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Abstract— Internet of Things (IoT) platforms are responsible for 
overall data processing in the IoT Systems. This ranges from 
analytics and big data processing to gathering all sensor data over 
time to analyze and produce long-term trends. However, this 
comes with prohibitively high demand for resources such as 
memory, computing power and bandwidth, which the highly 
resource constrained IoT devices lack to send data to the platforms 
to achieve efficient operations. This results in poor availability and 
risk of data loss due to single point of failure should the cloud 
platforms suffer attacks. The integrity of the data can also be 
compromised by an insider, such as a malicious system 
administrator, without leaving traces of their actions. To address 
these issues, we propose a novel Edge-based Blockchain enabled 
anomaly detection technique to prevent insider attacks in IoT. The 
technique first employs the power of edge computing to reduce the 
latency and bandwidth requirements by taking processing closer 
to the IoT nodes, hence improving availability, and avoiding single 
point of failure. It then leverages some aspects of sequence-based 
anomaly detection, while integrating distributed edge with 
blockchain that offers smart contracts to perform detection and 
correction of abnormalities in incoming sensor data. Evaluation of 
our technique using real IoT system datasets showed that our 
technique achieved the intended purpose while ensuring integrity 
and availability of the data which is critical to the deployment of 
IoT systems. 

Keywords— Internet of Things (IoT) Security, Blockchain, 
Insider Threat, Edge Computing, Anomaly Detection 

I. INTRODUCTION 
The concept of Internet of Things (IoT) is that of a paradigm 

by which everyday objects and devices are fortified with 
embedded sensors, actuators and processors providing them the 
ability to connect to the Internet, transfer data and communicate 
seamlessly with each other and with different devices. Credited 
to the Auto-ID Research Centre of the Massachusetts Institute 
of Technology (MIT), the terminology “Internet of Things” was 
coined in 1999 but was officially confirmed at International 
Telecommunications Union (ITU)’s 2005 World Summit on the 
Information Society (WSIS) in Tunisia [1], [2], [3], [4], [5], [6]. 
The core objective is to permit “autonomous and secure 
communication” as well as exchange of data among 
heterogeneous devices, services, users and applications [7], [8], 
[9]. Since there is no universally adopted definition for it, the 
term Internet of Things (IoT) has been defined differently by 
several different authors. It has been defined by [10]: as “an 

interaction between the physical and digital worlds” facilitated 
by “a plethora of sensors and actuators”, as well as “a paradigm 
in which computing and networking capabilities are embedded 
in any kind of conceivable object.” Similarly, [11] reported it as 
“the development of item identifications, sensor technologies 
and the ability to interact with the environment.” Furthermore, 
[12] defined it as “ a highly interconnected network of 
heterogeneous entities such as tags, sensors, embedded devices, 
hand-held devices and back-end servers.” Whereas according to 
[13], it is considered as “ the latest Internet evolution that 
involves incorporating billions of inter-connected devices that 
communicate via the internet, harnessing their data and 
functionality to provide novel smart services and products that 
benefit the society.” Accordingly, we have defined IoT as a 
huge, global, distributed network of interlinked heterogeneous 
devices that are “uniquely addressable based on standard 
communication protocols, communicating and interacting with 
one another in real time.” [14], [1], [4], [3], [5]. 

There has been so much fascination for the IoT since its 
inception because it presents myriads of capabilities that are able 
to address the soaring demands of individuals, organizations and 
governments for improved automation, efficient processing as 
well as big data processing and analytics. Accordingly, a broad 
range of IoT applications are witnessed across many domains of 
our lives including manufacturing, mining, agriculture, Smart 
Homes, Smart Cities and Smart Healthcare among other sectors 
[]. That is further evidenced by the way IoT is becoming 
increasingly conspicuous in virtually all areas of endeavor; from 
personal to educational, business, governmental and military 
applications. As of today, there are enormous uses of IoT cutting 
across diverse domains, as has been highlighted in different 
research works including [15], [14], [16], [17], [1], [18], [10], 
[19], [4], [15], [14], [16], [17], [1], [18], [10], [19], [4], [3], [7], 
[20], [9], [21], [22], [23], [6]. Table 1 summarizes and 
categorizes these applications under various domains. This 
expansive application requires the IoT systems to manage and 
exchange very large amounts of information including public 
and private safety critical data, thereby eliciting varying degrees 
of physical and cyber security challenges on the systems[]. 

In consequence, the IoT system is confronted with a 
multitude of threats from different kinds of security attacks 
across its mainly three main distinct layers: Perception, Network 
and Application[ref?]. The attacks usually target all or some of 



the security triad of Confidentiality, Integrity and Availability 
(CIA) of the system[ref?]. Although the IoT shares many 
common features with conventional IT systems, some of its 
peculiarities like volume, environment and consequence make it 
more susceptible and thus more challenging to secure against the 
endlessly prevailing attacks, one of which is the insider attack. 
Threats from insiders can be seriously damaging and can cause 
immeasurable destruction and loss to governments and 
organizations using the IoT, because such attacks are perpetrated 
by persons authorized and trusted to legitimately access the 
system within its perimeter security. It has therefore become 
even more imperative to have mechanisms in place that will 
protect the often semi-supervised and unsupervised IoT systems 
from potentially harmful activities of malicious insiders[ref?]. 

TABLE I.  IOT APPLICATION AREAS AND EXAMPLES 

Domain Example Applications 
Health medical and healthcare, smart health, health monitoring, 

smart healthcare, healthcare, e-health, fitness tracking 
and health monitoring, nursing home patient monitoring 
system, medical applications, medical aids, mobile 
healthcare, elderly assistance, smart healthcare system 

Environment climate monitoring, wildlife tracking, environment 
monitoring, smart environment, prediction of natural 
disasters, environment protection 

City smart lighting, smart parking, pollution and flood 
monitoring, smart cities, smart transportation, public 
safety, cities management, intelligent parking 
management, smart traffic lights, smart water systems, 
emergency response, emergency services, crowd 
monitoring, traffic management, smart security and 
surveillance, mobile crowd sensing, smart infrastructure, 
urban management, infrastructure development 

Power 
(Energy) 

smart grids, smart metering and monitoring, power grid, 
energy management, energy conservation, intelligence 
energy management, power management 

Industry industrial internet, connected vehicles, smart vehicles, 
smart buildings, construction management, production 
and assembly line management, food supply chain, 
production control, physical distribution, supply chain 
and logistics, industrial automation, building 
management, infrastructure monitoring, office 
automation, automotive 

Personal & 
Other 

Smart homes, home life, home automation, social life 
and entertainment, in-door navigation for the blind and 
visually impaired people, personal and social life, 
agricultural control, military, defence, modern 
agriculture, enhanced learning, business services 

 

Unfortunately, there is an imbalance in the security 
literature, with less research has been done on the impact of 
malicious insiders to the IoT systems, as the great majority of 
the available literature focuses on other security challenges 
endangering the systems. This is evidenced in one of our 
published research works [24] as presented in Table II. The 
identified gaps have also motivated some of our further research 
in the area, including this work. 

In this paper, we examine the impacts of insider attacks on a 
real-life IoT system prototype to observe its effects on the 
system, particularly the sensing data generated from the 
application environment. The aim is to design and develop a 
technique using Blockchain and edge computing technologies 
that trigger and inspire extensive studies that focus attention and 
accord due priority to finding solutions to the problems of 

insider threats in IoT systems which do not currently receive the 
attention they deserve. This work presents as its contribution an 
edge computing-based blockchain empowered framework to 
detect and correct abnormal and potentially harmful input data 
from sensor readings in an IoT system before the data are being 
transmitted to the cloud platforms for analytics and storage. The 
framework leverages a form of sequence-based anomaly 
detection technique and employs Ethereum blockchain’s smart 
contracts to run algorithms on the edge. This set up allows  to 
handle the detection and correction on the chain from the 
incoming sensor data values that are fed into the IoT system. 
While the distributed edge provides the hardware resources for 
the smart contracts to execute, it also helps in reducing latency 
and bandwidth as well as energy requirements for the resource 
constrained IoT devices to upload data directly to cloud, hence 
improving the processing time and data availability. 

TABLE II.  SECURITY THREATS TO LAYERS OF THE IOT [24] 

IoT Layer Security Threats 
Perception Node capture, malicious code injection, false data 

injection, replay (freshness), cryptanalysis & side 
channels, eavesdropping & interference, physical attack, 
sleep deprivation, battery draining, node jamming, 
exhaustion, camouflage, hardware Trojan, node 
replication 

Network DoS, DDoS, spoofing, sinkhole, wormhole, man in the 
middle, replication/replay, amplification, routing 
information, Sybil, side channel, masquerade, flooding, 
selective forwarding, data modification, repudiation of 
sent/received messages, malicious packet injection, de-
synchronisation, 

Application Phishing, malicious worm/ virus (like Trojan), malicious 
scripts, selective message forwarding, data aggregation 
distortion, privacy breach, industrial espionage, 
unauthorised access, information disclosure, malware, 
Mirai botnet 

 

Our framework’s role is to preserve the integrity of the IoT 
system data thanks to the algorithms empowered by the 
immutability property of the blockchain which also possess 
certain fault-tolerance capabilities. The algorithms can screen 
incoming data entries using thresholds derived from the normal 
observations before processing and eventual storage in the 
cloud. The algorithms were implemented as blockchain contract 
in a Remix Development Environment[ref?]. We have presented 
and discussed our research findings in the remaining parts of this 
paper. Our proposed approach was evaluated using real dataset 
obtained from our real IoT system prototype as presented in this 
paper and demonstrated to achieve desired functions of adequate 
detection and correction as designed. 

MOTVATION AND CONTRIBUTION 
This work is motivated by the ever-increasing security 

threats to the IoT system, which ensue from its widespread 
applications. The main motivation however is the Insider 
Threats - how insiders occupy advantaged positions in the 
system, with which systems are further exposed and made 
increasingly susceptible to exploitation and attacks. The focus 
on anomaly detection is justified because the best approach 
towards effectively safeguarding any system lies in early 
detection and prevention of prevailing threats to, or attacks on 
the system[ref?]. 



Our main contributions in this work are: 
 
• We established the susceptibility of typical IoT systems 

to insider attacks by presenting a threat model that shows 
how the IoT systems are vulnerable to attacks from 
insiders and that such attacks can be successfully 
achieved without being noticed by the system, and also 
built a live system prototype to demonstrate the same. 

• We proposed and presented an edge-based blockchain 
enabled anomaly detection technique to address the 
problem, leveraging immutability of the blockchain and 
employing smart contracts to detect and fix abnormal 
entries based on sequence-based anomaly detection 
technique while ensuring integrity of the data 

• Our technique also harnesses the integration of 
blockchain with edge for IoT to address the issues of 
latency and bandwidth, as well as the likelihood of single 
point of failure when dealing with the cloud platforms 

• The proposed solution was evaluated using a real IoT 
system dataset and demonstrated to achieve accurate 
detection and correction on the blockchain while the 
integrity of the data is protected, which is vital for the 
overall success of the IoT. 

The remainder of the paper is organized as follows: Section 
II discusses related work while Section III models and 
experiments insider threats to IoT. Edge-based anomaly 
detection and our proposed Blockchain empowered solutions 
are presented in Sections IV and V. Section VI summarizes 
implementation and evaluation of our proposed solution, while 
Section VII concludes the paper. 

II. LITERATURE REVIEW 
In this section, we present a comprehensive review of 

literatures relevant to the topic from insider threats, underlying 
anomaly detection techniques for our proposed framework as 
well as related work. 

INSIDER THREATS 

With increased automation and reliance on technology 
comes increased vulnerability and greater exposure to risk, 
particularly when network connectivity is involved as is the case 
in modern information and IoT systems. 

Security risks can stem from different sources be it humans 
or non-humans like devices/machines; can origin internally or 
externaly; may occur deliberately or accidentally; and may be 
motivated by many factors including sabotage, data theft and 
destruction, fraud, hobby, spying, state sponsored crime and 
terrorism, political or military purposes, as well as espionage 
[25], [26], [27], [28]. 

Although there is no commonly adopted definition of 
insider/insider threat in the context of information security, 
some define it as “an insider is a human entity that has/had 
access to the information system of an organization and does not 
comply with the security policy of the organization” [29]. 
However, a malicious insider is a “current or former employee, 
contractor, or other business partner who has or had authorized 
access to an organization’s network, system, or data and 

intentionally exceeded or misused that access in a manner that 
negatively affected the confidentiality, integrity, or availability 
of the organization’s information or information systems.” [30], 
[27]. 

The insider threat problem has gained more prominence over 
time including the techniques to discover and tackle it. Among 
the works done to address the insider threat problem are 
numerous methods that have been proposed to particularly 
identify the conduct of potentially malicious insiders. For 
instance, [31] attempted to discover insider threats through the 
identification of abnormal behavior in enterprise social and 
online activity data of employees. They processed and extracted 
pertinent features that likely indicate the presence of insider 
threat behavior. However, their work focused more on insider 
threat activity with electronic footprints traceable to employees 
in the domain. It did not consider the IoT domain which is a 
more automated system with little human intervention and deals 
with real-time data; neither did the work take into account 
scenarios where no digital footprints are left. 

The work of [32] proposed a detection method for insider 
threats using log analysis and event correlation. They put 
forward a probabilistic method to demonstrate percentage rate 
of event occurrence from stored log of events. The technique 
used the stored log file as the main input into the event 
correlation system to provide percentage probability of 
malicious insider activity. This approach is also not suitable for 
the IoT domain which requires a mechanism to examine 
incoming data before being used by the system. 

Other research works include those by [33] and [34] which 
offered schemes defining models and frameworks to facilitate 
understanding of insider threats. Furthermore, researches such 
as [35] and [36] centered on prediction and prevention of the 
insider threat problem. Although some of the surveyed literature 
proposed ways to address the problem, none of these approaches 
however considered insider threat problems in the IoT domain 
and how they could be addressed. 

On the other hand, most researches on IoT security have for 
a long time focused predominantly on prevention of external 
attacks on the system, as evidenced by [15], [14], [16], [17], 
[22], [37], [6], [21], [23], [12], [38], and have done little on the 
threats coming from insiders. As of now, only a few studies have 
been conducted on the topic of insider threats in IoT, and these 
studies have not offered solutions to the problem as it affects the 
IoT system. For example, the authors of [39] sought within the 
paper to demonstrate and categorize insider threats in relation to 
the IoT, showcasing attack vectors for their characterization. 
Their paper proposed a set of “rigorous modelling techniques” 
to provide a better grasp of IoT-enabled insider threat scenarios 
and related architectures. They applied a method of formal 
modelling of insider threats in the interactive theorem prover 
Isabelle to formalize various IoT scenarios. The output of the 
paper is a technique to characterize malicious and accidental 
insider threats to IoT systems through attack vectors, adding 
exactness to a provisional taxonomy through the use of a logic-
based insider threat model in Isabelle. 

The research carried out in [40] sought out to identify top 
security threats as well as evaluate existing countermeasures 
used to combat the threats, along with their possible applications 



in IoT and multi-cloud e-Healthcare environments. They 
identified among many other security threats that, insider attacks 
could threaten the CIA security triad, and that it poses the most 
important risk to healthcare organizations. After conducting a  
systematic literature review, the authors concluded that; IoT 
based multi-cloud e-Healthcare organizations are vulnerable to 
malicious insiders among other threats that affect the CIA triad, 
and that malicious insider threats should be countered to ensure 
privacy and reliability of patients’ health information using 
strengths of the existing security techniques and addressing the 
flaws. 

Furthermore, [41] aimed to explore the extent to which IoT 
may aggravate the insider threat problem for organizations and 
complicate detection approaches. Therefore, they approached 
IoT security and privacy from an alternate viewpoint by 
considering the impact IoT may have on the insider threat 
problem. The focus of their research was on personal devices 
which insiders take with them and use in their offices. Although 
the authors stressed the importance of understanding the risks 
emanating from insiders in IoT environments, regrettably, only 
little detailed analysis of the risk has been conducted. They 
elaborated on attacks arising from personal IoT devices, 
reckoning the scope of insider attacks on consumer IoT devices 
and critical infrastructure. The research concluded that the 
security concerns in IoT are largely being assessed for external 
attacks only, and that current insider threat detection approaches 
be extended to accommodate IoT devices. 

Also, the authors of [42], an extension of the work conducted 
in [39], considered the limits of formal modelling of 
infrastructures and the application of social explanation in 
analyzing insider threats to security and safety critical areas. 
They used the aviation sector as a case study following an 
insider attack incident which involved and led to the crash of a 
Germanwings flight in 2015. They studied and modelled in 
Isabelle the security policies and controls within passenger 
airplanes against insider threats, in order to show that the 
framework could be applied. 

As may have been observed, most of the reviewed works and 
other similar research have either not considered insider threat 
in IoT systems or have neglected to proffer solutions to the 
problem. The few studies that have discussed insider threat in 
IoT mainly focused on providing techniques to facilitate 
understanding of the problem through formal modelling, 
reviewing the vulnerability of IoT to insider threats, or 
investigating the degree to which the IoT may worsen the insider 
threat problem and make detection difficult. That is, all the 
related literature has left a wide gap in terms of providing 
solutions to the insider threat in IoT taking into cognizance its 
distinct characteristics. The work we present in this paper tries 
to address this gap and ensure integrity of the IoT data, which is 
key to an efficient system. 

ANOMALY DETECTION 

Anomalies are said to be patterns in data that are not in 
conformity to well-defined features of normal patterns of the 
data. An anomaly has been defined as “an observation which 
deviates so much from other observations as to arouse 
suspicions that it was generated by a different mechanism” [43]. 
Caused by a diversity of unusual activities ranging from insider 

attacks, credit card fraud and many other forms of cyber-attacks, 
anomalies are adjudged crucial because they point out atypical 
events and can trigger critical actions in extensive application 
areas. 

Anomaly detection on the other hand is also related to 
discovering entries in a set of data which seem to be inconsistent 
with the rest of the data in that dataset [43]. It is a vital data 
analysis task that functions to identify such occurrences of data 
that do not comply with the data model; that is, it detects 
anomalous data from a specific dataset [44], [45]. As a better 
technique of the broad and dominant categories of intrusion 
detection, anomaly detection has to do with creating a normal 
behavior profile of an entity, called the “norm profile”, against 
which observed behaviors of the entity are compared [46]. An 
entity could be a user, file, program, any parameter, host 
machine, etc. Anomalies are communicated by the system via 
an alarm, for instance, whenever observed entries/behaviors 
deviate from the norm profile of the entity under consideration. 
The original purpose of anomaly detection is to remove data 
entries known as outliers from a dataset, as that can adversely 
affect statistical analyses and automated decision making. As 
such, it is often seen to be made up of two stages; the training 
stage during which the norm profile is defined, and the testing 
stage during which the learned profile is used on the incoming 
data to find outliers. 

Different classifications of anomaly detection techniques 
have been presented in previous literatures. According to [47], 
three major classes of anomaly detection are statistical-based, 
knowledge-based and machine learning-based, with each 
category having sub classes. While [48] also maintained these 
three major categories, they introduced a data mining-based 
class instead of the knowledge-based class. A more detailed 
classification can be found in the work of [49], in which the 
authors surveyed anomaly detection for discrete sequences and 
categorized it into three broad categories: sequence-based 
anomaly detection, which functions to detect atypical sequences 
from a database of test sequences; contiguous subsequence-
based anomaly detection, which works to discover unusual 
contiguous subsequences within a long sequence; and pattern 
frequency-based anomaly detection to uncover patterns in a test 
sequence having abnormal rate of occurrence. 

The focus of our work is not to review or discuss literature 
about anomaly detection, but rather to employ some of its 
concepts alongside other approaches in providing solutions to 
the identified problem in this paper. We employ the sequence-
based anomaly detection[ref?] due to its applicability and 
relevance to the nature of IoT systems. <<In a sentence here: 
what does sequence-based anomaly detection mean.>>Anomaly 
detection for discrete sequences can be applied to different IoT 
application areas, including, but not limited to, critical 
infrastructure monitoring and protection, smart meters, smart 
health monitoring, smart cities, smart transportation and parking 
systems, smart logistics, smart retail and manufacturing as well 
as smart homes or smart agriculture, where sequences of sensor 
generated data are collected in every instance of the systems 
operations. Anomalies in those datasets represent cases of 
operational flaws or defects in the systems or its data which may 
be caused by accidents or malicious attacks. The attacks are 
often launched against automated systems like IoT to deceitfully 



trigger an unintended action, such as activating a sprinkler in a 
laboratory or office building to damage machines or documents, 
shutting down a plant to minimize expected danger, diverting 
supply from critical equipment or launching attacks on wrong 
targets. 

Two forms of sequence-based anomaly detection are semi-
supervised and unsupervised anomaly detection. In semi-
supervised anomaly detection, a normal reference dataset, or the 
training dataset which presumably contains only normal 
sequences, is initially generated. Other sequences generated 
from system operations, or the test sequences, are tested against 
the normal to detect anomalous entries. In unsupervised 
anomaly detection, the goal is to find abnormal sequences 
among an “unlabeled database” of sequences. Unlike the semi-
supervised form, normal sequences are not generated but an 
anomaly value is assigned to each entry based on standard 
industry operations, against which the sequences are checked for 
anomaly. 

The variants of sequence-based anomaly detection have sub-
types, but that is outside the scope of this research. Therefore, 
we present formulations of the two techniques highlighted 
above. 

Definition 1. The semi-supervised form is formulated 
below. In general application of outlier detection for semi-
supervised scenario, only the training dataset for the normal 
sequences are supplied [50]. Hence: 

Given a set of finite (p) sequences representing normal 
sensor readings from an operational IoT system, denoted by 
𝑆! 	= 	 $𝑠!", 𝑠!#, 𝑠!$, … , 𝑠!%} , and another set of finite (q) 
sequences for a dataset from sensor readings to be tested, 
denoted by 𝑆& 	= 	 $𝑠&", 𝑠&#, 𝑠&$, … , 𝑠&'} . Assign an anomaly 
value to the sequences in 𝑆&  with reference to the normal 
training sequences in 𝑆!. 

Here, the anomaly score can be a discrete or point value, a 
range, an expression, or the result of evaluating an expression 
from the normal sequences, depending on the specific nature of 
the problem being formulated or assumptions of the model being 
employed [50]. It is also important to note that p and q must not 
have equal lengths. 

Definition 2. The unsupervised form is formulated thus: 
Given a set of finite (p) sequences representing  a dataset 

generated by sensor readings from a functional IoT system, 
which can be denoted as 𝑆! 	= 	 $𝑠!", 𝑠!#, 𝑠!$, … , 𝑠!%}. Assign 
an anomaly score to every entry in the set 𝑆! in relation to the 
rest of the sequences in 𝑆!. 

The anomaly score here may be an industry standard value 
from observed efficient operations[ref?]. 

The outliers being looked out for in typical data mining and 
machine learning are often frequency of (event) occurrence, 
standard deviation, density functions and so on among many 
outlier analysis/detection techniques, depending on specific 
requirements of the application domain. For sample applications 
of outlier detection in discovering measurement errors, such as 
in data obtained from sensors in a scientific experiment like IoT, 
abnormal values indicate errors, of which removal is vital in data 

mining and analysis tasks [50] and even more crucial in critical 
infrastructure domains. As such, among the common outlier 
detection techniques is the Z-Score or Extreme Value Analysis, 
which indicates the degree of deviation of a data entry from the 
sample’s mean. Others include Linear Regression and 
Information Theory Models, Proximity Based Models, 
Probabilistic and Statistical Modeling, etc. 

The problem we present in this paper is semi-supervised, so 
Definition 1 is for use as part of the solution we propose in this 
work. The anomaly score λ is a range of the maximum entries of 
𝑆!  (𝑚𝑎𝑥𝑆! ) and the minimum entries of 𝑆!  (𝑚𝑖𝑛𝑆! ), as 
represented in the notations below: 

𝑆! 	= 	 $𝑠!", 𝑠!#, 𝑠!$, … , 𝑠!%} 
𝑚𝑎𝑥𝑆! = 𝑚𝑎𝑥$𝑠!", 𝑠!#, 𝑠!$, … , 𝑠!%} 
∴ 	𝑚𝑎𝑥{𝑠!( ∶ 	𝑘 = 1,… , 𝑝} 

Accordingly, 

𝑚𝑖𝑛𝑆! = 𝑚𝑖𝑛$𝑠!", 𝑠!#, 𝑠!$, … , 𝑠!%} 
∴ 	𝑚𝑖𝑛{𝑠!( ∶ 	𝑘 = 1,… , 𝑝} 
λ	 ≔ 	𝑚𝑎𝑥{𝑠!( ∶ 	𝑘 = 1,… , 𝑝} ∶ 	𝑚𝑖𝑛{𝑠!( ∶ 	𝑘 = 1,… , 𝑝} 
∴ 	𝑚𝑖𝑛{𝑠!( ∶ 	𝑘 = 1,… , 𝑝} 	≥ 	λ	 ≤ 	𝑚𝑎𝑥{𝑠!( ∶ 	𝑘 = 1,… , 𝑝} 

 

APPROACHES USING BLOCKCHAIN AND EDGE 
COMPUTING  

The focus of the work presented by [51] is on how decision 
making involving big data processing could be made optimal at 
edge-cloud environments. Although their research is from the 
viewpoint of a Software Defined Network, the authors proposed 
a “workload slicing scheme” facilitated by multiple edge 
devices, to handle what they called “data-intensive jobs” 
through priority-based segmentation of the input data in a cloud 
environment. Their proposed scheme was more to do with 
optimal resource utilization such as CPU, memory and storage 
and they argued in conclusion that it minimizes energy 
consumption of the total multi-edge cloud environment. 

Additionally, the study conducted by [52] proposed the 
deployment of edge data centers in smart cities for service 
provisioning in vehicular environments enabled by software 
defined networks. They argued that their scheme would offer an 
optimal data flow path, improve resource allocation and 
utilization, as well as minimize energy consumption. Similarly, 
the research presented by [53] attempted to integrate cloud and 
edge computing with Software Defined Networks to provide a 
framework for edge-cloud interplay, expected to enhance secure 
healthcare ecosystems. 

The proposed approach provided in the research published 
in [54] is a blockchain based edge-as-a-service framework for 
secure energy trading in a software defined networking-enabled 
vehicle-to-grid environment. Although the authors opined that 
processing of energy trading are taken closer to the electronic 
vehicles nodes thanks to edge computing and that blockchain is 
employed to secure the energy trading transactions across nodes, 
they did not make clear in the paper how their research would 
achieve that. Whilst the work was not clear on the kind of 
blockchain proposed and only explained generic blockchain 



operation, the depicted blockchain process for energy trading 
did not clearly represent the proposed process. 

The subject of the work in [55] is blockchain-based secure 
demand response management in smart grid systems. The 
scheme, as argued by the authors, can take secure energy trading 
decisions needed to manage overall energy loads for different 
sectors. They proposed a blockchain miner node selection 
scheme based on nodes’ power consumption and processing 
power and presented an algorithm to achieve the selection. 
However, the work fell short of providing any security 
mechanism, not even the authentication and authorization being 
claimed by the authors. Rather, the authors relied on the generic 
operation of a blockchain with no clarity of how it can be used 
to achieve secure demand response management, as suggested 
by the paper title. 

In addition to this, the authors of [56] proposed a blockchain-
based energy trading scheme, “FeneChain”, to handle energy 
trading processes in Industrial IoT with the aim of providing a 
secure energy trading system and enhancing energy quality. 
Although the work claimed secure energy trading, it mainly 
seems more of privacy preservation using anonymity and 
transparency for users. Access control was however 
incorporated, albeit not clarified where it occurs in the presented 
system model. 

Furthermore, the research work presented in [57] aimed to 
preserve confidentiality of IoT system by proposing a 
blockchain-enabled distributed security framework that 
integrates edge-cloud and Software Defined Networking (SDN). 
The authors proposed a security attack detection algorithm, 
which they implemented at the cloud layer, claiming that it will 
reduce attacks at the edge, while the SDN provides dynamic, 
adaptive, and remote network traffic data flow services. 

BLOCKCHAIN-IoT INTEGRATION 

In their work presented in [58], the authors identified the 
need for data provenance and data integrity, which are 
considered the major concerns in several IoT application areas. 
They identified vulnerabilities in conventional IoT architecture 
which exposes it to attacks and proposed what they termed “The 
BlockPro network model” that is based on Physical Unclonable 
Functions (PUFs) and blockchain. Although they made it as an 
architecture, the model does not show either of cloud or fog, but 
IoT devices, smart contracts, blockchain and databases. As their 
contributions they presented algorithms to “enforce data 
provenance and data integrity” in the IoT. 

Similar to [58], where to host the blockchain in IoT settings 
was the subject of the work carried out by [59]. They discussed 
hosting the blockchain as a service for IoT, comparing cloud and 
fog as possible candidates. They held that both cloud and fog are 
suitable and, after running experiments, established that fog 
outperforms the cloud if latency is the factor for consideration. 

The use of blockchain for the IoT was surveyed by [60]. In 
their work, they attempted to explore ways in which blockchain 
features can be adapted to IoT so as to address those 
requirements such as seamless authentication, data privacy, 
robustness and ease of deployment. They discussed what they 
called Blockchain-based IoT (BIoT) applications, stressing the 
possible impact blockchain can have on conventional cloud-

centered IoT applications. They also presented challenges and 
how possible optimizations can be made, rounding up with 
recommendations. 

Additionally, the work of [61] proposed what they called a 
“novel blockchain-based distributed cloud architecture with a 
Software Defined Networking (SDN) to enable controller fog 
nodes at the edge of the network.” They claimed that their 
model, which is a distributed cloud architecture that leverages 
blockchain technology, will address many IoT challenges that 
include availability, scalability, security, low latency, etc. they 
presented am architectural model called “distributed blockchain 
cloud architecture.” However, the model replicated blockchain 
at both the cloud and fog, with no interoperability between the 
fog nodes. In the end, they presented experimental results of 
their work. 

Furthermore, in [62], the authors proposed to design a fog 
computing system based on blockchain in order to avoid single 
point of failure due the centralization feature of the cloud. They 
also claimed that it can prevent IP spoofing and Sybil attack. 
They discussed features of both blockchain and fog computing, 
then made algorithms to; share transaction between fogs, control 
fog connected devices during downtime of one of the fog nodes, 
and recover the downed fog node. This shows that the fog nodes 
do not integrate with the blockchain. Rather, they interoperate 
independent of the blockchains. 

The authors of [63] utilize consortium blockchain and smart 
contract technologies to ensure that data sharing is done only 
with authorization in order to achieve “secure data storing and 
sharing in vehicular edge networks. They also proposed a 
“reputation based” scheme to guarantee high-quality data 
sharing among vehicles. In the end, they performed analysis to 
show that their system provided secure data sharing and storage. 

Applying a blockchain based solution to build “an open, 
trusted, decentralized and tamper-proof system” for Long Range 
Wide Area Network (LoRaWAN), thereby addressing the trust 
issues between it and Narrow Band IoT, is the work proposed 
by Using Blockchain Technology to Build [64]. They believe 
themselves to be the first to attempt integration of blockchain 
technology with LoRaWAN IoT. They discussed LoRaWAN 
architecture and blockchain technology, then proposed a 
blockchain architecture for LoRaWAN in which the blockchain 
system is incorporated in the network server layer of the 
LoRaWAN, having the servers as participants. In the end, they 
believed that their work provides an indisputable mechanism to 
verify the existence of a transactional data at some time in the 
network. 

Adding on to this, in the paper published by [65], the authors 
proposed the design of a blockchain connected gateway to 
“adaptively and securely maintain” privacy preferences of users 
for IoT devices in the blockchain. They depicted a scenario 
where the IoT gateway connects to the blockchain network as 
one of its nodes, enabling it to block privacy leakages and 
protect users’ data from unauthorized access. They also 
proposed a digital signature scheme to provide authentication 
and secure management of privacy preferences. Blockchain 
network was adopted as the underlying architecture to process 
and maintain data and resolve privacy disputes. 



Contrastingly, the work of [66] attempted to use blockchain 
to mitigate DDoS attacks on IoT devices. They identified the 
constrained nature of IoT devices which makes them susceptible 
to cyberattacks including DDoS, and proposed the integration of 
IoT devices with blockchain in order to address it. They first 
considered the conventional architecture of the IoT, then 
proposed an IoT –Blockchain system model to represent their 
assumptions and threat model. In the end, they proposed 
algorithms to validate devices and instantiate IoT devices and 
blockchain miners. The purpose of the validation is to block 
rogue devices, and static resource limit is allocated to each 
device to help protect against DDoS attack, since the limit 
cannot be exceeded. 

Moreover, in their work, [67] proposed a model for the 
security of IoT using blockchain after making a note for the 
security concerns in IoT and the insufficiency of existing 
security mechanisms to fully protect the system. They first 
discussed an overview of the blockchain technology and its 
implementation, then discussed blockchain based IoT and 
presented a blockchain network for IoT. Finally, they leverage 
on that to propose blockchain secured IoT devices. 

A work in progress [68] seeks to create a proof of concept 
that makes low-power, resource-constrained IoT devices able to 
access a blockchain-based infrastructure that has the ability to 
meet the security and scalability needs of the ever-increasing 
IoT devices. To realize that, the authors configured an IoT 
gateway as a node of the blockchain and then proposed a 
messaging mechanism for low-power IoT end devices. 

Further research conducted in [69] looks at the challenges of 
IoT with respect to security and scalability, including their 
weakness in resources and vulnerability to attacks. The authors 
also realize the capabilities of edge computing and the prospects 
offered by blockchain and smart contracts. To address such 
challenges, the authors designed and implemented and edge-IoT 
prototype based on blockchain and smart contracts, which they 
called “EdgeChain”. Implementation and evaluation of the 
EdgeChain prototype shows that, in addition to security 
provisioning, the cost of integrating it with blockchain and smart 
contracts is reasonable. According to the authors, EdgeChain is 
the first of its kind to incorporate blockchain in edge computing 
to provide resources to various IoT applications and regulate 
behavior of devices without overloading them with security-
related burdens. 

Furthermore, in [70], the authors looked at the prospects 
offered by smart contracts and blockchain to decentralize 
cloud/fog solutions, lowering costs and enforcing predictable 
results without the need for any intermediary. They considered 
three projects that rely on blockchain for analysis and 
comparison, although information about the solutions adopted 
by the projects are scanty and hard to find. Their resultant 
findings described the architecture and implementation choices 
of the three decentralized cloud systems. In addition, they 
compared them and stressed the need for standardization of 
several features. 

As researchers continue to apply blockchain in the Internet 
of Things, [71] analyzed their vision of a smart city and 
identified the demands of availability and immutability of 
environmental data, as well as the problems of data storage and 

management by the sensors. In order to address the challenges, 
they identified the use of blockchain as a possible candidate. 
Consequently, they proposed a blockchain based system, 
CitySense, which encourages human involvement in 
constructively monitoring environment quality to promote 
greater awareness of city health. 

In another paper,  [72] identified the importance of time 
synchronization among deployed IoT devices and the challenge 
to guarantee accuracy and consistency of time synchronization. 
To address the problem therefore, they propose a blockchain-
based scheme to guarantee IoT security during time 
synchronization. The scheme uses the consortium blockchain 
representing an open but limited network environment, where 
the consensus process is processed by some preselected nodes 
that resist a number of attacks from outsiders and insiders. They 
presented algorithms of their scheme and produced analysis 
results. In the conclusion, they claimed their scheme can adapt 
to the changes of network topology and that time 
synchronization can be implemented efficiently by employing 
Practical Byzantine Fault Tolerance. 

III. MODELING IOT INSIDER THREATS 
Threats from insiders have been posing serious problems to 
information systems and IoT systems alike. They are one of the 
most difficult to prevent security threats as they have the ability 
to affect any system regardless of its level of security. Insider 
threats are mostly a deliberate, calculated and malicious breach 
of the system and its security, often carried out by persons with 
legitimate access who are usually authorized and trusted within 
the organization’s basic and perimeter security [25], [73], [29],  
[30], [74], [75], [76]. The impact of this could lead to significant 
harm or loss to the Confidentiality, Integrity or Availability 
(CIA) of the affected organizational system and its data [26], 
[75]. Consequently, no IoT system has guaranteed security from 
attacks by insiders. Various threat models are in existence 
where, when accomplished by insiders, can have negative 
influence on the system. Some examples different possible 
threat models can be found in one of our studies [77] related to 
the topic. Consequently, it is important to investigate the likely 
impacts of those and many other threat models on the IoT 
systems in order to ascertain the degree of risk they pose with a 
view to designing appropriate countermeasures to tackle them. 

In this paper, we consider a scenario of malicious insiders 
attempting to compromise an IoT system with full security 
implementation. It is a hard venture with tamper proof and 
tamper evident sensor nodes that authenticate to the network and 
transmit cryptographically encrypted data via secure 
communication channels to the IoT cloud infrastructure used by 
the applications. Nonetheless, this does not guarantee the 
system’s protection against malicious insider attacks, as we 
demonstrate in this paper. As a way of compromising and 
bypassing the security of the system components, the malicious 
insiders can resort to tampering with the environment from 
which devices sense data and send it across to the system. The 
sensing devices correctly measure the tampered environment 
data and transmit it securely over the network to the cloud 
platform for processing, analytics and further use by the 
applications. On receiving the data, however, the IoT 
applications may trigger erroneous functions, give wrong  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Insider Attack Model on Secure IoT System 

 

feedback commands or provide incorrect services which may be 
able to cause significant harm and affect the general 
effectiveness of the IoT system and applications. 

We represent in Fig. 1 a successful insider attack scenario on 
a relatively secure IoT system without compromising security of 
the component devices. The red pointed arrows in the diagram 
represent the flow of incorrect data resulting from the 
compromised environment, where the malicious insiders made 
sensors to read and transmit such to the platform. With 
legitimate access to the system, tampering is easy for insiders as 
previously explained. A flowchart for the modelled scenario is 
also presented in Fig. 2. 

Through the whole attack process, the system is tricked into 
assuming that it measured accurate data from the environment, 
and so transmitted it securely and carried out appropriate 
operations and functions as per predefined rule sets. That is, the 
security mechanisms on the system can function effectively but 
are unable to prevent insider attacks, because that is not 
incorporated into the design and implementation of the system’s 
security architecture. 

EXPERIMENTAL TOOLS AND PROCEDURE  

To illustrate how the model presented in Fig. 1 works, we 
performed an experiment to investigate the effect of insider 
attacks on an IoT system. 

A. Hardware Specifications 
For the experiment, we obtained a Laptop PC running 

Windows 10 Home 64-bit Operating System with Installed 
memory (RAM) of 8.00 GB, 500 GB Hard Disk Drive and 
Processor details: Intel(R) Core(TM) i5-3230M CPU @ 
2.60GHz. We also obtained Marvin, an IoT developer board 

built to work and securely connect with LoRaWAN on any 
Universal Serial Bus (USB) port.  The Marvin is distributed with 
Arduino Leonardo bootloader and is programmed using 
Arduino software to read and send sensor data over LoRaWAN, 
routing it through the required platform. Then, we set up a 
functioning LoRa-based IoT System prototype with sensors, by 
programming and configuring the device in Arduino to join and 
send data over a LoRaWAN gateway on The Things Network.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Fig. 2. Insider Attack Modelling Flowchart 

 

 



The device joined the network and was successfully activated 
using over the air activation (OTAA) to send collected sensor 
data to the network. That was achieved by connecting the device 
to a laptop Personal Computer (PC) for device configuration, 
programming, and data logging. 

B. Software Specifications 
The main software used in the experiment is Arduino 

Integrated Development Environment (IDE), version 1.8.8 
Windows Installer for Windows. However, since the Arduino 
serial monitor is not able to store or log sensor readings, we 
therefore used a third party application known as Cool Term for 
that purpose; since it has the ability to save both absolute or 
relative sensor readings along with timestamps and in different 
file formats. 

C. Experimental Set Up 
At first, we installed the latest version of Arduino IDE for our 
Operating System to program the device. We then configured 
the device to join and send data over a LoRaWAN gateway on 
The Things Network. To achieve that, we created an application 
in the Things Network console and registered our device. These 
processes provided us all the needed security credentials and 
activation parameters to establish secure connection to the 
network. The generated credentials were used to configure our 
Marvin device in the Arduino IDE to interact with the network 
and send data. We then connected our developer board to the PC 
with a Grove Temperature Sensor as shown in Fig. 3 and 
completed the configuration. Our study published in [78] 
provides more detailed information about IoT system settings 
and configuration. 
 

Fig. 3. Setting IoT Device Parameters to join LoRaWAN 
 

EXPERIMENTS AND RESULTS 

For the insider attack experimentation, we first checked the 
state of the IoT prototype we have set up. The system worked 
very well, reading and securely sending data to the platform for 
analytics. It is a relatively secure system because the component 
elements involved implement their own levels of security which 
make it difficult to breach. Nevertheless, beyond the security of 
components, persons with legitimate access to the system pose 

huge threats and the system is at risk if such persons have 
malicious intent to compromise it for financial gain or any other 
motive. Therefore, we set up six different experiments in two 
locations; three each at indoors and outdoors, and recorded the 
actual data in each case, as highlighted below. For both 
locations, we considered and executed a threat model where an 
insider tampers not with the sensing devices or the network 
because they are tamper proof and encrypted respectively, but 
with the physical surrounding about which the sensors read and 
send data. As such, the sensor and the entire system work 
effectively, unhindered. Despite this, the integrity of the data 
captured and sent over the network to the platform has been 
compromised by malicious insiders who succeeded in altering 
the properties around the perception devices. 

For the specific attacks, we isolated the sensing device to 
create a favorable attack environment to achieve a compromise. 
We then injected low temperature into it for a considerable 
amount of time, captured and logged the data. We did the same 
by injecting high temperature into the isolated environment for 
about the same time and recorded the data. Fig. 4 and Fig. 5 
respectively show the results of performing the described 
processes in both indoor and outdoor settings. It can be seen 
from Fig. 4 that while the normal temperature is almost uniform, 
fluctuating between 18 and 23 degree Celsius, the recorded 
successful cold and heat attacks by insiders on the system 
fluctuate rather abnormally with obvious effects. The injected 
heat can be seen to make the system record as high as 52 degree 
Celsius while the cold temperature attack by malicious insiders 
has made the system record as low as -4 degree Celsius. 
Similarly, results of Fig. 5 show an actual outdoor temperature 
value of between 15 and 21 degree Celsius while insider cold 
and heat attacks recorded peak values of -6 and 51 respectively. 

 

Fig. 4. Experiment Results - Outdoor 

Measuring the temperature in itself is not the main aim of 
this experiment, the purpose is rather to investigate and show the 
vulnerability of IoT systems to insider attacks and how the 
attacks can be performed successfully on an IoT system for 
which temperature is a vital property. The experiment is 
therefore relevant and useful for many application domains of 
IoT such as industrial temperature monitoring, critical  
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Fig. 5. Insider Attack Experiment Results - Indoor 

infrastructure monitoring such as smart grid or power systems, 
fire-fighting systems, and so on. The experiment is therefore 
relevant and useful for many application domains of IoT such as 
industrial temperature monitoring, critical infrastructure 
monitoring such as smart grid or power systems, fire-fighting 
systems, and so on. These and many other domains exist where 
the demonstrated attacks could cause significant damage. It may 
have been observed from the results that the system responded 
adequately to the anomalies due to attacks on its environment, 
read and sent compromised data over the network for analytics 
and processing without taking any clue as to the authenticity or 
integrity of such data. 

Consequently, it has become imperative to trigger more 
research and focus attention on insider attacks and ensuing  

anomaly with data in the area so that appropriate solutions can 
be provided to ensure more secure and efficient IoT systems. 
Hence, we have presented our solution in the section that 
follows.  

EDGE-BASED ANOMALY DETECTION 

We have established through research and experimentation 
in the previous sections that insider threats pose huge risks to 
IoT systems. The threats are also of great concerns because they 
penetrate through normal system and component devices’ 
security. To address the problem, we therefore designed and 
implemented an anomaly detection framework that runs at the 
edge level to detect and prevent the system from the negative 
effects of insider threats by ensuring integrity and correctness of 
sensor generated data that go into the system. Our framework, 
as depicted in Fig. 6, is based on the three-layered IoT 
architecture we have used to model insider attacks on IoT 
systems. The main function of the framework takes place at the 
edge and it can be seen from the figure that all the edge nodes 
are part of the anomaly detection and correction stage. Within 
the framework, the anomaly detection stage is at the edge, 
between the sensing layer and the cloud platform. In essence, its 
focus is to function such that, whenever data is being sensed 
from the environment and transmitted into the IoT system, it 
goes through the edge nodes first. Each of these edge nodes run 
anomaly detection and correction algorithms we have developed 
to assess the incoming data against known normal values for any 
abnormality, log any found abnormality into the Anomalous 
Data Log, then correct the abnormality using generated normal 
data benchmarks before processing at the edge or transmission 
to the cloud for big data processing, analytics and storage. 

The functionality deployed and executed on the edge nodes 
is facilitated by a series of three algorithms that collectively 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6. Edge-Based Anomaly Detection Framework for Internet of Things 
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produced an effective anomaly detection and correction 
mechanism that also keeps records of all anomalous data for 
later analysis and provenance. At first, Algorithm 1 analyses the 
intervals in incoming sensor data values and screens it against 
the normal, to observe any deviations from the standard values 
being read by sensors under normal operating conditions. That 
is an important step towards detecting abnormality in the system 
data so that it can be promptly addressed. On the other hand, 
Algorithm 2 extends beyond just the intervals of sensor data 
values to introduce minimum and maximum functions for the 
array of normal values. It operates such that if the intervals 
between two successive elements of the array of incoming 
sensor data values is greater than the maximum interval of any 
two successive elements in the whole array of normal data 
values, then the value greater than normal maximum is pushed 
into the Anomalous Data Log and reassigned to the normal 
maximum value already obtained. Similarly, if the intervals 
between two successive elements of the array of incoming 
sensor data values is less than the minimum interval of any two 
successive elements in the entire array of normal data values, 
then the value less than the normal minimum is pushed into the 
Anomalous Data Log and reassigned to the normal minimum 
value already obtained. Similarly, if the intervals between two 
successive elements of the array of incoming sensor data values 
is less than the minimum interval of any two successive 
elements in the entire array of normal data values, then the value 
less than the normal minimum is pushed into the Anomalous 
Data Log and reassigned to the normal minimum value already 
obtained. 

 

Algorithm 1: Analysing Sensor Data for Anomaly 

Algorithm 3 is a hybrid that combines Algorithms 1 and 2 
and refines it further by introducing benchmarks, which are 
values obtained based on standard operating procedures of 
specific application domains. The essence of the benchmarking 
is to ensure that no suspicious data value above the upper 
benchmark or below the lower benchmark of the standard 
normal data values goes through the system. That is, any data 
value outside of the industry standard normal range is flagged as 
potentially harmful and sent to the Anomalous Data Log, then 
reassigned to the upper or lower benchmark value based on the 
screening outcome. For implementation and evaluation 
purposes, the upper and lower benchmark values can be set  

Algorithm 2: Fixing Anomalies Based on Normal Training Data 
according to known industry standards respectively or to the 
results of evaluating an expression formulated for the problem. 
Therefore, any data values outside of the range will be blocked 
and logged, then reassigned to either the industry standards or 
evaluated expressions. Hence, all incoming sensor data values 
are first screened and checked against the standard benchmarks. 
If a value goes higher than the upper benchmark, then the higher 
value is sent to the Anomalous Data Log and the upper 
benchmark value is assigned to replace it. Else if a value falls 
below the lower benchmark, then the lower value is pushed and 
stored in the Anomalous Data Log and the lower benchmark 
value is reassigned to it. Thereafter, the algorithm continues 
executing to analyze the intervals of incoming sensor data for 
anomalies and then correct any of such anomalies as presented 
by Algorithms 1 and 2. 

The control measures provided in the algorithms have been 
implemented and tested and are found to work effectively and 
produce desired outcome. These raise growing concerns for 
secure processing of the collected and transmitted device data 
that are often sensitive. Consequently, fog computing is 
introduced in our proposed solution to address the shortcomings. 
The fog is important in this solution because it ensures 
availability by taking processing closer to the edge of the nodes; 
thereby reducing latency and bandwidth requirements of the 
resource constrained IoT devices. It also provides distribution, 
which prevents single point of failure should anything go wrong 
in the cloud. However, the fog cannot guarantee data integrity 
and is equally exposed to the vulnerabilities of the cloud. 

IV. PROPOSED BLOCKCHAIN SOLUTION 
We have noted the vulnerability of cloud services to the 

possibility of being compromised by, for instance, the system 
administrator, which poses great risk to the sensitive IoT data 

 
Algorithm 1: Analyzing Intervals in Sensor Data 

Sensor reads and inputs data Si 
Transmits Si to the fog over network 
Fog receives Si, i = 1, 2, 3 … n 
Store list of data values in array data [] 
declare data [] = {S1, S2, S3 … Sn} 
analyse the difference between data [] 
  elements and store in diff [] array 
for (int i = 1; i < data.length; i++){ 
 declare Di = Si - Si-1 
 push D to diff [] 
} 

 
Algorithm 2: Fixing Anomalies using Training Data 

Sensor reads and inputs data Si 
Transmits Si to the fog over network 
Fog receives Si, i = 1, 2, 3 … n 
Store list of data values in array data [] 
declare data [] = {S1, S2, S3 … Sn} 
Set maximum = max [S1:Sn] //normal max 
Set minimum = min [S1:Sn] //normal min 
analyse the difference between elements 
  and store in diff [] array 
for (int i = 1; i < data.length; i++){ 
 declare Di = Si - Si-1 
 if Di > maximum then 
  Log Di in database 
  Di = maximum 
 else if Di < minimum then 
  Log Di in database 
  Di = minimum 
 else  Di 
 push Di to diff [] 
} 



they handle and even greater risk of harm arising from their 
susceptibility to single point of failure or DDoS attacks, that can 
affect service availability. These raise growing concerns for 
secure processing of the collected and transmitted device data 
that are often sensitive. As a result, fog computing is introduced 
in our proposed solution to address the shortcomings. The fog is 
important in this solution because it ensures availability by 
taking processing closer to the edge of the nodes; thereby 
reducing latency and bandwidth requirements of the resource 
constrained IoT devices. It also provides distribution which 
prevents single point of failure should anything go wrong in the 
cloud. However, the Fog cannot guarantee data integrity and is 
equally exposed to the vulnerabilities of the cloud. 
Consequently, it becomes important to leverage the Ethereum 
blockchain technology and integrate it with the Fog in order to 
ensure transparency and immutability, a feature which prevents 
tampering with the data even by a malicious database 
administrator who could tamper with data stored on the cloud. 

 

Algorithm 3: Anomaly Detection and Correction 
Our framework, presented in Fig. 7, represents the three-

layered architecture of IoT comprising the perception layer, the 
network layer and the application layer. The solution in this 

work is deployed between the perception and the network layer. 
As it can be seen from the framework, all the Edge/Fog nodes 
have Ethereum deployed on them which makes each to be a node 
of the larger blockchain network. A full Ethereum node deploys 
well on a laptop computer; hence it is feasible to deploy it on the 
Edge/Fog instance? as shown in the framework. That means 
apart from performing the required computations timely, the 
edge computing nodes have additional capabilities powered by 
the Ethereum Smart Contracts to carry out integrity checks on 
all incoming data before allowing it through to the ledger for 
storage and onward use by the applications. That is because our 
framework recognized the fact that integrity of collected data is 
vital for the success of every IoT system. Therefore, data 
integrity must be preserved in order to ensure correctness and 
efficiency of the system. The smart contracts allow for set of 
rules, programs and algorithms to be written and implemented 
[70], [60], [69], [79] to provide the required security safeguards 
against actions that could affect the confidentiality, integrity or 
availability of the system. Therefore, for the role blockchain will 
play in the solution, we will instead write the algorithms in a 
smart contract which will carry out integrity tests on incoming 
data and deny faulty values entry through the system by 
correcting the input data based on standard operating conditions 
and log the faulty inputs with timestamp for review and 
provenance. 

 

Fig. 7. IoT-Blockchain Framework 
 

V. IMPLEMEMTATION AND EVALUATION 
Our proposed solution has been implemented in Ethereum 

blockchain, which offers Ethereum Virtual Machine (EVM) that 
serves as runtime environment for our smart contracts, on 
Rinkeby Test Network, using the MetaMask browser plugin that 

 
Algorithm 3: Anomaly Detection & Correction 

Sensor reads and inputs data Si 
Transmits Si to the fog over network 
Fog receives Si, i = 1, 2, 3 … n 
Set upper benchmark 
Set lower benchmark 
Store list of data values in array data [] 
for (int i = 0; i ≤ n; i++){ 
 if Si > upper benchmark then 
  Log Si in database 
  Si = upper benchmark 
 else if Si < lower benchmark then 
  Log Si in database 
  Si = lower benchmark 
 else 
  Si 
 push Si to data [] 
} 
declare data [] = {S1, S2, S3 … Sn} 
Set maximum = max [S1:Sn] //normal max 
Set minimum = min [S1:Sn] //normal min 
analyse the difference between elements 
  and store in diff [] array 
for (int i = 1; i < data.length; i++){ 
 declare Di = Si - Si-1 
 if Di > maximum then 
  Log Di in database 
  Di = maximum 
 else if Di < minimum then 
 ` Log Di in database 
  Di = minimum 
 else 
  Di 
 push Di to diff [] 
} 
 

 



allows creation of Wallets and helps to connect to either a test 
network or the main network. The Smart Contract for the 
solution was written in Remix, a browser based Integrated 
Development Environment for writing and implementing 
contracts in the Solidity language. The Smart Contract was 
developed in line with the algorithms presented in this paper, 
which are based on the anomaly detection and correction 
technique formulated in Section II. The contract was compiled 
and successfully deployed within the Remix environment. For 
implementation purposes, we deployed the contract on the 
JavaScript Virtual Machine environment through a test 
blockchain account, which provides up to 100 ether allowance 
and some default gas limit from which to fuel execution of the 
transactions within the contract. On deployment, the 
transactions in the contract get mined and executed successfully, 
from which credentials such as transaction hash, contract 
address, gas limit, as well as transaction and execution costs are 
derived. The statistics provide information about the contract 
and its status of deployment and can thus help in evaluating the 
effectiveness of the contract. Fig. 8, Fig. 9, and Fig. 10 present 
some steps of the contract creation and deployment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8. Linking Blockchain Account to Ethereum IDE 

To evaluate the proposed solution, we used two real-world 
datasets generated from our IoT experiments, which have been 
explained in Section III. The first dataset is for the indoor 
running of the experiment where the normal sensor readings, as 
per our earlier formulation of the anomaly detection technique, 
is used as the training dataset against which subsequent sensor 
data are tested. The second dataset is for similar outdoor running 
of the experiment. In both cases, two attacks each were 
performed on the system and the attack datasets were generated, 
which were passed to our proposed system for detection and 
correction purpose. Therefore, our system was evaluated for  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9. Account with Wallet balance linked to Test Network 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.10. Deployed Anomaly Detection Contract 
anomalies in four different attack datasets based on real 

sensors data. For the experimental evaluation presented in this 
paper, we arbitrarily  took 100 entries from each of the four 
attack datasets and tested each entry against the entire training 
dataset of the corresponding experiment location, indoor or 
outdoor, so as to ensure more in-depth detection. As described 
in our formulation earlier, the training and test dataset sequences 
must not be equal in length. 

After running the evaluation, the results as presented in the 
charts of Fig. 11 below show that our proposed solution works 

 

 

  



effectively as designed, detecting and correcting divergent 
sensor data to protect the system. 

 

Fig. 11(a)  
 

 Fig. 11(b)  
 

 Fig. 11(c)  
 

 Fig. 11(d)  
Fig. 11. Anomaly Detection and Correction Accuracy of our Proposed 

Blockchain Enabled Smart Contract Solution. The charts (a) – (d) show detection 
and correction efficiency of our solution, for four different attack scenarios of 
the experiments presented earlier in this work. 
From the viewpoint of the overall system, the anomaly detection 
accuracy can be measured using true positives, which are the 
number of correctly identified abnormal entries and true 
negatives, which are the number of correctly identified normal 
entries indicators as derived during evaluation [80]. 
Furthermore, evaluation of our approach shows how the 
integrity of the data entries are preserved after executing the 
contract that detects and corrects anomalous values. That is 
achieved by assigning unique hash to every transaction which is 
also linked to the blockchain account of the contract to enforce 
immutability. Our contract deployment also showed very little 
gas consumption from the default gas limit provided by Remix 
for contract deployments. 

VI. CONCLUSION AND FUTURE WORK 
The IoT is continuously becoming an integral part of our 

lives, handling very large-scale sensitive, private and safety 
critical information, which makes securing it a matter of high 
precedence. Edge computing offers an efficient mechanism to 
collect data and from IoT environment and perform timely 
processing closer to the nodes. Blockchain on the other hand 
provides secure transaction processing and ensures the integrity 
of the data is protected. Merging the two together provide 
improved capabilities to help the IoT system achieve secure, 
accurate and timely data collection and processing, which is 
very imperative for the success of the IoT especially in time 
sensitive and critical infrastructure domains. Through this work, 
we have presented an Edge-based Blockchain empowered 
solution  to detect and correct anomalous data values within IoT 
environment and ensure its effective operations. We evaluated 
the proposed solution using real data from a live IoT experiment 
and the results show that the solution works accurately, ensuring 
secure and timely transaction processing and maintaining data 
integrity for the IoT system. Our future work intends to 
investigate possible deployment of machine learning and data 
mining techniques on Blockchain to perform full-fledged 
anomaly detection, with its prospects and challenges. 

  

0

500

1000

1500

2000

2500
1 9 17 25 33 41 49 57 65 73 81 89 97

Te
m

p 
(x

10
0)

Time (s)

Attack1
Corr1

0

1000

2000

3000

4000

5000

6000

1 9 17 25 33 41 49 57 65 73 81 89 97

Te
m

p 
(x

10
0)

Time (s)

Attck2
Corr2

-1000

-500

0

500

1000

1500

2000

1 9 17 25 33 41 49 57 65 73 81 89 97

Te
m

p 
(x

10
0)

Time (s)

Attack3
Corr3

0

1000

2000

3000

4000

5000

6000

1 9 17 25 33 41 49 57 65 73 81 89 97

Te
m

p 
(x

10
0)

Time (s)

Attack4
Corr4



REFERENCES 
1. Handong, Z. and Z. Lin. Internet of Things: Key 

technology, architecture and challenging problems. in 
2011 IEEE International Conference on Computer 
Science and Automation Engineering. 2011. 

2. Ning, H. and Z. Wang, Future Internet of Things 
Architecture: Like Mankind Neural System or Social 
Organization Framework? IEEE Communications 
Letters, 2011. 15(4): p. 461-463. 

3. Atzori, L., A. Iera, and G. Morabito, The Internet of 
Things: A survey. Computer Networks, 2010. 54(15): 
p. 2787-2805. 

4. Gubbi, J., et al., Internet of Things (IoT): A vision, 
architectural elements, and future directions. Future 
Generation Computer Systems, 2013. 29(7): p. 1645-
1660. 

5. Yakubu, O., O. Adjei, and B.C. Narendra, A Review of 
Prospects and Challenges of Internet of Things. 
International Journal of Computer Applications, 2016. 
139(10). 

6. Misra, S., et al. A Learning Automata Based Solution 
for Preventing Distributed Denial of Service in Internet 
of Things. in 2011 International Conference on 
Internet of Things and 4th International Conference on 
Cyber, Physical and Social Computing. 2011. 

7. Khan, R., et al. Future Internet: The Internet of Things 
Architecture, Possible Applications and Key 
Challenges. in 2012 10th International Conference on 
Frontiers of Information Technology. 2012. 

8. Whitmore, A., A. Agarwal, and L. Da Xu, The Internet 
of Things—A survey of topics and trends. Information 
Systems Frontiers, 2015. 17(2): p. 261-274. 

9. Zanella, A., et al., Internet of Things for Smart Cities. 
IEEE Internet of Things Journal, 2014. 1(1): p. 22-32. 

10. Sethi, P. and S.R. Sarangi, Internet of Things: 
Architectures, Protocols, and Applications. Journal of 
Electrical and Computer Engineering, 2017. 2017. 

11. Weber, R.H., Internet of things: Privacy issues 
revisited. Computer Law & Security Review, 2015. 
31(5): p. 618-627. 

12. Malina, L., et al., On perspective of security and 
privacy-preserving solutions in the internet of things. 
Computer Networks, 2016. 102(Supplement C): p. 83-
95. 

13. Jayaraman, P.P., et al., Privacy preserving Internet of 
Things: From privacy techniques to a blueprint 
architecture and efficient implementation. Future 
Generation Computer Systems, 2017. 76(Supplement 
C): p. 540-549. 

14. Kozlov, D., J. Veijalainen, and Y. Ali. Security and 
privacy threats in IoT architectures. in Proceedings of 
the 7th International Conference on Body Area 
Networks. 2012. ICST (Institute for Computer 
Sciences, Social-Informatics and Telecommunications 
Engineering). 

15. Yang, Y., et al., A Survey on Security and Privacy 
Issues in Internet-of-Things. IEEE Internet of Things 
Journal, 2017. PP(99): p. 1-1. 

16. Nia, A.M. and N.K. Jha, A Comprehensive Study of 
Security of Internet-of-Things. IEEE Transactions on 
Emerging Topics in Computing, 2017. PP(99): p. 1-1. 

17. Lin, J., et al., A Survey on Internet of Things: 
Architecture, Enabling Technologies, Security and 
Privacy, and Applications. IEEE Internet of Things 
Journal, 2017. PP(99): p. 1-1. 

18. Datta, S.K., C. Bonnet, and N. Nikaein. An IoT 
gateway centric architecture to provide novel M2M 
services. in 2014 IEEE World Forum on Internet of 
Things (WF-IoT). 2014. 

19. Al-Fuqaha, A., et al., Internet of Things: A Survey on 
Enabling Technologies, Protocols, and Applications. 
IEEE Communications Surveys & Tutorials, 2015. 
17(4): p. 2347-2376. 

20. Sun, Y., et al., Internet of Things and Big Data 
Analytics for Smart and Connected Communities. 
IEEE Access, 2016. 4: p. 766-773. 

21. Atamli, A.W. and A. Martin. Threat-Based Security 
Analysis for the Internet of Things. in 2014 
International Workshop on Secure Internet of Things. 
2014. 

22. Nawir, M., et al. Internet of Things (IoT): Taxonomy of 
security attacks. in 2016 3rd International Conference 
on Electronic Design (ICED). 2016. 

23. Alaba, F.A., et al., Internet of Things security: A 
survey. Journal of Network and Computer 
Applications, 2017. 88: p. 10-28. 

24. Tukur, Y.M., D. Thakker, and I. Awan. Multi-layer 
Approach to Internet of Things (IoT) Security. in 2019 
7th International Conference on Future Internet of 
Things and Cloud (FiCloud). 2019. 

25. Warkentin, M. and R. Willison, Behavioral and policy 
issues in information systems security: the insider 
threat. European Journal of Information Systems, 
2009. 18(2): p. 101-105. 

26. Mylrea, M., et al. Insider Threat Cybersecurity 
Framework Webtool & Methodology: Defending 
Against Complex Cyber-Physical Threats. in 2018 
IEEE Security and Privacy Workshops (SPW). 2018. 

27. Claycomb, W.R., et al. Identifying indicators of insider 
threats: Insider IT sabotage. in 2013 47th 
International Carnahan Conference on Security 
Technology (ICCST). 2013. 

28. Sarkar, K.R., Assessing insider threats to information 
security using technical, behavioural and 
organisational measures. information security 
technical report, 2010. 15(3): p. 112-133. 

29. Kandias, M., et al. An insider threat prediction model. 
in International Conference on Trust, Privacy and 
Security in Digital Business. 2010. Springer. 

30. Mundie, D.A., S. Perl, and C.L. Huth. Toward an 
Ontology for Insider Threat Research: Varieties of 



Insider Threat Definitions. in 2013 Third Workshop on 
Socio-Technical Aspects in Security and Trust. 2013. 

31. Gavai, G., et al. Detecting insider threat from 
enterprise social and online activity data. in 
Proceedings of the 7th ACM CCS international 
workshop on managing insider security threats. 2015. 
ACM. 

32. Ambre, A. and N. Shekokar, Insider threat detection 
using log analysis and event correlation. Procedia 
Computer Science, 2015. 45: p. 436-445. 

33. Hunker, J. and C.W. Probst, Insiders and Insider 
Threats-An Overview of Definitions and Mitigation 
Techniques. JoWUA, 2011. 2(1): p. 4-27. 

34. Nurse, J.R., et al. Understanding insider threat: A 
framework for characterising attacks. in 2014 IEEE 
Security and Privacy Workshops. 2014. IEEE. 

35. Hugl, U. Putting a hat on a Hen? Learnings for 
malicious insider threat prevention from the 
background of German white-collar crime research. in 
International Conference on Human Aspects of 
Information Security, Privacy, and Trust. 2015. 
Springer. 

36. Hoyer, S., et al. Fraud prediction and the human 
factor: An approach to include human behavior in an 
automated fraud audit. in 2012 45th Hawaii 
International Conference on System Sciences. 2012. 
IEEE. 

37. Zhang, C. and R. Green. Communication security in 
internet of thing: preventive measure and avoid DDoS 
attack over IoT network. in Proceedings of the 18th 
Symposium on Communications & Networking. 2015. 
Society for Computer Simulation International. 

38. Saied, Y.B., et al., Lightweight collaborative key 
establishment scheme for the Internet of Things. 
Computer Networks, 2014. 64(Supplement C): p. 273-
295. 

39. Kammüller, F., J.R. Nurse, and C.W. Probst. Attack 
tree analysis for insider threats on the IoT using 
Isabelle. in International Conference on Human 
Aspects of Information Security, Privacy, and Trust. 
2016. Springer. 

40. Ahmed, A., et al., Malicious insiders attack in IoT 
based multi-cloud e-healthcare environment: a 
systematic literature review. Multimedia Tools and 
Applications, 2018. 77(17): p. 21947-21965. 

41. Nurse, J.R., et al. Smart insiders: exploring the threat 
from insiders using the internet-of-things. in 2015 
International Workshop on Secure Internet of Things 
(SIoT). 2015. IEEE. 

42. Kammüller, F. and M. Kerber. Investigating airplane 
safety and security against insider threats using logical 
modeling. in 2016 IEEE Security and Privacy 
Workshops (SPW). 2016. IEEE. 

43. Henrion, M., et al., CASOS: a subspace method for 
anomaly detection in high dimensional astronomical 
databases. Statistical Analysis and Data Mining: The 
ASA Data Science Journal, 2013. 6(1): p. 53-72. 

44. Garg, S. and S. Batra, A novel ensembled technique for 
anomaly detection. International Journal of 
Communication Systems, 2017. 30(11): p. e3248. 

45. Ahmed, M., A.N. Mahmood, and J. Hu, A survey of 
network anomaly detection techniques. Journal of 
Network and Computer Applications, 2016. 60: p. 19-
31. 

46. Ye, N. and Q. Chen, An anomaly detection technique 
based on a chi ‐ square statistic for detecting 
intrusions into information systems. Quality and 
Reliability Engineering International, 2001. 17(2): p. 
105-112. 

47. Garcia-Teodoro, P., et al., Anomaly-based network 
intrusion detection: Techniques, systems and 
challenges. computers & security, 2009. 28(1-2): p. 18-
28. 

48. Patcha, A. and J.-M. Park, An overview of anomaly 
detection techniques: Existing solutions and latest 
technological trends. Computer networks, 2007. 
51(12): p. 3448-3470. 

49. Chandola, V., A. Banerjee, and V. Kumar, Anomaly 
detection for discrete sequences: A survey. IEEE 
transactions on knowledge and data engineering, 2010. 
24(5): p. 823-839. 

50. Kriegel, H.-P., P. Kröger, and A. Zimek, Outlier 
detection techniques. Tutorial at KDD, 2010. 10: p. 1-
76. 

51. Aujla, G.S., et al., Optimal Decision Making for Big 
Data Processing at Edge-Cloud Environment: An SDN 
Perspective. IEEE Transactions on Industrial 
Informatics, 2018. 14(2): p. 778-789. 

52. Aujla, G.S.S., et al., EDCSuS: Sustainable Edge Data 
Centers as a Service in SDN-enabled Vehicular 
Environment. IEEE Transactions on Sustainable 
Computing, 2019: p. 1-1. 

53. Aujla, G.S., et al., SAFE: SDN-Assisted Framework for 
Edge–Cloud Interplay in Secure Healthcare 
Ecosystem. IEEE Transactions on Industrial 
Informatics, 2019. 15(1): p. 469-480. 

54. Jindal, A., G.S. Aujla, and N. Kumar, SURVIVOR: A 
blockchain based edge-as-a-service framework for 
secure energy trading in SDN-enabled vehicle-to-grid 
environment. Computer Networks, 2019. 153: p. 36-
48. 

55. Jindal, A., et al., GUARDIAN: Blockchain-based 
Secure Demand Response Management in Smart Grid 
System. IEEE Transactions on Services Computing, 
2019: p. 1-1. 

56. Li, M., et al., Blockchain-Enabled Secure Energy 
Trading With Verifiable Fairness in Industrial Internet 
of Things. IEEE Transactions on Industrial 
Informatics, 2020. 16(10): p. 6564-6574. 

57. Medhane, D.V., et al., Blockchain-Enabled Distributed 
Security Framework for Next-Generation IoT: An 
Edge Cloud and Software-Defined Network-Integrated 
Approach. IEEE Internet of Things Journal, 2020. 7(7): 
p. 6143-6149. 



58. Javaid, U., M.N. Aman, and B. Sikdar, BlockPro: 
Blockchain based Data Provenance and Integrity for 
Secure IoT Environments, in Proceedings of the 1st 
Workshop on Blockchain-enabled Networked Sensor 
Systems. 2018, ACM: Shenzhen, China. p. 13-18. 

59. Samaniego, M. and R. Deters. Blockchain as a Service 
for IoT. in 2016 IEEE International Conference on 
Internet of Things (iThings) and IEEE Green 
Computing and Communications (GreenCom) and 
IEEE Cyber, Physical and Social Computing 
(CPSCom) and IEEE Smart Data (SmartData). 2016. 

60. Fernández-Caramés, T.M. and P. Fraga-Lamas, A 
Review on the Use of Blockchain for the Internet of 
Things. IEEE Access, 2018. 6: p. 32979-33001. 

61. Sharma, P.K., M. Chen, and J.H. Park, A Software 
Defined Fog Node Based Distributed Blockchain 
Cloud Architecture for IoT. IEEE Access, 2018. 6: p. 
115-124. 

62. Jeong, J.W., B.Y. Kim, and J.W. Jang, Security and 
Device Control Method for Fog Computer using 
Blockchain, in Proceedings of the 2018 International 
Conference on Information Science and System. 2018, 
ACM: Jeju, Republic of Korea. p. 234-238. 

63. Kang, J., et al., Blockchain for Secure and Efficient 
Data Sharing in Vehicular Edge Computing and 
Networks. IEEE Internet of Things Journal, 2018: p. 1-
1. 

64. Lin, J., Z. Shen, and C. Miao, Using Blockchain 
Technology to Build Trust in Sharing LoRaWAN IoT, 
in Proceedings of the 2nd International Conference on 
Crowd Science and Engineering. 2017, ACM: Beijing, 
China. p. 38-43. 

65. Cha, S., et al., A Blockchain Connected Gateway for 
BLE-Based Devices in the Internet of Things. IEEE 
Access, 2018. 6: p. 24639-24649. 

66. Javaid, U., et al., Mitigating loT Device based DDoS 
Attacks using Blockchain, in Proceedings of the 1st 
Workshop on Cryptocurrencies and Blockchains for 
Distributed Systems. 2018, ACM: Munich, Germany. 
p. 71-76. 

67. Singh, M., A. Singh, and S. Kim. Blockchain: A game 
changer for securing IoT data. in 2018 IEEE 4th World 
Forum on Internet of Things (WF-IoT). 2018. 

68. Özyılmaz, K.R. and A. Yurdakul. Work-in-progress: 
integrating low-power IoT devices to a blockchain-

based infrastructure. in 2017 International Conference 
on Embedded Software (EMSOFT). 2017. 

69. Pan, J., et al., EdgeChain: An Edge-IoT Framework 
and Prototype Based on Blockchain and Smart 
Contracts. IEEE Internet of Things Journal, 2018: p. 1-
1. 

70. Uriarte, R.B. and R.D. Nicola, Blockchain-Based 
Decentralized Cloud/Fog Solutions: Challenges, 
Opportunities, and Standards. IEEE Communications 
Standards Magazine, 2018. 2(3): p. 22-28. 

71. Ibba, S., et al., CitySense: blockchain-oriented smart 
cities, in Proceedings of the XP2017 Scientific 
Workshops. 2017, ACM: Cologne, Germany. p. 1-5. 

72. Fan, K., et al., Blockchain-based Secure Time 
Protection Scheme in IoT. IEEE Internet of Things 
Journal, 2018: p. 1-1. 

73. Im, G.P. and R.L. Baskerville, A longitudinal study of 
information system threat categories: the enduring 
problem of human error. ACM SIGMIS Database, 
2005. 36(4): p. 68-79. 

74. Spooner, D., et al. Navigating the Insider Threat Tool 
Landscape: Low Cost Technical Solutions to Jump 
Start an Insider Threat Program. in 2018 IEEE 
Security and Privacy Workshops (SPW). 2018. 

75. Zhang, H., et al. An Active Defense Model and 
Framework of Insider Threats Detection and Sense. in 
2009 Fifth International Conference on Information 
Assurance and Security. 2009. 

76. Yusop, Z.M. and J. Abawajy, Analysis of insiders 
attack mitigation strategies. Procedia-Social and 
Behavioral Sciences, 2014. 129: p. 581-591. 

77. Tukur, Y.M., D. Thakker, and I. Awan. Ethereum 
Blockchain-Based Solution to Insider Threats on 
Perception Layer of IoT Systems. in 2019 IEEE Global 
Conference on Internet of Things (GCIoT). 2019. 

78. Tukur, Y.M. and Y.S. Ali. Demonstrating the Effect of 
Insider Attacks on Perception Layer of Internet of 
Things (IoT) Systems. in 2019 15th International 
Conference on Electronics, Computer and 
Computation (ICECCO). 2019. 

79. Wüst, K. and A. Gervais. Do you Need a Blockchain? 
in 2018 Crypto Valley Conference on Blockchain 
Technology (CVCBT). 2018. 

80. Lyu, L., et al., Fog-Empowered Anomaly Detection in 
Internet of Things using Hyperellipsoidal Clustering. 
IEEE Internet of Things Journal, 2017. PP(99): p. 1-1. 

 


