gain calculation [24]: 

 

4 4 q fp p= = ( , ) 
  in

URadiation Intensity
Gain

Total Input Power P  
(2.57) 

 

The relationship between antenna radiation, gain and directivity are described in 

the following equation in which, ecd stands for radiation efficiency: 

 

q f q f=( , ) ( , )cdG e D
 (2.58) 

 

2.2.7 Efficiency 

The total antenna efficiency eo is utilised to describe losses at the input terminals 

and within the antenna structure. The losses are generally caused by two 

mechanisms, which are reflections due to the mismatch between an antenna and 

its transmission line and conduction and dielectric losses (I2R). Figure 2.17 [24]  

illustrates the antenna terminals and losses.  
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Figure 2.17. Antenna terminals and losses. 

 

The total efficiency eo is calculated by using the following equation:  

 

0 r c de e e e====  (2.59) 

 

Where er is the reflection (mismatch) efficiency and er = (1� � � � 2), �  stands for the 

voltage reflection coefficient at the antenna input terminals that can be calculated 

using the following equation:  

 

G = - +( ) / ( )A C A CZ Z Z Z  (2.60) 

  

Where ZA is the antenna input impedance, and ZC is the characteristic impedance 

of transmission line. In equation (2.59), ec represents the conduction efficiency 

and ed describes the dielectric efficiency. 

 

The Voltage Standing Wave Ration is calculated by: 
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(2.61) 

 

Antenna radiation efficiency ecd is calculated by using the following equation: 

 

= = rad
cd c d

in

P
e e e

P  
(2.62) 

 

Where Prad is the total radiated power and Pin is the total input power to the 

antenna. 

 

2.2.8 Polarization 

Antenna polarisation describes the instantaneous electric field orientation of the 

propagated electromagnetic wave. It is a far-field characteristic of 

electromagnetic waves radiated by all practical antennas. In general, 

polarisations can be categorised into linear, circular, or elliptical. In the linear 

polarized mode, the electric field vector is always directed along a line. If the 

antenna radiates an electromagnetic wave in a corkscrew pattern and performs 

a complete revolution in each wavelength, this radiation is defined as circular 

polarisation. The figure of the electric field is traced either clockwise that known 

as RHCP, or counter-clockwise that known as LHCP. When the electric field 

traces is an ellipse, the radiation is classified as elliptical polarisation. Linearly 

and circularly polarised antenna patterns are special cases of elliptical 

polarisation, and they can be achieved when the ellipse becomes a straight line 

or a circle, respectively [24]. 
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2.3 Antenna Array Fundamentals 

The radiation pattern of the individual antenna element cannot be controlled 

easily. However, the possibility of significantly changing the pattern can be 

achieved by combining the outputs of multiple antenna elements. Such a group 

of multiple radiating elements, positioned in a way to a maximum radiation into a 

certain direction is known as an array antenna [24].  

 

The radiation pattern of a single element antenna is usually wide and has a 

relatively low-directivity [27]. To meet the demands of long communication links, 

it is recommended to design an antenna with high directivity. This can be 

achieved by modifying the electrical size of the antenna that leads to enhancing 

the directivity. An alternative way to meet high directivity is to design an antenna 

array. The radiation pattern of the array is obtained by the vector addition of the 

radiation pattern of each individual element, taking into consideration the mutual 

coupling among the elements.  

 

Array analysis begins using isotropic point sources. The isotropic receiving or 

transmitting element receives or transmits equally in the three dimensions. By 

using a simple multiplication process, the full pattern of the real antennas used 

as elements can then be included. Full array analysis involves summation of the 

phasors representing the amplitude and phase of each element. The pattern of 

an array of isotropic elements is called the array factor, which must be multiplied 

by element pattern to obtain the full pattern in real antenna array [24, 28, 29].  
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The first example for a simple antenna array configuration is an array consists of 

two isotropic sources with identical amplitude and phase signals in free space. 

These isotropic sources are placed horizontally along the z-axis and spaced apart 

by one-half wavelength. The radiation pattern for this array can be approximated 

by inspection as shown in Figure 2.18  [30].  

 

 

Figure 2.18. Pattern approximation of two isotropic sources separated by � /2 

with identical amplitude and phase using the inspection method. 

 

The path length for each source is equal to each point on the x-axis in the far-

field region. Since the amplitude and the phase are equal, the waves arrive 

equally in amplitude and phase so that the total field is doubled at each point. 

The situation is different along the z-axis, which is the axis of the array. The waves 

need to travel one-half wavelength coming from the left source before reaching 

the source on the right, which causes a 180° phase lag. The waves then continue 

travelling to the right along the positive z-axis with maintaining this out of phase 

relationship. Due to the sources having equal amplitude signals, then a perfect 

cancellation is archived along with the z-axis in both directions. Then the total 
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pattern has a relative value of two in the x-direction and zero in the z-direction 

with a smooth variation in between due to the smooth change in phase difference 

between waves between 0 and 180° as the observer moves from the broadside 

direction to the axial direction along a constant radius from the array centre. The 

two dimensional (2D) and the three dimensional (3D) polar patterns are shown in 

Figure 2.19 [30].  

 

 

Figure 2.19. The 2D and 3D radiation pattern of two isotropic sources separated 

by � /2. 

 

 

Figure 2.20. Geometry for pattern calculation using rays. 
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The array factor (AF) can be calculated exactly by using phases corresponding 

to the path length differences shown in Figure 2.20 [30]: 

 

( /2)cos ( /2)cos1 1 2cos( cos )
2

j d j d d
AF e eb q b q b q-= + =  (2.63) 

 

While the distance d between the elements is � /2 and �  is the propagation 

constant that is equal 2� /� , then � d/2=� /2 and equation (2.63) becomes:  

 

2cos( cos )
2

AF
p

q=  (2.64) 

 

Normalizing the array factor for a maximum value of unity gives:  

 

( ) cos( cos )
2

f
p

q q=  
(2.65) 

 

Equation (2.65) shows that the maximum can be achieved when 	 =� /2 and the 

minimum (0) when 	  equals zero that is shown in Figure 2.19.  

 

The second example for a simple antenna array configuration is an array consists 

of two isotropic sources with identical amplitude and opposite phase signals in 

free space. The gross features of the pattern can be determined by using the 

previous inspection method as shown in Figure 2.21 [30]. The path length from 

each point source to a point in the x-axis is the same. However, one of the 

sources is out of phase by 180°, thus the waves arriving at all points in the x-axis 



 43 
 

with a 180° out of phase and equal in amplitude. Along both directions of the z-

axis, the 180° phase difference in the waves is compensated by the � /2 path 

difference between the two sources. The entire pattern can be sketched in the 

2D and 3D as shown in Figure 2.22 [30].  

 

 

Figure 2.21. Pattern approximation of two isotropic sources separated by � /2 

with identical amplitude and opposite phase using the inspection method. 

 

 

Figure 2.22. The 2D and 3D radiation pattern of two isotropic sources with 

identical amplitude and opposite phase separated by � /2. 
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2.4 Full Duplex Communication Fundamentals 

WLAN communication is usually using half-duplex mode on a single channel for 

communication applications [31-34]. In this mode, systems can send and receive 

at different times or frequencies to avoid the interference between the two signals. 

Frequency Division Duplex (FDD) and Time Division Duplex (TDD) are the two 

main techniques of half duplex mode, which are exploited in the current wireless 

systems [35]. Even though FDD and TDD improve communication systems, both 

techniques cannot be used to receive and transmit concurrently over an entire 

bandwidth that is assigned for a system [36]. Recently, the massive proliferation 

of wireless networks causes a spectrum shortage of the frequency band that has 

been assigned for wireless communication networks [37]. Therefore, there has 

been a considerable concern about a full duplex mode to be the future direction 

of wireless systems [37, 38]. The full duplex communication means the system 

can receive and transmit on the same frequency at the same time. Consequently, 

the spectral efficiency will be doubled theoretically. In addition, it can solve some 

problems, such as large end-to-end delays and eliminating the hidden terminal 

issue [39].  

 

The associated problem that prevents the fulfilment of a practical full duplex mode 

is the self-interference signal. This signal is generated by the transmit antenna of 

the same node, and it is received by the receive antenna with the desired signal 

that comes from a different node [37]. Due of the space between the receiving 

and transmitting antennas are so small compared to the distance between the 

two nodes, the power of the self-interference signal is tens of decibels higher than 

the desired signal [40, 41]. The concern about cancelling the self-interference 
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signal has been rising recently. Many methods have been suggested in order to 

cancel or reduce the self-interference signal. These techniques are categorized 

into three main groups, which are an antenna, analogue and digital cancellation 

techniques [39, 42-44]. 

 

 

Figure 2.23. Antenna cancellation technique diagram. 

 

Antenna cancellation technique is achieved by using more than one transmitting 

or receiving antenna. These antennas are structured in such a way to force the 

transmitted signals to cancel each other at the receiving antennas [42]. To 

demonstrate the cancellation technique, a simple structure of a full duplex system 

is shown in Figure 2.23, which shows many transmitting antennas and two 

receiving antennas. For this structure, the input received signal at Rx1 could be 

given by: 

 

� � � � � � � � � � � �� �
�

� � �
� �  (2.66) 
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Where i is the index of the transmitter signal, n is the total number of transmitters, 

hi(t) is the ith channel between the transmitter i and the receiving element and the 

�  is the convolution operator between two signals. 

  

The transmitting signal could carry one or multiple signals. This could be 

expressed for both assumptions in which the signals arrive at the receiver with 

different time delay and phase shift corresponding to the distance between the 

transmitter and the receiver antennas. Controlling the phase shift could also be 

embedded into the transmitter signal to force the cancellation at the receiver. 

From that concept, signals from two transmitters could be cancelled if they are 

arranged out of phase with an acceptable equal amplitude at the receiving 

antenna. It is important to know that this depends on the distance between the 

transmitting antennas besides the attenuation caused by the channel between 

the transmitting and the receiving antennas. The lines joining the transmitting 

elements could be arranged in a way to be cancelled with a better attention of the 

channel attenuation that will be performed by the proper design of the feeding 

network.  

 

In general, these arrangements have been used to simplify the cancellation of 

multiple transmitted signals and especially into the new full duplex of MIMO 

system; in which, antenna cancellation with asymmetrical antenna placement has 

been presented. The design consists of three antennas, two as transmitters, while 

the other one as a receiver, which is placed between the two transmitters. The 

distance between the first transmitter and the receiver is d, whereas the second 

transmitter is placed at distance of d+� /2 away from the receiver. The aim of 
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adding an extra distance of � /2 for the second transmitter antenna is to make the 

second transmitted signal cross an extra distance to reach the receiver. As a 

result, there will be a 180
 phase difference between them, and will eventually 

cancel each other at the receive antenna. This method can reduce the self-

interference signal by up to 30 dB. The method in [39] has a limitation in terms of 

bandwidth and size. Firstly, the suggested idea relies on placing one transmitter 

by an extra distance of � /2 to destruct the two transmitted signals at the receiver. 

The wavelength is calculated using a single frequency. Consequently, the design 

worked perfectly at that frequency, which has been used to find � , and the 

performance degraded when moving away from that frequency. Thus, the system 

cannot provide high and stable cancellation over a wide frequency band. 

Additionally, adding extra � /2 distance produces a larger antenna structure that 

possibly could not be fixed into some wireless devices.  

 

Antenna cancellation with symmetric antenna placement has been proposed in 

[43], in which two transmitters with one receiver are utilized. The distances 

between the transmitting and the receiving antennas are equal. The original 

signal was divided into two symmetric signals in amplitude and phase. One of 

these two signals was connected directly to one of the transmitters, while the 

other signal passed through a 180
 phase shifter. Therefore, the two signals 

arrived at the receiver with a 180
 phase difference and added destructively.  

 

This design has many benefits comparing it with the method in [39], Firstly, the 

idea of using a phase shifter to create the phase difference instead of adding 

extra distance to one of the transmitting antennas leads to providing higher 
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cancellation on a wider frequency band. Secondly, due to the two transmitting 

antennas are separated by an equal distance from the receiving antenna, 

studying channel behaviour and its effect on the transmitted signals is not 

required, because the impact will be the same on the two signals. Nevertheless, 

the insertion loss of the phase shifter that should be compensated in the other 

signal path, and the frequency response of the phase shifter is not flat over a wide 

bandwidth.  

 

The second cancellation technique is known as the analogue cancellation, which 

is based on using the transmitted signal at the receive chain because the transmit 

chain is close to the receive chain. Therefore, a copy of the sent signal can be 

taken and subtracted from or added to the received signal. This process is 

achieved before the Low Noise Amplifier (LNA) in the RF domain [42]. 

 

Balanced / unbalanced (Balun) transformer with two antennas is utilized in [39]. 

The transmitted signal is divided into two signals that are similar in amplitude but 

have 180
 phase difference between them. The transmitter is fed by one of these 

two signals for sending, whereas the second inverted signal is connected to the 

input of the tuning circuit. The goal of implementing the tuning circuit is to adapt 

and modify the phase and the amplitude of the inverted signal quickly, 

automatically and accurately, according to the second input of the tuning circuit, 

which is the received signal. After that, the inverted signal was added to the 

received signal to reduce the effect of the self-interference signal. The 

measurement showed that this technique provides a 45 dB cancellation over a 

40 MHz bandwidth. However, it had some limitations such as suffering from 



 49 
 

leakage or non-flat frequency response issue due to the inaccuracy of 

manufacturing of the Balun transformer. Additionally, the effects of the channel 

on the sending signal are ambiguous and not easy to compensate.  

 

In [44], a single antenna with a circulator is suggested to cancel or reduce the 

self-interference signal. The antenna was used for sending and receiving, and 

the circulator to isolate these two signals. Therefore, there was no self-

interference signal composited with the received signal. However, the circulator 

had a leaking problem between its ports. Hence, the port of the sending signal 

passed part of the signal to the port of the received signal. Results indicate that 

this design can provide around 75 dB cancellation on 10MHz bandwidth. Using 

noise canceler chip for cancelling the self-interference signal [45]. This chip can 

supply an extra 20 dB cancellation when adding it with other cancellation 

methods.  

 

The third method for cancellation is known as the digital cancellation in which the 

generated baseband signal at the transmitter is subtracted or added to the output 

of the Analogue-to-Digital Converter (ADC) at the receive chain. Memory is 

utilized to store transmitted digital samples. After that, the amplitude and phase 

of these samples are modified to be similar or opposite to the sending samples, 

which exist at the received signal. Then, the subtraction will be applied between 

the adjusted samples and the received samples to remove the residual self-

interference signal [42].  
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·  Chapter 3 

Practical Power Divider Designs 

 

Various Wilkinson power divider structures are investigated and characterised in 

this section. They differed in dimensions, fabrication materials, and integration 

methods. A miniature equal split structure is presented, in order to construct a 

suitable feeding network for antenna array systems. In addition, a general 

example for planar multi-output ports power divider is presented in this chapter 

as well. As mentioned earlier, Wilkinson power divider can be designed to provide 

arbitrary power division. Therefore, a reconfigurable output power Wilkinson 

power divider is also presented that can be tuned from equal to unequal output 

power operations.  

 

3.1 Ultra-Wideband Power Dividers 

This section presents the design of a 1 to 2 equal power and phase wideband 

Wilkinson power divider. Different structures are studied, designed and optimised 

and their performance compared to select the smallest structure.  

 

The design parameters for the quarter wave transformers and isolation resistors 

can be obtained with reference to look-up tables and charts [23, 46, 47].  The 

initial design data for the ports and quarter wave transformer impedances and 

resistor values used in the three following designs are listed in Table 3.1 

considering 3.5 GHz as a central frequency. The following power dividers are 

fabricated on a 0.8 mm thick FR-4 substrate with a dielectric constant of 4.3. The 
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line width and length structure parameters are calculated using equations (3.2) 

to equation (3.5) subject to � �� � �  [48]. In which W represents the microstrip 

line width and h is the substrate thickness: 
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In these equations, Z is the characteristic impedance of the microstrip 

transmission lines, 
 e is the effective relative permittivity of the substrate, l e is the 

effective wavelength and f0 is the centre frequency, which is 3.5 GHz for this 

design. The bisection line of all ports and quarter wave sections is considered to 

be the equivalent microstrip line length to simplify the design. The gap between 

branches of the power dividers fixed to be 1.4 mm to use a 0805 size SMD thin 

film resistor. 
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Table 3.1. The initial dimensions for the three-sections UWB power divider. 

 

Three different geometries are illustrated to find the smallest structure with 

acceptable performance. The initial S-parameters before and after optimisation 

are presented. The optimised values that used in fabricating the power dividers 

are given. The fabricated prototypes are shown with overall power divider 

dimensions. The measured S-parameters are compared with simulation results 

to validate the designs.  

 

3.1.1 Straight Three Sections UWB Power Divider  

The first studied geometry is designed by using three sections of straight quarter 

wave transformer to create a 1 to 2 UWB power divider with an equal split, which 

is shown in Figure 3.1. The initial design parameters are listed in Table 3.1. The 

FR-4 substrate used for this design, which has a copper thickness of 35 µm. This 

particular substrate is selected due to its cheap price and the ease of the 

fabrication process. 

 Z (� ) R (� ) W (mm) L (mm) 

Input (port 1) 50 - 1.52 11.86 

Section 1 90.52 96.1 0.43 12.49 

Section 2 70.71 94.3 0.79 12.22 

Section 3 55.24 527 1.28 11.96 

Output ( ports 2 &3) 50 - 1.52 11.86 
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Figure 3.1. The schematic of the straight three sections equal split UWB power 

divider. 

 

Figure 3.2 shows the initial simulated S-parameters for the power divider. Desired 

results are achieved for input port return loss that is better than 10 dB from 88 

MHz to 7.72 GHz and an insertion loss of 3.6 dB at 3.5 GHz but it is below 5 dB 

at higher frequency band for the operational bandwidth. Due to the structure 

symmetry and to simplify the figures, only the return loss of the input port and one 

of the output ports are shown with the isolation between output ports. The initial 

output port return loss is better than 10 dB from 63 MHz to 7.42 GHz. While output 

ports isolation is better than 10 dB from 90 MHz to 8.15 GHz. The operational 

bandwidth of this power divider is 6.86 GHz. 
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Figure 3.2. Initial simulated S-parameters for the straight three sections UWB 

power divider. 

 

To enhance power divider performance and reduce the size, the Particle Swarm 

Optimisation algorithm (PSO) is used.  This algorithm has been reported that it is 

suitable for models with many optimized parameters and it can give better and 

faster optimum results [49]. The power divider input and output ports length and 

width and, quarter-wave transformer sections lengths and widths are optimised 

with a goal to achieve a return loss better than 25 dB. The optimised design 

parameter values are shown in Table 3.2.  
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Table 3.2. The optimised design parameters for the straight three sections UWB 

power divider. 

 

The optimised structure S-parameters are shown in Figure 3.3.  It is clear that the 

enhancement in both bandwidth and input port return loss are achieved. The input 

port return loss becomes better than 10 dB from 0.5 to 7.6 GHz. No change was 

observed for the insertion loss as it is related to the substrate properties [50], 

which has not been changed. Output port return loss is also enhanced and 

become better than 10 dB from 98 MHz to 8.38 GHz. A slight improvement was 

achieved in terms of output ports isolation that become better than 10 dB from 

1.07 to 8.68 GHz. The operational bandwidth of the optimised power divider is 

7.1 GHz compared to 6.8 GHz before optimization.  

 

 R (� ) W(mm) L(mm) 

Input (port 1) - 1.42 8.78 

Section 1 60 0.48 9.83 

Section 2 126 0.75 9.99 

Section 3 282 1.18 9.98 

Output ( ports 2 &3) - 1.42 8.78 
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Figure 3.3. The optimised S-parameters for the straight three sections UWB 

power divider. 

  

A size reduction is also achieved after optimisation as the optimised power divider 

size is 19 mm ́  45 mm compared to 25.1 mm ́  40 mm before optimisation, which 

means a 14.8 % reduction in size.  Figure 3.4 shows the fabricated prototype. 

The bottom layer of the power divider is a full ground.  For practical reasons, R1, 

R2 and R3 are selected to be 35.7, 127 and 280 �  respectively, and a ‘0805’ 

package size is selected.  

 

Figure 3.5 shows the measured S-parameters for the power divider. There is a 

difference between measurements and simulation results in the magnitude but 

the overall response are both agreed. 
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Figure 3.4. The fabricated board of the straight three sections UWB power 

divider. 

 

Figure 3.5. The measured S-parameters for the straight three sections UWB 

power divider. 
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3.1.2 Mitred Microstrip Line Three Sections UWB Power Divide 

The second geometry is a mitred microstrip line 1 to 2 UWB power divider 

structure that shown in Figure 3.6. The aim is to design a smaller size power 

divider by bending the quarter wave transformers.  In general, microstrip circuits 

are easy to fabricate and allow the convenient integration of passive components 

[51]. Almost any types of microwave circuits and subsystems can be made in 

microstrip form. However, microstrip lines are associated with discontinuities 

problem that causes circuit performance degradation, due to junctions, step 

changes in line width and line bends [52]. This is because such discontinuities 

change the line characteristic impedance by introducing shunt capacitance, 

which can lead to phase and amplitude changes and input and output mismatch 

by increasing reflection level from those discontinuities [53, 54].  

 

Bends are the most frequently used discontinuity. However, due to the excess 

capacitance at a square corner of the bend, the characteristic impedance value 

will be lower than that of the uniformly connected lines. In addition, the effective 

length of the bent microstrip line becomes shorter than the designed length [55]. 

The bend discontinuity effect will increase with frequency, with the number of 

bends used in cascade, and with the line width [56]. 

 

One of the approaches to minimize the effect of bends is by compensating the 

discontinuity directly often by chamfering or mitring the conductor at the corner. 

Several equations are reported for mitring, such as the perfect mitring [55], the 

1.6 ratio mitring [23] and the 1.8 ratio mitring [2]. The length of the mitre in the 

perfect mitring method is equal to the width of the microstrip line; while in the 1.6 
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and 1.8 mitring ratio methods are equal to 1.6 and 1.8 times the microstrip line 

width respectively. The increased conductor area at the corner of the bend  cause 

a parasitic discontinuity capacitance, which can be reduced  by mitring the 

corners [57].  

 

 

Figure 3.6. The schematic of the mitred three sections equal split UWB power 

divider. 

 

The same initial design parameters that used in the first structure were used with 

this power divider, which are shown in Table 3.1. Figure 3.7 shows the initial 

simulation results of the S-parameters. The return loss of the input port is better 

than 10 dB for a bandwidth of 5.4 GHz from 0.6 to 6 GHz and the insertion loss 

is between 3.6 and 6 dB for the same bandwidth. The output ports return loss is 

better than 10 dB from 90 MHz to 7.3 GHz while the output ports isolation is better 

than 10 dB from 74 MHz to 6.4 GHz. 
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Figure 3.7. The initial simulation S-parameters of the mitred UWB power divider. 

 

The same optimisation algorithm that has been used in the previous design was 

used to enhance power divider performance and reduce the size. The power 

divider input and output ports width and length, quarter-wave transformer 

sections widths and length are optimised to achieve that goal. The optimised 

design parameters are listed in Table 3.3.  

 

The optimised S-parameters values are shown in Figure 3.8, which shows a good 

enhancement in both bandwidths and return loss values. The input port return 

loss bandwidth becomes wider. A 6.97 GHz bandwidth is achieved from 77 MHz 

to 7.3 GHz and the output ports return loss is from 81 MHz to 8.85 GHz. Adding 

to that, the output ports isolation is also enhanced and become better than 16 dB 

for the operational band. The insertion loss is not changed as it is related to the 

conductor and dielectric losses of the substrate [50].  
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Table 3.3. The optimised dimensions for the mitred three sections UWB power 

divider. 

 

The new dimension of the optimised power divider is 20 mm ´  31 mm, which is 

26% smaller compared to the power divider before optimisation that has a 25.1 

mm ´  33.4 mm dimensions. Figure 3.9 shows the top layer of the fabricated 

prototype.  The power divider has a full ground that is not showing in Figure 3.9.  

The same SMD resistor values and the package size of the previous geometry 

were used. 

 

 R (� ) W (mm) L (mm) 

Input (port 1) - 1.66 9.16 

Section 1 36 0.49 10.42 

Section 2 128 0.83 10.17 

Section 3 280 1.25 9.03 

Output ( ports 2 &3) - 1.66 9.16 
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Figure 3.8. The optimised S-parameters of the UWB mitred power divider. 

 

 

Figure 3.9. The fabricated board of the mitred three sections equal split UWB 

power divider. 

 

Figure 3.10 shows the measured S-parameters. Comparing Figure 3.10 with 

Figure 3.8, a good agreement can be absorbed. The input port return loss is 

better than 10 for almost the same bandwidth from 60 MHz to 7 GHz.  The 
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difference between the measured and simulated results could be due to not 

simulating the SMA connectors and could be due to the inconsistent amount of 

soldering that has been used for the SMA connectors and SMD resistors. 

 

Figure 3.10. The measured S-parameters for the mitred three sections UWB 

power divider. 

 

3.1.3 Circular Three Sections UWB Power Divider 

Another approach for eliminating the effect of a discontinuity is by bending the 

microstrip line with a smooth curved line that has a radius equal or greater than 

three times of the microstrip line width, but this takes up more space [2, 23]. The 

third studied geometry is a three sectioned 1 to 2 UWB power divider with 

circularly shaped quarter wave transforms.  The schematic diagram of this power 

divider is shown in Figure 3.11. The same initial design values are used that have 
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been used with the previous designs, which are listed in Table 13. . To construct 

circular sections, the radius of circles are calculated by considering the section 

length to be the bisection line of the circular section.  Taking into consideration 

the SMD resistor gap in the first section radius calculation as the gap should be 

reduced from the circle radius. The following equations are used to calculate the 

three section radii: 

 

2 -
2

first section length gap
First section redius

p
´

=  (3.6) 

 

other section length
Other section redii

p
=  

(3.7) 

 

The values of section radii are 2.9, 3.18 and 3.18 mm for sections one to three 

respectively. 

 

 

Figure 3.11. The schematic of the circular three sections equal split UWB power 

divider. 

 

The initial simulated S-parameter results are shown in Figure 3.12, which shows 

that the return loss of the input port is better than 10 dB between 0.9 to 9.9 GHz 
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that means an operational bandwidth of 9 GHz. The insertion loss is between 3.6 

dB and 5.4 dB for the same band. In addition, the plot shows that the output ports 

insertion loss is better than 10 dB between 125 MHz to 10.2 GHz while the 

isolation between output ports is 16.5 dB as a minimum for the same operational 

band. 

 

Figure 3.12. The simulated S-parameters for the circular three sections UWB 

power divider. 

 

Same as with the previous power divider geometries, the PSO algorithm is used 

to obtain better performance and reduce power divider size. The power divider 

input and output ports width and length, quarter-wave transformer section radii 

and widths are optimised with a goal to achieve input port return loss better than 

25 dB. The new optimised design values are listed in Table 3.4.  
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Table 3.4. The optimised dimension values for the circular three sections UWB 

power divider. 

 

The optimised power divider S-parameters are shown in Figure 3.13. Although 

the operational bandwidth is reduced and become 7.4 GHz from 600 MHz to 8 

GHz, a return loss better than 25 dB is achieved for a bandwidth of  4 GHz from 

2 to 6.5 GHz. An improvement is observed for the output ports return loss that 

becomes better than 10 dB from 90 MHz to 8 GHz and the isolation between 

output ports become better than 10 dB from 750 MHz to 8.2 GHz. The insertion 

loss did not change as it is related to the substrate properties, which are not 

changed similar to the previous geometries.  

 R (� ) W(mm) L (mm) Radios 

Input (port 1) - 1.4 9.24 - 

Section 1 104 0.55 9.66 3.88 

Section 2 118 0.75 9.49 3.37 

Section 3 318 1.13 9.33 3.75 

Output ( ports 2 &3) - 1.4 9.24 - 
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Figure 3.13. The S-parameters for the optimised circular three sections UWB 

power divider. 

 

The optimised power divider structure is smaller in size. A 6.6 % size reduction 

is achieved by optimisation with an overall board size of 19 mm ´  38 mm 

compared to 19.05 mm ´  40.59 mm before optimisation. Figure 3.14 shows the 

upper layer of the fabricated prototype. The bottom layer of the power divider is 

also a full ground similar to the previous structures. For practical reasons, off-

shelf resistors values for R1, R2 and R3 are selected to be 105 � , 118 �  and 360 

�  respectively and ‘0805’ package size is used.  
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Figure 3.14. The fabricated board of the circular three sections equal split 1 to 2 

UWB power divider. 

 

Figure 3.15 shows the measured S-parameters in which a good agreement with 

simulation is observed. The slight difference in magnitude could be a reason to 

not considering the SMA connectors in simulation and the inconsistency in 

soldering the SMA connectors and the SMD resistors.  

 

Comparing the performance and the size of the three designed power dividers, 

knowing that all of them achieved the desired UWB frequency band in terms of 

input and output ports return loss, insertion loss and isolation, the mitred 

geometry is more preferable to construct a small size and high-performance 

power divider. As the mitred structure is 29.8 % smaller than the linear structure 

and it is 16.8 % smaller than the circularly shaped quarter wave transformer 

structure. The operational bandwidth of the mitred power divider needs an extra 

optimisation to increase it, which will be achieved in the next section.  
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Figure 3.15. The measured S-parameters for the circular three sections UWB 

power divider. 

 

3.1.4 Miniature UWB Power Divider  

This section is based on a published paper [58]. The aim of this section is to 

design a miniature UWB power divider for antenna array feeding networks.  

 

A miniature, lightweight, equal power and phase, four ports UWB Wilkinson 

power divider design is presented. A two ports UWB power divider simulated 

using CST microwave studio and optimised using PSO algorithm. The proposed 

power divider has promising S-parameters that covering the UWB from 3.1 to 

10.6 GHz and it is physically small. The four ports power divider is constructed 

by using three of two ports power dividers by cascading two of them. All designs 

are fabricated on a Roger RO3035 substrate and are validated experimentally. 
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Generally, Wilkinson power dividers with single section structure are constructed 

from two quarter-wavelength transformers with 70.71 �  impedance, which are 

terminated by a 100 �  isolation resistor [10]. One method is widely used to 

expand the operational bandwidth of a narrow band power divider by adding 

additional quarter wave transformers. In this case, two additional quarter wave 

transforms have been added. These quarter wave transformers are terminated 

by isolation resistors with particular values [46]. The impedance of the quarter 

wave transformers and isolation resistors values can be found from charts and 

look-up tables [23, 46, 47].  

 

Several numerical formulas can be used to find the microstrip characteristic 

impedance. Figure 3.16 shows a plot of the characteristic impedances with 

respect to microstrip line width using two methods. Equations (2.1) and (2.2) are 

given by IPC-2141 standard, which gives a good approximation for microstrip line 

width. While Sobol formula, equations (3.8) and (3.9), gave a better 

approximation for microstrip line width. The following equations are subject to 

W/h �  1 [48]. 
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The design parameters for the two ports power divider are listed in Table 3.5 for 

a centre frequency of 6.85 GHz. A 0.76 mm thick RO3035 substrate is used, 

which has a processed dielectric constant of 3.5 and a design dielectric constant 

of 3.6 and a copper thickness of 35 µm. 

 

Figure 3.16. The characteristic impedance of quarter-wave sections with 

respect to microstrip line width calculated using two different methods. 

 

Table 3.5 The initial design parameters for the 1-2 ports UWB power divider. 

 Z  (� ) R (� ) W (mm) L (mm) 

Input/output ports 50 - 1.69 6.656 

First section 90.52 96.1 0.57 6.768 

Second section 70.71 94.3 0.91 6.714 

Third section 55.24 527 1.45 6.671 
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The bisection line of all microstrip lines considered the calculated length to 

simplify the design. A perfect mitring is used to reduce the high VSWR at the 

square corners caused by the excess capacitance [55]. 

 

The increment in the dielectric constant value reduces the wave propagation 

speed, that means the microstrip line length will be shorter compared to the same 

suspended microstrip line. This helps to reduce the structure size according to 

equation (3.5). However, it has a drawback of increasing conductor losses due to 

decreasing microstrip lines width as shown in equation (3.2). Besides that, a 

substrate with a high dielectric constant has a higher coupling and a lower 

radiation loss [59]. So that, the selected substrate based on considering all 

mentioned factors to have lower losses and smaller size.  

 

Generally, there are two types of material used in substrates fabrication, Poly 

Tetra Fluoro Ethylene (PTFE) and thermoset materials. PTFE materials are less 

affected by humidity while thermoset materials are more stable thermally but 

more affected by ageing [60]. 

 

Electrode deposit and rolled copper production methods are the most common 

methods used to produce the copper sheet of the substrate. Generally, electrode 

deposited copper has a rougher surface, which means a better boundary 

connection between the copper sheet and the dielectric but increases conductor 

loss due to increasing surface roughness. On the other hand, rolled copper has 

a smoother surface, reducing conductor loss but weakening boundary connection 

with the substrate [59]. 
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The selected substrate should offer good electrical, mechanical, thermal stability 

with small size and high performance. The substrate should be selected based 

on equations (3.2) and (3.9) in which the microstrip width is directly related to the 

thickness of the substrate and inversely related to the dielectric constant of the 

substrate. Taking all of that into consideration helps to fabricate a sufficient 

microstrip line width, which should be wide enough to reduce the effect of minor 

imperfections in fabrication [61]. 

 

CST Microwave studio is used with its optimisation toolbox to carry out a full wave 

analysis for the power dividers. Figure 3.17 shows the initial simulated S-

parameters for the two ports power divider. The return loss is better than 10 dB 

over the operational band and the isolation is better than 14 dB. The insertion 

loss is between 3.2 and 3.8 dB across the desired band while the output ports 

return loss is not satisfying the requirements. To enhance the performance, PSO 

algorithm is applied with a goal of achieving a return loss better or equal to 20 dB 

over the operational bandwidth by optimising sections, ports length and width. 
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Figure 3.17. Initial simulated S-parameters for the miniature two ports UWB 

power divider. 

 

The S-parameters for the optimised two ports UWB power divider are shown in 

Figure 3.18, which shows a significant improvement in return loss performance 

by a 7.5 dB and more than 2 dB in isolation. The insertion loss remains 

unchanged since it is a function of the copper surface roughness and the tangent 

loss of the substrate [26], both unaltered in this optimisation. Figure 3.19 shows 

the layout for the power divider with an overall size of 13 mm ´  19.5 mm. 
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Figure 3.18. The S-parameters for the optimised miniature two ports UWB 

power divider. 

 

 

Figure 3.19. The miniature two ports UWB power divider layout. 
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To construct a four ports power divider, three of the two ports power dividers are 

used. Two staged power divider is constructed by connecting the output port of 

the first stage to the input port of the second stage, which consisted of two power 

dividers. The 50 W output ports of the first stage have been extended to connect 

the input ports of the second stage as shown in Figure 3.20. The impedance value 

of the first stage output ports is fixed, even after extending them, as the 

impedance is a function of the microstrip width according to equations (3.2) and 

(3.9) for a given substrate permittivity, thickness and copper thickness. The initial 

simulated S-parameters are shown in Figure 3.21. Optimising the structure 

enhanced the return loss as shown in Figure 3.22. 

 

 

Figure 3.20. Extended output ports 1 to 2 UWB power divider. 
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Figure 3.21. The initial simulated S-parameters for the extended output ports of 

the miniature UWB power divider. 

 

 

Figure 3.22. The S-parameters for the optimised extended output ports of the 

miniature UWB power divider. 
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The S-parameters for the four ports power divider are shown in Figure 3.23, which 

clearly shows that the optimised return loss is equal to or better than 20 dB for 

the required band. A 6.5 dB insertion loss and 16 dB isolation are achieved. The 

overall optimised board dimension is 60.16 mm ´  19.94 mm.  

 

Table 3.6 presents a comparison between the proposed two ports UWB power 

divider and similar power dividers in published works [3-7, 62-65]. The table 

shows that the proposed power divider is comparable in size to the power divider 

reported in [3] but the proposed power divider is better in performance in terms 

of the achieved return losses.  

 

Figure 3.23. The optimised S-parameters for the miniature 1 to 4 UWB power 

divider. 
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A thin film 100 �  surface mount resistor (SMD) terminates the first and the second 

sections, while a 422 �  SMD resistor terminates the third section. A ‘0402’ 

package size SMD resistor was used with a footprint of 1 mm ´  0.5 mm. The 

fabricated two and four ports power dividers are shown in Figure 3.24 and Figure 

3.25 respectively. The measured S-parameters are shown in Figure 3.26 and 

Figure 3.27 for the two and four ports UWB power dividers. A 10.5 and 8.25 GHz 

operational bandwidth for return loss better than 10 dB is achieved for the two 

and four ports power divider respectively. The measured and simulated insertion 

losses are consistent in the realized bandwidths, namely 3 ± 0.2 dB and 6 ± 0.13 

dB for the two and four ports power dividers respectively. The difference between 

the measurements and simulation could be due to fabrication imperfection and 

the soldering amount besides SMD resistor positioning.  

 

 

Figure 3.24. Fabricated board for the 1-2 ports UWB power divider. 

 

 

Figure 3.25. Fabricated board for the 1-4 ports UWB power divider. 
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Table 3.6. Comparison of the presented 1-2 UWB power divider with previous 

works. 

Reference Number 
S11 

(dB) 

S21 

(dB) 

S32 

(dB) 

Size 

(mm× mm) 

[3] 
simulation -11 -3 -20 

13×18 
measurement -11 -3 -16 

[4] 
simulation -13 -3.2 -11 

16×32 
measurement -12 -3.15 -9 

[5] 
simulation -12 -3.15 -10 

16×18 
measurement -14 -3.3 -10 

[6] 
simulation N/A N/A N/A 

20×11.5 
measurement -15 -3 -10 

[7] 
simulation -11 -3.5 -7.5 

20×30 
measurement -15 -3.52 -15 

[62] 
simulation N/A N/A N/A 

13×32 
measurement -10 -3.5 -10 

[63] 
simulation -10 -3.3 -13 

21×34 
measurement -12 -3.3 -15 

[64] 
simulation -13.5 -2.8 -7.5 

15.5×22 
measurement -11 -3.5 -14 

[65] 
simulation -11 -3.5 -10 

16×17 
measurement -11 -3.5 -10 

Presented 
work 

simulation -20 -3 -17 
13×19.5 

measurement -16 -3 -12 
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Figure 3.26. Measured S-parameters for the two ports UWB power divider. 

 

 

Figure 3.27. Measured S-parameters for the four ports UWB power divider. 
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3.2 Multi-Output Ports Power Divider 

This section is based on an under review paper [66], in this section, a novel 

general design for microstrip-fed multi-output ports planar Wilkinson power 

divider is proposed, designed and fabricated for industrial, scientific and medical 

radio band applications. The proposed power divider operates in a wideband 

frequency range that is from 1.77 to 2.88 GHz with a low insertion loss imbalance, 

which is below 0.01 dB at 2.4 GHz. The presented design has a simple structure 

utilize a microstrip feeding port. The power divider adopts a two-layered substrate 

structure solving isolation resistor interconnection crossover problem for dividers 

having more than two output ports. A one-section quarter wave transformer is 

employed on the upper layer and the third layer is used to interconnect isolation 

resistors between output ports. Two different permittivity substrates are selected 

to simplify the design structure. A prototype of one to five ports power divider is 

selected as a design example and fabricated. The measured S-parameters are 

well agreed with the simulation, which validates the design concept.   

 

The block diagram for a general one to N output ports Wilkinson power divider is 

shown in Figure 2.9, where N is the number of output ports. It shows the isolation 

resistors are connected in a star configuration. Power dividers with two output 

ports do not suffer from a problem in connecting the isolation resistor, as only one 

is needed. The quarter wave transformers are separated with a small spacing, 

which is usually kept as a fraction of the operational wavelength to ensure better 

input and output ports return loss and output ports isolation. Transmission lines 

are having a � /2 periodicity phenomenon. So that the same impedance can be 

transformed every � /2 [2]. Thus, a line with a length of � /2 and its multiplication 
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can be used to connect isolation resistors between separated output ports. Three 

power dividers are designed with a different layout for the isolation resistors 

interconnection microstrip line to verify that the � /2 added length for the isolation 

resistor interconnection line and its place does not affect to power divider 

performance.   

 

The first power divider is a uniplanar structure and each isolation resistor 

interconnection microstrip line has a length of � /2 that is implemented on the 

same layer of the power divider as shown in Figure 3.28. The S-parameters for 

the input port and one of the output ports are shown in Figure 3.29 to simplify the 

plots. The minimum achieved input port return loss is 33.08 dB at 2.36 GHz. The 

corresponding output port return loss, insertion loss and isolation is 33.51, 3.1 

and 38.03 dB respectively at the same frequency. The power divider has an 

operational bandwidth of 1.28 GHz from 1.74 to 3.02 GHz where input and output 

port return losses and isolation are better than 10 dB.  

 

 

Figure 3.28. The structure of the uniplanar power divider that has an extended 

isolation resistor interconnection microstrip line on the same layer. 
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Figure 3.29. The simulated S-parameters of the uniplanar power divider that 

has an extended isolation resistor interconnection microstrip line on the same 

layer. 

 

The second power divider is designed in a way so that the isolation resistor 

interconnection microstrip line is implemented on another layer beneath the 

ground layer of the power divider as shown in Figure 3.30. The isolation resistor 

interconnection microstrip lines are connected using two vias to the upper layer 

at the point where the end of the quarter wave transformer connects with the 

output port.  
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(a)                                                  (b) 

Figure 3.30. The double layered power divider. (a) The upper power divider 

layer showing the quarter wave transforms. (b) The lower layer showing the 

isolation interconnection microstrip lines. 

 

 

Figure 3.31. The simulated S-parameters of the double layered power divider. 

 

The minimum achieved input port return loss is 34.79 dB at 2.06 GHz. A 300 MHz 

frequency shifting is observed, this is due to introducing additional reactance by 

using vias to connect the isolation resistors microstrip lines with the upper layer. 

To shift the minimum of the return loss to a higher frequency, the length of the 
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quarter wave transformer can be shortened.  The simulated output ports return 

loss, insertion loss and isolation is 43.6, 3.07 and 32.45 dB respectively. The 

operational bandwidth of this power divider is 930 MHz from 1.71 to 2.64 GHz. 

 

The third power divider is designed using the same parameters as the previous 

design but the isolation resistor interconnection line is designed to be a straight 

line. To achieve that, the upper layer substrate dielectric constant selected to be 

lower than the dielectric constant of the lower layer substrate. So that, the total 

physical length for both isolation resistor interconnection line and substrate 

thicknesses is equal the half-electric wavelength, which is equal to the physical 

length of the quarter wave transformer. This method allows constructing a short 

microstrip line for the isolation resistor interconnection as shown in Figure 3.32 

(b). 

 

The simulated S-parameters are shown in Figure 3.33 for the triple-layered power 

divider that has a short isolation resistor microstrip line length. The minimum input 

port return loss is measured at 2.14GHz and it is 37.46 dB. While output ports 

return loss, insertion loss and isolation are 49.60 dB, 3.1 dB, 39.18 dB 

respectively. The operational bandwidth is 680MHz from 1.87 to 2.55 GHz.  
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(a)                                                       (b) 

Figure 3.32. The double layered power divider with straight isolation resistor 

interconnection line. (a) The upper power divider layer showing the quarter 

wave transforms. (b) The lower layer showing the short straight isolation 

interconnection microstrip lines.  

 

By comparing the results of the three different structures, it is clear that the 

performance of all power dividers is almost the same as the input and output ports 

return loss and the isolation is below 30 dB at the minimum simulated input return 

loss. Besides that, the insertion loss for all of them is about 3.1 dB. The only 

difference is that the first design has a wider bandwidth of 1.28 GHz while the 

second design has a 930 MHz bandwidth and the third design has a bandwidth 

of a 680 MHz. This can be solved by optimising the power divider parameters, in 

return, the problem of isolation resistor crossovers can be solved using the third 

technique.  
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Figure 3.33. The S-parameters of the double layered power divider with straight 

isolation resistor interconnection lines. 

 

In order to achieve a single section planar power divider with output ports more 

than two, the multi-layered substrate is used. The input and output ports with 

quarter wave transformers designed to be on the upper layer, whilst the resistors 

with their interconnection microstrip lines implemented on the lower layer as 

shown in Figure 3.30 and Figure 3.32. These two layers are separated with 

common ground and vias used to connect resistor section with the intersection 

point of the quarter wave transformer and output ports. 

 

To prove the concept, a five-output ports power divider was designed and the 

values for Z� /2 and the SMD resistor (R) are found to be 111.8 �  and 50 �  

respectively using equation (2.36) and equation (2.37). The optimised values for 
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the design parameters are listed in Table 3.7, which are approximately calculated 

by using equations (3.1) to equation (3.5) that are optimised to obtain the best 

performance. The proposed planar Wilkinson power divider is shown in Figure 

3.34. The first layer implemented on a 0.51mm thick Rogers RO5880 substrate 

with a dielectric constant of 2.2 and the bottom layer implemented on a 1.28 mm 

thick Rogers RO3010 substrate with a dielectric constant of 10.2. Arbitrary 

impedance can be selected for the isolation resistor interconnection microstrip 

lines, as its impedance does not effect on the results, which has been validated 

by a parametric study.  

 
Table 3.7. The proposed power divider design parameters. 

 

 

 
Impedance 

(� ) 
Length 
(mm) 

Width 
(mm) 

Input port 50 23.73 1.45 

� /4 section 111.8 25.27 0.378 

Output ports 50 22.78 1.78 

Resistors interconnection arbitrary 25.27 1 
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(a)                                                           (b) 

Figure 3.34. The fabricated proposed power divider photograph. (a) The upper 

layer showing input and output ports with the quarter wave transformers. (b) 

The lower layer sowing isolation resistors and its microstrip line 

interconnections. 

 

Although a similar concept has been reported in [10], in that work, a more 

complicated design was needed and a complex fabrication procedure was used. 

A coaxial feeding port was used that was soldered on the ground layer, which 

was between the two substrates that lead to the need of drilling the central part 

of the lower layer to allow placing the coaxial connector. In contrast to that, 

difficult to implement a feeding method, a microstrip line is used in this design, 

which made it more suitable for planar structure applications. In addition, an 

impedance matching disk was required in the previous work to feed the quarter 

wave transformer sections to obtain a better input port matching, while the quarter 

wave transformer sections are directly connected to the input port without the 

need to an additional structure to be introduced in the proposed design. That 

helps to reduce the required number of drilled via holes in the proposed power 

divider.  Moreover, an Archimedean spiral line was needed for the isolation 
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resistor interconnection in [10], which required additional calculations. While a 

straight microstrip line is used benefiting from implementing the isolation resistors 

microstrip line interconnection on a high permittivity substrate in the proposed 

power divider. In addition, the reported work placed a microstrip ring on the lower 

layer around the coaxial connector, which was needed for interconnecting 

isolation resistors due to placing the SMA connector in the middle of the structure. 

While in the presented work, isolation resistors are connected directly without the 

need for additional structures. In [10], the same concept of [67] was used but 

implemented for dual-band operation.  

 

The simulated and measured S-parameters for the fabricated power divider are 

shown in Figure 3.35. It is clear that the power divider covers a wide bandwidth 

of 1.11 GHz from 1.77 to 2.88 GHz with a return loss of 25.5 dB at 2.4 GHz and 

maintaining the return loss better than 10 dB all over the operational band.  All 

output ports return losses are about 18 dB at 2.4 GHz and they are better than 

15 dB for the operational band. The isolation performance between output ports 

is around 25 dB at 2.4 GHz with maintaining it better than 20 dB all over the band 

as shown in Figure 3.36. The measured insertion loss at 2.4 GHz is 7.4 dB 

compared to 6.99 dB theoretical value. The amplitude imbalance is less than 0.01 

dB at 2.4 GHz as shown in Figure 3.37. In order to simplify the plots, only three 

ports are selected, which are the input port (port one) and two output ports (ports 

two and three) to show the power divider performance and compare the 

measurements with the simulation. 
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Figure 3.35. The simulated and measured input and output ports S-parameters. 

 

Figure 3.36. The simulated and measured output ports isolation. 
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Figure 3.37. The simulated and measured insertion loss with measured output 

ports imbalance. 

 

Two parametric studies are carried out to study the effect of changing the width 

of the isolation resistor interconnection microstrip lines and the diameter of the 

via on the power divider performance to find the optimum width and diameter for 

the proposed design. A range from 0.8 to 1.2 mm is selected for the microstrip 

line width with an increment step of 0.2 mm. Figure 3.38 shows the power divider 

performance for each case. It is clear that the isolation resistor interconnection 

microstrip lines width does not have a noticeable effect on the performance, 

although, the input and output ports return loss and the isolation between output 

ports are slightly changed but that can be neglected.  For that reason, an arbitrary 

width is selected, which is 1 mm to facilitate the soldering of the SMD resistors. 
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Figure 3.38. The power divider S-parameters performance with different 

isolation resistors interconnection microstrip line widths. 

 

Similar behaviour for the power divider performance can be observed from Figure 

3.39 when changing via diameters from 0.8 to 1.2 mm with an increment of 0.2 

mm. It can be observed that the diameter of the via does not effect on the power 

divider performance. However, a 0.8 mm vias diameter is selected in this design. 

 

The power divider performance is not affected by changing isolation resistors 

interconnection microstrip line widths and via diameters due to the symmetry of 

the structure. As the reflected signal from output ports going through the isolation 

resistors is propagating through a similar path so that any loading due to changing 

the path impedance or additional capacitances added due to using vias is applied 

identically to all other paths in which the effect is cancelled each other. 
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Figure 3.39. The power divider S-parameters performance with different via 

diameters. 

 

3.3 Reconfigurable Output Power Wilkinson  Power Di vider 

This section is based on an published paper [68]. The aim of this section is to 

present the design of a novel reconfigurable Wilkinson power divider with equal 

to 8 dB power difference between output ports using one varactor diode.  

 

The proposed power divider adopts the microstrip coupled line technique to 

implement a high impedance quarter wave transformer section to have an 

unequal output power values.  A varactor diode is placed between the coupled 

line to achieve reconfigurability by changing the reverse biasing voltage on the 

varactor diode.  This enables equal to 8 dB power difference between output 

ports. A wide range of biasing voltage is used to achieve a smooth control on 

output ports power difference. Prototype hardware is fabricated and measured to 
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validate the proposed approach. In the equal output power scenario, the 

measured performance shows a bandwidth of 550 MHz at 5.4 GHz.  A higher 

bandwidth of 750 MHz and 1 GHz is obtained in the case of 6 dB and 8 dB output 

ports power difference scenarios.  

 

To achieve high power division ratio, several novel techniques were presented to 

realise high impedance microstrip transmission lines. One of these methods 

implemented a defected ground structure (DGS) microstrip line [14-18]. In which 

a conventional Wilkinson power divider was used but the ground plane under one 

of the quarter wave transformers was defected by a rectangular shape. The 

defect in the ground under the microstrip line adds an additional inductive 

component to the microstrip line to be able to realize very high impedance of 150 

�  and over. The DGS increased the characteristic impedance of the microstrip 

line to be much higher than that of a conventional microstrip line without the DGS 

for the same microstrip width. Besides that, the equivalent microstrip line was 

shorter in length. However, the drawback of using the DGS is that the ground 

layer is very sensitive to metallic enclosures and conductors [19]. A solution is 

reported in [69] in which the authors introduced an additional ground to solve this 

problem. The second method to achieve high power division ratio is by using a 

coplanar waveguide with electromagnetic band gap (EBG)  [19, 20], in which 

narrow slots were etched in the coplanar structure to obtain a high impedance 

transmission line. Another method to implement a high impedance microstrip line 

is by offsetting double-sided parallel strip lines [21]. This technique considered to 

be easier to implement compared to the DGS technique as this allowed some 

design freedom as claimed in [70, 71]. The high impedance is realised by 
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increasing the distance of the offset or by decreasing the strip line width, which 

deteriorates the power handling.  In [22], applying groove alongside a microstrip 

line is used to achieve the high impedance section. This technique needed an 

additional fabrication processes for properly applying the grove with accuracy 

limitations. In [72], the high power division ratio was achieved by cascading low 

ratio divider. In the same reference, doubling the substrate thickness with an air 

gap allowed implementing a high impedance section. Loading a transmission line 

with open and short stubs was another technique to implement a high impedance 

section [73, 74]. Using a coupled microstrip line was reported in [75]. In this 

method, the high impedance section was implemented by coupled line and 

terminating their ends to the ground. Conversely, such as in [76], the low 

impedance transmission line was loaded with periodic shunt open stub to achieve 

very low impedance line. Also in [77], the low impedance transmission line was 

modified by employing a dual transmission line with a different length that was 

used to implement an extremely unequal Wilkinson power divider. 

 

None of the mentioned works achieved a continuous power division ratio except 

in [16, 17] where two varactor diodes were placed between the ground plane and 

a floating potential conductor under the high impedance line claiming to have a 

tuneable division ratio. However, the drawback of using DGS is that the ground 

plane should be kept far from any other electromagnetic materials [19], as the 

defected ground considered as a high radiating structure that is affected by other 

adjacent material.  
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In this section, a parallel microstrip coupled line technique is utilized to design a 

high impedance quarter-wave transformer Wilkinson power divider with 

terminating the open ends of the coupled line to the ground. To obtain the 

reconfigurability feature, one varactor diode is needed that is placed at the mid-

distance between the coupled line ends.  

 

A 3:1 unequal Wilkinson power divider ration is designed using the coupled line 

technique. Figure 3.40 shows the schematic diagram of the proposed power 

divider. The characteristic impedance for the power divider sections, shown in 

Table 3.8, are calculated using equations (2.39) to equation (2.43).  

 

Table 3.8. The calculated design parameters for the proposed power divider. 

 

 Value  (� ) Width (mm) Length (mm) 

Input / output ports 50 1.84 8.47 

Z11 43.9 2.26 25.18 

Z12 28.9 4.1 8.16 

Z21 131.6 0.125 9.31 

Z22 86.6 0.63 8.84 
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Figure 3.40. The schematic diagram of the proposed power divider. 

 

The electrical length for 	 2, 	 3 and 	 4 are designed to be quarter wavelength. The 

quarter wavelength coupled line, which there ends are grounded that shown in 

Figure 3.40, resulting in an extra 180° phase shift to the signal passing through it 

[75]. Therefore, the electrical length of 	 1 is designed to be three-quarter 

wavelength to compensate the 180° phase shift passing in the other branch. The 

calculated isolation resistor (R) is 115.5 �  according to equation (2.41). The 

nearest available off shelf resistor is used, in this case, it is 115 � . The microstrip 

lines physical dimensions are calculated using equations (3.2) to equation (3.5). 

The coupled line dimensions are calculated using Agilent ADS Line calculator. 

The proposed power divider design dimensions are listed in Table 3.8. 

 

The high impedance section Z21 is constructed by using a microstrip coupled line 

structure with a coupling factor of 0.3 [75] and terminating the open ends to the 

ground. The calculated gap between the coupled line is 0.49 mm. A varactor is 

added that acts as a variable capacitance between the coupled line to achieve 

the low odd-mode impedance needed for tight coupling [78]. According to that, 

the coupled line width and the gap between them are re-calculated taking into 
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consideration the varactor existence. The new width and gap between the 

coupled line (WZ21) are 0.4 and 0.108 mm respectively. 

 

Rogers RO4003C substrate with dielectric constant of 3.38 and a thickness of 

0.813 mm is used to fabricate the proposed power divider.  Figure 3.41 shows a 

photograph of the fabricated power divider with an overall dimension of 50 mm × 

40 mm. Capacitors of 850 pf are placed on the input and the output ports to isolate 

the DC biasing voltage of the varactor diode from the vector network analyser. 

An inductor of 96 nH is used to isolate the RF signal from returning to the DC 

source. A silicon junction varactor diode from Skyworks (SMV1231) is used 

between the coupled line. Changing the reverse biasing voltage of the varactor 

diode from 0 to 15 V changes the equivalent capacitance of the varactor diode 

from 0.4 to 2.1 pf. This corresponds to an output power difference ranging from 

8.25 to -1.15 dB, as shown in Figure 3.42.  

 

 

Figure 3.41. A photograph of the fabricated reconfigurable power divider. 
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Figure 3.42. The measured response with reverse biasing voltage. 

 

The proposed unequal power divider is designed to work at 5.5 GHz for WLAN 

applications. The measured performance shows a 6 dB output power difference 

as shown in Figure 3.43. To achieve this power difference, a 4.4 V reverse biasing 

voltage is applied across the varactor diode. The input port return loss is better 

than 10 dB for a bandwidth of 750 MHz ranging from 5 to 5.75 GHz and the 

insertion loss of port 2 and 3 is 5.6 and 11.8 dB respectively at 5.5 GHz, which 

validates the 6 dB output ports power difference. The amplitude imbalance for 40 

MHz WLAN channels within the operational band of 750 MHz is bellow ± 0.1 dB.  
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Figure 3.43. The measured S-parameters of the proposed reconfigurable power 

divider for 6 dB output ports power difference scenario. 

 

A 1 V reverse biasing voltage is applied across the varactor diode to achieve an 

8 dB output ports power difference. The S-parameters for this case are shown in 

Figure 3.44. The input port return loss bandwidth is 1 GHz from 4.75 to 5.75 GHz. 

The insertion loss of ports 2 and 3 is 5.6 and 13.5 dB respectively at 5.5 GHz. 

The amplitude imbalance for the 40 MHz WLAN channels is also bellow ± 0.1 dB. 
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Figure 3.44. The measured S-parameters of the proposed reconfigurable power 

divider for 8 dB output ports power difference scenario. 

 

For equal division ratio scenario, a 10.4 V reverse biasing voltage is applied. 

Figure 3.45 shows that the return loss is better than 10 dB for a bandwidth of 550 

MHz from 5.2 to 5.75 GHz. It is clear that both output ports have an equal insertion 

loss of 6.7 dB at 5.5 GHz. The amplitude imbalance in this case for the 40 MHz 

WLAN channels is bellow ± 0.2 dB. Figure 3.42 shows that the proposed power 

divider has a wide control range of 9.4 volts, which helps to achieve more precise 

output ports power difference using a single varactor diode for every 5 GHz 

WLAN channels.  
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Figure 3.45. Measured S-parameter of the proposed reconfigurable power 

divider for equal output ports power scenario. 

 

3.4 Summary 

In this chapter, various configurations of Wilkinson power dividers were studied, 

designed and fabricated.  An important size deduction achieved by selecting a 

compact structure and substrate permittivity. A multiple section method was used 

to design the 1 to 4 UWB power divider (3.1 to 10.6 GHz). The small size designs 

for both 1 to 2 and 1 to 4 dividers made them suitable for applications where size 

and performance are critical, such as mobile devices and antenna array feeding 

networks.  

 

The five-way planar power divider proposed a solution to overcame the isolation 

resistor interconnection crossover problem for multi-output ports power dividers 
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by introducing a third layer. The simple design structure made the fabrication 

procedure much easier compared to previous works.  

 

The proposed reconfigurable power divider was capable to deliver equal and up 

to 8 dB output ports power difference between the output ports using only one 

varactor diode and applying a wide range of reverse biasing voltage that helped 

to control the power difference more accurately compared to previous works. 

 

The simulation and experimental results for all designs were largely agreed, 

which validated the design approaches. The resultant power divider designs in 

this chapter were adopted in the fifth chapter where antenna array configurations 

have been applied. 
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·  Chapter 4 

Practical Antenna Designs 

 

With the rapid development of wireless technology innovation, compact size, low 

profile, lightweight, wideband, and multiple functional antenna designs are 

becoming more attractive in many microwave applications. In this section, 

different patch antenna structures are investigated in order to fulfil these 

requirements. As patch antennas demonstrate many advantages, including 

simple fabrication, low cost, wide impedance bandwidth and transmitting and 

receiving wideband signals without significant distortions [79, 80]. 

 

4.1 Coaxial Fed Rectangular Patch Antenna for WLAN Applications 

Microstrip antennas are also known as patch antennas. Due to their simplicity 

and ease of integration with circuit board technology, they become very popular 

antennas in the microwave frequency range [29]. The rectangular patch antenna 

is one of the most commonly used microstrip antennas. The simplest form of 

patch antennas is the pin-fed patch, which does not suffer from feed network 

radiation and simple to construct. This method is also known as probe feeding 

that is proposed and demonstrated in mid-1970 [81]. The outer conductor of the 

coaxial cable is connected to the ground plane, while the centre conductor is fed 

through a hole in the substrate and the ground plane and electrically connected 

to the patch element. The pin-feed also allows simple impedance control [82]. 

The feed-point is positioned so as to control impedance. The feeding pin is 

usually an extension of the centre conductor of a coaxial cable used to feed the 
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antenna. Figure 4.1 shows a cross-section for a rectangular patch antenna with 

the pin feeding.  

 

 

Figure 4.1. Cross section of a pin-fed rectangle patch antenna. 

 

In general, the patch length controls the resonant frequency and the patch width 

controls the bandwidth and the impedance level. The larger the patch width, the 

smaller the input impedance of the antenna implemented on thin substrates 

usually less than 0.03� 0 [83]. The resonant length should be less than a half 

wavelength due to the fringing effect. In addition, the substrate material relative 

permittivity � r need to be taken into account. So the general equation for the 

rectangular patch length (L) is [28, 29]:  

 

00.49
r

L
l

e
=

 

(4.1) 

 

Equation (4.1) is considered a good starting point for simulation. While equation 

(4.2) can be used taking in consideration the fringing effect of both patch antenna 

edges as following [30]:  
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Where 
 L is the fringing length that can be calculated using equation (4.3) in 

which � eff is the effective substrate dielectric constant:  
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The patch can be seen as a resonant cavity with radiating slots at each end of 

the patch. The fringing fields act to extend the effective length of the patch, with 

the result that the length of the half-wave patch is usually less than a half 

wavelength in the dielectric medium [26]. To increase the resonant frequency, the 

patch length should be decreased. 

 

The patch antenna element is usually manufactured by etching it in a metallised 

substrate, or by bonding metal cut-outs to a bare substrate. Pin-fed patches are 

sometimes constructed without a substrate by suspending the patch over a 

ground plane using the feeding pin or by using additional isolated supports. 

Stand-alone antennas are often constructed with a coaxial feed connector in the 

ground plane [84]. 

 

Pin-fed patch antennas usually operate near resonance to obtain real-valued 

input impedance. The input impedance is determined by the position where the 

feeding pin is connected to the patch and can be used to control the real part of 
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the input impedance quite accurately. However, the inductance caused by the 

feeding pin can degrade the input match. The pin inductance increases as the 

substrate thickness increase and can prevent the input impedance from 

becoming real when thick substrates are used. Since thicker substrates are 

needed for patch antennas with higher bandwidths, the pin-fed patch antenna is 

unsuitable when higher bandwidth is required [85]. For approximately find the pin 

feeding point position from the edge of a half wave rectangular patch antenna 

(
 xp), the input resistance for the patch antenna (Za) need to be calculated, noting 

that the reactance is zero at resonant  and the required matching impedance 

Za(
 xp) is 50 �  [86]:  
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A rectangular patch antenna for WLAN applications is designed on a 1.52 mm 

thick Rogers RO5880 substrate with a relative permittivity of 2.2 and a coper 

thickness of 35 µm.  The centre resonant frequency selected to be 5.25 GHz. 

According to equations (4.1), the patch length and width is calculated to be 18.9 

mm. The patch impedance at the edge found to be 363 �  by using equation (4.4). 
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So the ping feeding point position found to be 7.16 mm by using equation (4.6). 

The initial return loss is shown in Figure 4.2. The length and pin position optimised 

to get better return loss for the patch at 5.25 GHz that is shown in Figure 4.3.  

 

Figure 4.2. The S11 of the rectangular patch antenna before optimisation. 

 

The patch antenna has a bandwidth of 160 MHz dB from 5.17 to 5.33 GHz. To 

increase the bandwidth, thicker substrates can be used or substrates with lower 

effective permittivity. The directivity also increases as the permittivity decrease 

because fabricating the patch antenna on a low permittivity substrate material 

produces an antenna with bigger physical dimensions. In addition, the directivity 

slightly increases as the thickness increases [83].  
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Figure 4.3. The S11 of the rectangular patch antenna after optimisation. 

 

The pattern of a rectangular patch antenna is rather broad, with a maximum 

direction normal to the plane of the antenna and a null in directions tangential to 

the ground plane [26]. On smaller ground planes, the null-depth is reduced. On 

thicker substrates, the feeding pin may cause spurious cross polarised radiation 

[85].  

 

The simulated radiation pattern for �  =0 and 90° is shown in Figure 4.4 and 

Figure 4.5 respectively.  As can be seen from these plots the radiation pattern is 

relatively broad in both orthogonal directions. The beamwidth is 83.6 and 80.1° 

when �  = 0 and 90° respectively. The maximum gain is 7.11 dB with a main lobe 

direction of 0° and a side lobe level is -22.5 dB.  
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Figure 4.4. Rectangular patch antenna radiation pattern at 5.25 GHz for � =0°. 

 

  

Figure 4.5. Rectangular patch antenna radiation pattern at 5.25 GHz for � =90°. 

 

The fabricated antenna is shown in Figure 4.6, which shows the dimensions as 

well. The measured return loss is shown in Figure 4.7 that shows good agreement 

with simulation although the archived return loss is about 17 dB, which is less 

compared to simulation. That could be due to the parasitic capacitance and 
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soldering of the SMA connector. The measured radiation pattern is shown in 

Figure 4.8 and Figure 4.9 for both cutting planes � =0° and 90°, which reflects a 

good agreement between simulation and measurements.  

 

 

Figure 4.6. The fabricated rectangular patch antenna. 

 

 

Figure 4.7. The measured S11 of the rectangular patch antenna.  
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Figure 4.8. The measured rectangular patch antenna radiation pattern for � =0°. 

 

 

Figure 4.9. The measured rectangular patch antenna radiation pattern for 

� =90°. 
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4.2 Printed Microstrip-Fed Yagi-Uda Antenna for WLA N Applications 

The Yagi-Uda antenna is a popular linearly-polarised, medium-gain end-fire array 

consists of a number of linear dipole elements, one of which is driven directly, 

while the rest have current induced by mutual coupling [26]. The wire version is 

a practical radiator 3 to 3000 MHz band and the printed version may be used well 

into the mm-wave band [87]. It is inexpensive, has a reasonable bandwidth, and 

can provide a high gain up to 17 dB or more if multiple arrays are used. It has a 

unidirectional beam with moderate side lobes. The Yagi-Uda array was invented 

by Uda in Japan in 1926 but the first English written work is published by his 

colleague Yagi [88].  

 

In free space, the driven element is resonant at slightly less than � /2, typically 

0.45 to 0.49�  [26]. The parasitic elements in the direction of the radiation that 

called directors are slightly shorter than the feed element, which is about 0.4 to 

0.45 of �  long. The gain can be increased by adding directors to the front of the 

driven element with spacing about � /2. In the case of the microstrip-fed version 

of the antenna, the reflector element also acts as the ground plane for the 

feedline. The element spacing is usually not much more than approximately 0.3� . 

The presence of a substrate influences the length and spacing of all the array 

elements.  

 

Printed Yagi-Uda arrays can be optimised for a variety of requirements, such as 

gain, impedance or bandwidth. However, there is a trade-off between the 

performance characteristics, as an example, increasing bandwidth reduces the 

obtainable gain. For optimum designs, the director spacing and lengths are not 
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uniform [89]. Such designs were initially accomplished experimentally [90] but are 

now optimised using numerical techniques. The dielectric substrate effect on all 

the array elements’ length and spacing should be taken into account.  

 

 

Figure 4.10. The designed microstrip-fed printed Yagi-Uda antenna.  

 

A microstrip-fed printed Yagi-Uda array consists of a double-sided driven dipole 

element with a ground reflector and two of director elements, which is shown in 

Figure 4.10. This figure shows the four elements Yagi-Uda antenna including the 

reflector and the driven elements. The antenna designed to work in the 2.4 GHz 

frequency band and fabricated on an FR-4 substrate which permittivity is 4.3 and 

a thickness of 1.6 mm.  

 

A balanced feeding is required to feed the driven elements. A double-sided 

printed dipole is used in order to realise the unbalanced microstrip feed line 

transition to the required balanced parallel strips line to feed the driven elements  

[87]. The non-driven or called parasitic elements have currents induced on them 

by mutual coupling as shown in Figure 4.11. Elements that are correctly spaced 
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have a similar current with a progressive phase shift, making the array essentially 

a structure supporting a travelling wave. The first element in this case also 

considered as a ground plane that is equivalent to a reflector and the elements 

beyond the driven element as directors.  

 

 

Figure 4.11. The current distribution of the designed Yagi-Uda antenna. 

 

A Yagi-Uda antenna is typically optimised for different performance 

characteristics because it is difficult to describe typical performance. A high gain 

can be obtained but the impedance and bandwidth are relatively poor. For a 

conventional Yagi-Uda antenna, a wide bandwidth can be obtained, but this is at 

the expense of power gain [91].  

 

The input impedance characteristic is extremely variable and a function of the 

element lengths and spacing. The dielectric constant of the substrate also lowers 

the input impedance. To increase the input impedance, the microstrip feed line 

width can be increased. Besides that, increasing the reflector spacing also 
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increases the impedance. However, changing the reflector spacing will also affect 

the back lobe and thus the front-to-back ratio. 

 

Figure 4.12 shows the simulated return loss for the designed Yagi-Uda antenna 

that clearly shows that the antenna satisfies 2.4 GHz WLAN applications. The 

maximum simulated gain at 2.45 GHz is 7.8 dB while the side lobe level is -11.8 

dB. Figure 4.13 shows the 3D far-field radiation pattern of the designed antenna. 

By increasing the number of director elements the gain can be increased [28]. 

Besides that, the existence of the substrate reduces the gain of the Yagi-Uda 

antenna and lowers the dielectric constant, the higher the achieved gain. The 

simulated beamwidth is 60.9° when � = 0° while it is 82.9° when �  =90°.  

 

 

Figure 4.12. Simulated S11 of the Yagi-Uda antenna. 
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Figure 4.13. 3D far-field radiation pattern of the Yagi-Uda antenna. 

 

The fabricated antenna is shown in Figure 4.14 and the design dimensions are 

listed in Table 4.1. 

 

Figure 4.14. Photograph of the fabricated Yagi-Uda antenna.  
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Table 4.1. Designed Yagi-Uda antenna parameters.   

Ldr 44.56 mm W 4.46 mm 

Lf 14.22 mm Wf 3.09 mm 

Lg 23.58 mm Wg 63.67 mm 

Ldi1 36.34 mm LDi2 35.9 mm 

S1 17.68 mm S2 12.38 mm 

S3 14.44 mm Ext 9.36 mm 

 

Figure 4.15 shows the measured return loss of the fabricated antenna. A good 

agreement can be observed by comparing it with Figure 4.12. Although, there is 

a slight frequency shifting that could be due to fabrication tolerance. 

  

 

Figure 4.15. Measured S11 for the fabricated Yagi-Uda antenna. 
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The measured radiation pattern is shown in Figure 4.16 for � =0° cutting plane. 

The maximum measured gain is 7.2 dB compared to 7.8 dB simulated gain. The 

3 dB beamwidth is about 58° compared to 60.9° in simulation and the main lobe 

direction is 0°. Figure 4.17 shows the radiation pattern for � =90° cutting plane. 

The maximum measured gain is 6.59 dB and the beamwidth is about 90° with a 

direction of 0°.  

 

Figure 4.16. Measured radiation pattern for the fabricated Yagi-Uda antenna for 

� =0° cutting plane.  
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Figure 4.17. Measured radiation pattern for the fabricated Yagi-Uda antenna for 

� =90° cutting plane. 

 

4.3 Microstrip-Fed Dual-Band Patch Antenna for WLAN  Applications  

This section is based on a published paper [92], a low-cost dual-band printed 

antenna that employs Sierpinski fractal geometry is presented in this section for 

the possible integration to IEEE 802.11n WLAN standards access points. The 

designed antenna covers two wireless spectrum bandwidth, they are the 2.4 and 

the 5 GHz bands. The antenna geometry is confined within a compact size of 75 

mm x 75 mm x 1.52 mm. The antenna is mounted on a partial ground and fed by 

a microstrip line. It is modelled and optimised using CST Microwave studio and 

the results in terms of the reflection coefficient, VSWR, bandwidth and power gain 

are illustrated and compared to previously published literature. The antenna 

covers dual band with acceptable radiation performance. First resonance 

frequency centred at 2.45 GHz while the second at 5.5 GHz.   
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One of the important objectives in radio communication systems is the design of 

wideband, or even multiband, small antennas with a low profile for employment 

in commercial communications systems. The fractal antenna believed to be a 

useful technique to design small and multi-band antennas, and display space 

filling properties that can be exploited to miniaturize standard antenna elements, 

like as dipoles and patches [26, 93], and overcome some of the limitations of 

small antennas. Part of solutions of this limitation is that fractal antennas are 

compacted in small space. 

 

The 802.11n standard offers several advantages over previous WLAN 

technologies. The most notable advantages are essentially improved reliability 

and greater application data throughput. The 802.11n standard acts in both the 

2.4 GHz and 5 GHz bands, achieving the compatibility with pre-existing 

802.l1a/b/g deployments. Wireless solutions depend on the 802.11n standard 

use various techniques to improve the reliability, throughput, and predictability of 

WLANs.  

 

The antenna constructed using fractal geometry by scaling the initial triangle that 

is shown in Figure 4.18 (a) by one-half the generator. Application of the generator 

for the first time leaves three smaller filled triangles, the result is shown in Figure 

4.18 (b), to which the scaled copy of the generator can be applied again. The 

corresponding structure is shown in Figure 4.18(c) [26, 93]. 
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             (a)                       (b)                     (c) 

  Figure 4.18. Fractal antenna geometry construction steps.  

 

The configuration of the proposed antenna is shown in Figure 4.19. The second 

iteration of the Sierpinski geometry is considered. The antenna is fabricated on a 

1.52 mm thick RO5880 substrate with a dielectric constant of 2.2 and a dimension 

of 75 mm × 75 mm. A microstrip line is used to feed the antenna with a dimension 

of 2 mm × 8 mm and has a partial ground with dimensions of 8 mm × 75 mm.  

 

 

Figure 4.19. The feeding and ground layers of the designed Sierpinski antenna. 
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Figure 4.20. The S11 of the designed Sierpinski antenna. 

 

The response of the return loss is shown in Figure 4.20. It can be noticed that the 

Sierpinski antenna is resonating at 2.45 GHz and 5.5 GHz with a return loss of 

19.97 and 16.64 dB respectively. The antenna also exhibits two frequency bands 

that cover widely the two frequency spectrums for IEEE 802.11n standard. The 

10 dB bandwidth is achieved at first resonant frequency centred at 2.45 GHz, 

which wraps all the fourteen channel of the 2.4 GHz band; in addition, the second 

bandwidth appears at a second resonant frequency centred at 5.5 GHz that in 

fact includes extensively the frequency range of 4.55 to 5.92 GHz.  

 

Both operation frequencies are demonstrating wideband antenna characteristics 

is shown in Table 4.2.  The input impedance of this antenna is found extremely 

sensitive to the width of the microstrip feed line. A parametric study is carried out 
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to find the optimum microstrip line width. Figure 4.21  shows the return loss plots 

for the antenna when the microstrip width changed from 1 to 4 mm with an 

increment of 1 mm in which an optimum value of 2 mm is found to satisfy both 

bandwidths requirements.  The VSWR is an indication of how well the impedance 

of an antenna is matched, which describes the power reflected from the antenna. 

Figure 4.22 shows that the VSWR for the two operational frequencies is real and 

positive as shown in Table 4.2, where VSWR approaching one, that implies a 

matched load. 

 

Table 4.2. Simulated Sierpinski antenna results. 

f0 (GHz) 
Bandwidth for 10dB 

return loss Return loss (dB) VSWR 
(MHz) % 

2.45 325 13.26 17.47 1.23 

5.5 1310 23.8 11 1.26 

 

 

Figure 4.21. S11 for the Sierpinski antenna for different feed line width.  
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Figure 4.22. Voltage Standing Wave Ratio of the Sierpinski antenna. 

 

The radiation patterns are shown in Figure 4.23 and Figure 4.24 for 2.45 GHz, 

and in Figure 4.25 and Figure 4.26 for 5.5 GHz,  for cutting planes of �  = 0 and 

90° respectively. The radiation pattern is quite similar to the radiation from the 

monopole antenna, in which they showed an omnidirectional for both operational 

frequencies, apart from small variations appeared at higher spectrum band at 90° 

cut. The maximum simulated gain at 2.45 GHz is 2.78 dB and the beamwidth is 

165° for the � =0° cutting plane. While the maximum gain is 3.83 dB and the 

beamwidth is 155° for � =90° cutting plane at the same frequency. On the other 

hand, the simulated maximum gain at 5.5 GHz is found to be 5.51 dB and the 

beamwidth is 55.8° for the � =0° plane whereas the maximum gain of 6.04 dB 

with a beamwidth of 42.6° is achieved at the � =90° cut plane.  
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Figure 4.23. Microstrip-Fed Dual band Patch Antenna simulated radiation 

pattern at 2.45 GHz for �  =0° cutting plane. 

 

  

Figure 4.24. Microstrip-Fed Dual band Patch Antenna simulated radiation 

pattern at 2.45 GHz for �  =90° cutting plane. 
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Figure 4.25. Microstrip-Fed Dual band Patch Antenna simulated radiation 

pattern at 5.5 GHz for �  =0 cutting plan. 

 

  

Figure 4.26. Microstrip-Fed Dual band Patch Antenna simulated radiation 

pattern at 5.5 GHz for �  =90 cutting plane. 
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A good agreement can be noticed by comparing the simulated return loss shown 

in Figure 4.21 when the microstrip width is 2 mm and the measurements result 

that is shown in Figure 4.27. The measured bandwidth for the lower frequency 

was 330 MHz that is extended from 2.27 to 2.6 GHz whereas for the upper 

frequency is around 1.23 GHz extended between 4.41 and 5.64 GHz. The 

measured radiation patterns for both operating frequencies for the two orthogonal 

planes are shown in Figure 4.28 to Figure 4.31. It can be seen that there is a 

good similarity between the measured and simulated radiation patterns. It is clear 

that the proposed antenna shows promising properties in terms of radiation 

performance, impedance matching, bandwidth and gain. One can deduce that 

the proposed antenna could be recommended as a possible candidate for IEEE 

802.11n standards. 

 

 

Figure 4.27. Microstrip-Fed Dual band Patch Antenna measured S11. 
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Figure 4.28. Microstrip-Fed Dual band Patch Antenna measured radiation 

pattern for �  =0° cutting plane. 

 

 

Figure 4.29. Microstrip-Fed Dual band Patch Antenna measured radiation 

pattern for �  =90° cutting plane. 
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Figure 4.30. Microstrip-Fed Dual band Patch Antenna measured radiation 

pattern for �  =0° cutting plane. 

 

 

Figure 4.31. Microstrip-Fed Dual band Patch Antenna measured radiation 

pattern for �  =90° cutting plane. 
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4.4 Summary 

In this chapter, three different types of antennas were studied, designed, 

fabricated and tested to operate over single and dual bandwidths of the 2.4 and 

5.2 GHz WLAN applications. The antennas were exhibited a good range of 

bandwidth covered and exceeded in some of them the standard range of the 

WLAN spectrum proposed by ITU regulations. The considered frequencies were 

covering the two well-known WLAN bands (2.4 and 5.2 GHz).  The designed 

antennas exhibited minor different radiation performance but they preserved the 

Omni-directional feature for small antennas. The measured and simulated results 

showed a reasonable agreement in terms of the return loss, bandwidth and gain 

in which the resultant antennas could be recommended as a good candidate to 

be used for WLAN applications. The designed antennas in this chapter were 

embedded in chapter five in which antenna array configurations were applied with 

power dividers presented in chapter three.  
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·  Chapter 5 

Antenna Array Applications 

 

5.1 Embedded Power Divider Feeding Network Applicat ion 

A 2x2 antenna array is constructed using four coaxial fed rectangular patch 

antennas that are designed and optimized in section 4.1. An embedded Wilkinson 

power divider is needed to feed the array elements. A power divider with four 

output ports is designed to feed the array elements. The feeding network is 

designed to deliver equal power and phase signal to the array.  A four-port power 

divider constructed by using three 1 to 2 Wilkinson power dividers using similar 

technique presented in section 3.1.4. The feeding network placed below the array 

in a way that both the array and the feeding network shares a common ground 

that helps to reduce the radiation effect of the feeding network.   

 

The impedance of the quarter wave transformer found to be 70.7 �  using 

equation (2.26) and the SMD isolation resistor value found to be a 100 �  using 

equation (2.27). The substrate used for this design is a Roger RO5880 with a 

thickness of 0.51 mm and a copper thickness of 35µm. Using equations (3.2) to 

(3.5) the initial design parameters are found then optimized to get better 

performance. 

 

The fabricated single section equal power and phase power divider is shown in 

Figure 5.1. The measured S-parameter is shown in Figure 5.2. The return loss is 

found to be below 10 dB from 600 MHz to 6.84 GHz. The insertion loss is 3.15 
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dB at the centre frequency. Three of these power dividers were used to construct 

the 1 to 4 power divider as shown in Figure 5.3. The first stage input and output 

ports are extended to align the output ports of the second stage with the patch 

feeding points of the array. 

 

 

Figure 5.1. Fabricated equal power and phase Wilkinson power divider. 

 

 

Figure 5.2. Measured S-parameter for the fabricated single section 1 to 2 

Wilkinson power divider. 
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Figure 5.3. The designed power divider structure that is sharing a common 

ground with the patch antennas.  

 

The horizontal and vertical spacing between the patches is optimized to be 21.28 

mm. The simulated and measured return loss for the antenna array with the 

feeding network is shown in Figure 5.4.  

 

 

Figure 5.4. The simulated and measured S11 for the patch antenna array. 
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The measured bandwidth of the array is 180 MHz from 5.18 to 5.36 GHz. The 

array gain is 12.8 dB at 5.25 GHz as shown in Figure 5.5 that is 5.69 dB higher 

than the single antenna gain designed in section 4.1. The half power beamwidth 

is 40.2° and the main lobe direction is 0° for the cutting plane of �  equals 0 as 

shown in Figure 5.5.  The main lobe direction is 1° for the cutting plane of �  

equals 90° with a half power beamwidth of 36° as shown in Figure 5.6.  

 

The fabricated array is constructed using Rogers RO5880 substrates which 

permittivity is 2.2. The array elements are fabricated on a 1.52 mm substrate, 

while the feeding network is fabricated on a 0.51 mm substrate. The antenna 

patches are fed using vias with a diameter of 1.3 mm. A good agreement is 

observed in Figure 5.4, Figure 5.5 and Figure 5.6 between the simulated and 

measured radiation patterns. The fabricated antenna array with the embedded 

feeding network is shown in Figure 5.7.  

 

 

Figure 5.5. Simulated and measured rectangular patch antenna array gain at 

5.25 GHz for � =0°. 
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Figure 5.6. Simulated and measured rectangular patch antenna array gain at 

5.25 GHz for � =90°. 

 

  

Figure 5.7. Fabricated patch antenna array in the testing anechoic chamber. 
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5.2 Multi-Layered Power Divider Feeding Network App lication 

An array of four Yagi–Uda antennas that are designed and optimized in section 

4.2 is constructed benefitting from the multi-output ports power divider designed 

and optimized in section 3.2.  The power divider provides an equal power and 

phase for each antenna element in the array and consists of three layers as 

discussed earlier. A cavity box is designed and fabricated in order to reduce the 

effect of the radiation of the power divider on the antenna array. The fabricated 

power divider with the cavity box is shown in Figure 5.8 while the cavity lid is 

taken off to show the power divider board.  The output ports length is calculated 

so that the power divider dimensions with the cavity box and connectors fulfil the 

array spacing. The horizontal and vertical spacing is set to be 70 mm from the 

centre of each antenna element. 

 

 

Figure 5.8. Multi-output ports power divider with cavity box. 

 

The simulated and measured return loss for the array is shown in Figure 5.9. 

There is a good agreement between the simulation and measurement results. 
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The return loss is better than 10 dB for the band from 2.22 to 2.69 GHz that 

satisfies the 2.4 GHz WLAN applications.  

 

Figure 5.9. The simulated and measured S11 for the Yagi-Uda antenna array. 

 

The cavity box is used to support the entire structure. Figure 5.10 shows the 

antenna array inside an anechoic chamber to measure the array radiation pattern. 

A flexible coaxial cable is used to feed the power divider to enable measuring the 

radiation pattern of the array for the required cutting planes.  
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Figure 5.10. Yagi-Uda antenna array inside the anechoic chamber.  

 

Figure 5.11 shows the simulated and measured radiation patterns for a vertical 

cutting plane of � =90°. It can be clearly seen that there is a quite good agreement 

between the results as expected. The achieved maximum measured gain is 11.2 

dB compared to 12.3 dB simulated gain. The 3 dB bandwidth found to be 43.8° 

in which the main lobe direction is broadside pointed exactly at 0°.  

 

Similarly, Figure 5.12 shows the radiation patterns for another vertical cutting 

plane at �  =0°. Again, the simulated and the measured radiation patterns are 

shown a good agreement. The measured maximum gain found to be 11.52 dB 

compared to 12.3 dB simulated gain. The 3 dB bandwidth found to be 38.6° and 

the main lobe direction is 0°. 
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Figure 5.11. The simulated and measured radiation pattern of 2x2 Yagi-Uda 

antenna array when �  =90° 

 

Figure 5.12. The simulated and measured radiation pattern of 2x2 Yagi-Uda 

antenna array when �  =0° 
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5.3 Ultra-Wideband Power Divider Feeding Network Ap plication  

The radiation pattern of a single element antenna is wide and gives relatively low 

directivity and low gain. Although the radiation pattern of a single antenna may 

be designed with specific characteristics, in an array, the mutual coupling among 

the elements will affect the pattern of each element and they will act together to 

produce the total pattern. The performance of antenna array depends on a 

number of parameters such as the number of elements and the spacing between 

them, as well as the amplitude and phase of the excitation signals for each 

element [24, 94, 95].  

 

Increasing the number of elements for a fixed spacing will lead to having a narrow 

beamwidth and increase the directivity, at the expense of increases the number 

of side lobes however the side lobes peaks decreases. Increases the spacing 

between the elements, which is usually represented by fractions of � , leads to 

having larger grating lobes. A trade-off between the number of elements and 

spacing are considered in the design in order to compromise between side lobes 

level and the beam width. 

 

An antenna array consisting of four dual-band antennas designed in section 4.2 

is presented in this section. For the feeding network, the UWB equal split power 

divider that is designed in section 3.1 is used.  The spacing between antenna 

elements is kept as small as possible to have wider beamwidth using four 

antenna elements. Figure 5.13 shows the antenna array with the feeding network 

inside the anechoic chamber.  
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Figure 5.13. Dual-band antenna array with the feeding network.  

  

The simulated and measured radiation pattern for the antenna at 2.45 GHz is 

shown in Figure 5.14 and Figure 5.15 for two vertical planes at �  equals 0 and 

90° respectively. The measured radiation patterns are well agreed with the 

simulated ones. The slight difference between the measurement and simulation 

could be due to the phase difference in the input signal for each antenna elements 

due to the use of the coaxial cable connecting the power divider output ports and 

antenna elements. The simulated and measured radiation patterns at 5.2 GHz 

are shown in Figure 5.16 and Figure 5.17 for both vertical planes at �  equals 0 

and 90° respectively. The difference between the achieved results was also 

deduced by the same reason above.   
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Figure 5.14. Dual-band antenna array radiation pattern for � =0° cutting plane at 

2.45 GHz.  

 

 

Figure 5.15. Dual-band antenna array radiation pattern for � =90° cutting plane 

at 2.45 GHz. 
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Figure 5.16. Dual-band antenna array radiation pattern for � =0° cutting plane at 

5.2 GHz. 

 

 

Figure 5.17. Dual-band antenna array radiation pattern for � =90° cutting plane 

at 5.2 GHz. 
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5.4 Reconfigurable Output Power Feeding Network App lication 

This section is based on a published paper [96]. The objective of this section is 

to present an application for the unequal division power divider with a practical 

application of self-interference cancellation technique for full duplex 

communication.  

 

Recently, a considerable attention has been paid for full duplex communication 

as it allows transmitting and receiving information at the same frequency 

simultaneously in order to increase the spectral efficiency by two times by utilizing 

this type of communication. This section presents a new method of antenna 

cancellation with symmetric antenna placements to cancel the self-interference 

signal using an unequal power division power divider. Three monopoles antennas 

are modelled by using CST Microwave studio, one as a receiving antenna, while 

others as transmitting antennas. Moreover, many factors that could degrade the 

system performance are investigated. Results illustrate that this technique 

provides higher than 45 dB cancellation over a wideband frequency. 

 

This section analyses the method of antenna cancellation with symmetrical 

antenna placements. In this technique, three monopole antennas are 

implemented, two as transmitting antennas, while the third as a receiving 

antenna. The monopoles diameter is 1.3 mm and the spacing between them is 

66 mm. The unequal power divider that is designed in section 3.3 is used with 

extending one of its output ports by � /2 at 5.2 GHz to supply the required 180° 

phase difference instead of a phase shifter to solve the problem of unequal 

amplitudes caused by the attenuation of the phase shifter [43]. The design 
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parameters are listed in Table 3.8. The new designed reconfigure power divider 

is shown in Figure 5.18.  

 

 

Figure 5.18. Reconfigurable power divider with 180° phase shift between output 

ports. 

 

The two transmitters are placed at equal distances from the receiver. The receiver 

is located between the two transmitting antennas, and it is separated by 2�  from 

each transmitter. The two transmitters are fed by the outputs of the unequal 

power divider, which supplies a 180° phase difference and an equal power signal 

to the output ports. Consequently, the signals from the two transmitters will cross 

equal distances to reach the receiving antenna and cancel each other. The 

occupied space by this prototype is four and a half wavelengths that equal 26 cm 

at a frequency of 5.2 GHz.  
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This method provides higher cancellation over a wider frequency band. The 

reason behind that is that the unequal power divider can be reconfigured to 

provide two signals similar in amplitude with a 180° phase difference over a wide 

frequency band. Therefore, high self-interference cancellation over a wideband 

frequency can be obtained by using this technique. After the introduction of a 

second transmitting antenna, the total signal at the receiver is the sum of the (V1) 

due to the first antenna and (aV1e-j� ) due to the second antenna, where (a) 

represents the signal attenuation and �  is the phase shift provided by the power 

divider. The reduction factor RF can be defined as the ratio of the received power 

with one transmitting antenna and that with two receiving antennas:  

 

2
/ ( )1 1 1

jRF V V aV e f-� �= +� �� �  
(5.1) 

 

2 2 21/ (1 cos ) sinRF a af f� �= + +� �� �  
(5.2) 

 

This factor approaches infinity for the ideal case (a=1 and � =180°), while the 

worst case value is 0.25 or -6 dB occurs when (a=1 and � =0).  

 

The reconfigurable power divider is fabricated on a Rogers RO4003C substrate 

and the monopole antennas fixed on a circular copper plate as shown in Figure 

5.19. The reflection coefficient of the receiver antenna and the reflection 

coefficient of the two transmitters are shown in Figure 5.20. All return losses are 

better than 10 dB across the 5.2 GHz band. Additionally, the values of the 

isolation between the receiving and transmitting antennas can be considered 
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equal, the reason behind that is that the three antennas are almost identical, and 

the distance is similar between the two transmitters and the receiver. The values 

of isolation between the receiver and the transmitter antennas are approximately 

20 dB at 5.2 GHz. These two values can be reduced by increasing the distance 

between the antennas, which leads to increase the cancellation performance. 

However, the size of the model will be larger.  

 

 

Figure 5.19. The fabricated self-interference cancellation system. 
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Figure 5.20. The monopols S-parameters. 

 

Figure 5.21 illustrates the far field radiation pattern of the model at 5.2 GHz. It 

can be seen that two nulls in the far field region are produced, due to the 180° 

phase shift between the two transmitters. While using the two transmitting 

antennas can offer good cancellation by placing a null in the direction of the 

receiving antenna, the two transmitting antennas obviously have a radiation 

pattern that is different from that of a single one. There is a deep null in the 

direction normal to the axis of the three antennas. Therefore, the coverage of this 

arrangement is different from that of a single monopole antenna. The frequency 

response of the proposed method is limited by that of the feeding network and 

the used antennas.  

 



 152 
 

 

Figure 5.21. Transmitters radiation pattern at 5.2 GHz for � =0° cutting plane. 

 

Figure 5.22 shows the cancellation performance over a wideband frequency, 

which is symbolized by S21. It is clear that the value of S21 is below -45 dB across 

the range from 5.18 to 5.36 GHz and below -35 dB across the range from 5.09 to 

5.46 GHz, while the minimum achieved S21 is 55.52 dB at 5.17 GHz.  
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Figure 5.22. The measured S11 and self-cancellation performance. 

 

5.5 Summary 

Four array configurations were presented in this chapter. The array antennas 

approximate structural symmetry about the plane passing through the set’s circuit 

board from the appropriate feeding network previously designed in chapter three. 

Each configuration proposed an application for the power dividers previously 

designed in chapter three that covered the 2.4 and 5.2 GHz WLAN bandwidths. 

The last section demonstrated the full duplex system of a two elements array 

supported by unequal power divider in which a self-cancellation better than 45 

dB was achieved. 
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·  Chapter 6 

Conclusions and Future Work 

 

6.1 Conclusions 

This work began by pointing out the different types of feeding networks related in 

principle to several antenna array applications. These types of feeding networks 

were presented over multiple and wide frequency spectrum bandwidths. The 

design of these networks were on uniplanar and multi-layered substrates having 

various material characteristics.  

 

Several antenna array applications were presented in chapter five that provided 

promising array systems for WLAN applications. An important concept for 

adopting unequal power dividers for the full-duplex systems were presented in 

chapter five with a supporting practical example. That could establish a solid 

ground for implementing a full-duplex MIMO antenna system. 

 

All aims and objective set out in chapter one for this work were achieved as shown 

below: 

 

1. The design procedure of a miniature one to four UWB power divider was 

presented in section 3.1.4, in the form of a multi-section device, analysed 

and fabricated for UWB (3.1 to 10.6 GHz) applications. Close agreement 

between simulation and measurement results validated the design 

procedure. The fabricated power divider was compared with other works 
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and found to have better performance and to be smaller size. Furthermore, 

a miniature multi-output power divider was presented and used as a feed 

network for a UWB antenna array application as presented in section 5.3. 

 

2. A novel five-way planar power divider was designed as an example of a 

general N-way planar Wilkinson power divider as shown in section 3.2. To 

overcome the isolation resistor crossover problem, when the number of 

output ports is greater than three, a third layer was introduced. To make 

the design and fabrication process easier, the microstrip feeding method 

was selected for the first time. The permittivity of the lower layer substrate 

was selected to be higher than the upper layer substrate, which made the 

quarter wave transformer physical length equal to the physical length of 

the half wavelength microstrip line interconnecting the isolation resistors. 

The proposed design reduced the need for cascading number of sections 

that reduced the conductor losses, thus enhanced the insertion loss. The 

practical measurements had good agreement with the simulation results 

that validated the design concept. For the wideband operation, very good 

isolation and insertion loss with very good amplitude balance that could 

propose the design as a good candidate for the industrial, scientific and 

medical radio band applications as shown in section 5.2. 

 

3. A novel reconfigurable Wilkinson power divider was presented in section 

3.3. The proposed power divider was capable to deliver equal and up to 8 

dB output ports power difference. The power ratio was almost linearly 

proportional with the applied reverse biasing voltage on the varactor diode 
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ranging from 1 to 10.4 volt. A good amplitude stability was achieved 

between the output ports, which was below ± 0.1 and ± 0.2 dB for the 

unequal and equal output ports power difference scenarios respectively. 

The measured performance agreed with the simulation and proposed it as 

a good candidate for 2.4 GHz WLAN applications. 

 

4. A simple full duplex system using symmetric antenna placement technique 

to cancel the self-interference signal was presented in section 5.4. The 

idea was based on placing two transmitting antennas at a similar distance 

far from the receiving one. The novel reconfigurable Wilkinson power 

divider that was presented in section 3.3 was used; however, one of the 

output ports was extended to provide a 180° phase shift between output 

ports. The model was designed to work on 2.45 GHz. The results showed 

that in perfect conditions, this technique provided more than 45 dB 

cancellation over a wider bandwidth.  

 

6.2 Future Work 

Market demands for miniature, compact and reconfigurable power dividers are 

growing so there is always a margin for improvement in feeding networks. This 

can be achieved by enhancing the performance of power dividers, reducing the 

size using proposed methods and achieving reconfigurability for higher 

frequencies and wider bands. The following points can be of interest for further 

research: 
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1. Power divider with a reconfigurable number of outputs can be designed. 

This can be archived by reconfiguring the impedance of the quarter wave 

transformers using a coupled line technique and a varactor diode similar 

to the technique presented in section 3.3. The coupled line should be 

tuned to get the required quarter wave transformer impedance, which 

depends on the number of output ports. Besides that, a multi-layer 

structure technique could be used that is similar to the novel power divider 

presented in section 3.2 to simplify the structure.  

 

2. Implementing a reconfigurable power divider with in-phase and out of 

phase reconfigurability feature. The short-ended coupled line quarter wave 

transformer used in section 3.3 technique could be used to achieve the 

180° phase shift between the output ports. Implementing a power divider 

with a quarter-wave transformer constructed from a coupled line and 

switching the short end to be open, which can provide a 180° phase shift 

between the two output ports.   

 

3. Implementing a full duplex system using an array of transmitter more than 

two antennas. The array could benefit from the technique of equal spacing 

between the receiver and the transmitter antennas as presented in this 

work and combining the unequal spacing technique. The feeding network 

might require a reconfigurable power divider in terms of power ratio and in 

phase and out of phase configuration. This structure could support the 

MIMO antenna configuration in full duplex mode.  
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4. The design principle of power dividers including the antenna array 

application could be extended to operate in the mmWave bandwidth that 

represents the new development of 5G mobile generation. The design 

concepts could be applied to the wafer substrates and integrated on multi-

level silicon layers.  
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