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Abstract 

 The main object of this thesis is to obtain numerous applications of 

fractional derivative operator concerning analytic and  -valent (or multivalent) 

functions in the open unit disk by introducing new classes and deriving new 

properties. Our finding will provide interesting new results and indicate 

extensions of a number of known results. In this thesis we investigate a wide 

class of problems. First, by making use of certain fractional derivative operator, 

we define various new classes of  -valent functions with negative coefficients in 

the open unit disk such as classes of  -valent starlike functions involving results 

of (Owa, 1985a), classes of  -valent starlike and convex functions involving the 

Hadamard product (or convolution) and classes of  -uniformly  -valent starlike 

and convex functions, in obtaining, coefficient estimates, distortion properties, 

extreme points, closure  theorems, modified Hadmard products and inclusion 

properties. Also, we obtain radii of convexity, starlikeness and close-to-

convexity for functions belonging to those classes. Moreover, we derive several 

new sufficient conditions for starlikeness and convexity of the fractional 

derivative operator by using certain results of (Owa, 1985a), convolution, Jack’s 

lemma and Nunokakawa’ Lemma. In addition, we obtain coefficient bounds for 

the functional            
   of functions belonging to certain classes of  -valent 

functions of complex order which generalized the concepts of starlike, Bazilevič 
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and non-Bazilevič functions. We use the method of differential subordination 

and superordination for analytic functions in the open unit disk in order to derive 

various new subordination, superordination and sandwich results involving the 

fractional derivative operator. Finally, we obtain some new strong differential 

subordination, superordination, sandwich results for  -valent functions 

associated with the fractional derivative operator by investigating appropriate 

classes of admissible functions. First order linear strong differential 

subordination properties are studied. Further results including strong differential 

subordination and superordination based on the fact that the coefficients of the 

functions associated with the fractional derivative operator are not constants but 

complex-valued functions are also studied. 
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Chapter 1 
 

Introduction 

 

 The purpose of this chapter is to give introduction to primitive 

backgrounds and motivations for the remaining chapters. In section 1.1, we 

present the review of literature. In section 1.2, we state the basic notations 

and definitions of univalent and  -valent (or multivalent) functions in the open 

unit disk, and their related classes. The Hadamard products (or 

Convolutions) for analytic functions are also presented. Section 1.3 gives 

subordinate principle. In section 1.4, we study the class of functions with 

positive real part. In section 1.5, we consider some special classes, 

including, starlike, convex, close-to-convex, prestarlike, starlike of complex 

order, convex of complex order, uniformly starlike, uniformly convex, 

Bazilevic and non- Bazilevic functions. Section 1.6  presents some definitions 

of fractional derivative operators. Section 1.7 is devoted to the study of 

differential subordination and its corresponding problem, that is differential 

superordination. The notation of the strong differential subordination and 

strong differential superordination are given in section 1.8. The motivations 

and outlines of this study are given in section 1.9. 

 

 The thesis is organized with solutions to a number of problems. For 

example, we consider the following problems: 

 To identity some classes of  -valent functions with negative 

coefficients associated with certain fractional derivative operator in the 
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open unit disk   and find coefficient estimates, distortion properties, 

extreme points, closure theorems, modified Hadmard products and 

inclusion properties. Also, to obtain radii of starlikeness, and convexity 

and close-to-convexity for functions belonging to those classes. 

 To find sufficient conditions for  -valent functions defined by certain 

fractional derivative operator to be starlike and convex by using some 

known results such as results of (Owa, 1985a), results involving the 

Hadamard product due to (Rusheweyh and Sheil-Small, 1973), Jack’s 

Lemma (Jack, 1971) and Nunokakawa’s Lemma (Nunokakawa, 

1992). 

 To define some classes of  -valent functions involving certain 

fractional derivative operator, and obtain bounds for the functional 

           
   and bounds for the coefficient      for functions 

belonging to those classes. 

 By using the differential subordination and superordination 

techniques, to find the sufficient conditions for  -valent functions 

          associated with a fractional derivative operator to satisfy 

                 where      is analytic function in    and the 

functions    and    are given univalent in    with              , so 

that, they become respectively, the best subordinant and best 

dominant. 

 By using the notion of strong differential subordination and 

superordination techniques, to investigate appropriate classes of 

admissible functions involving fractional derivative operator and to 

obtain some strong differential subordination, superordination and 
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sandwich-type results. Also, to find the sufficient conditions for  -

valent functions          
     associated with a fractional derivative 

operator to satisfy, respectively                and         

        for      and        where         is analytic function in      .  

 

1.1 Review of literature  

 This section deals with the conceptual framework of the present research 

problem and primary matters regarding the research. A survey of related 

studies provides some insight regarding strong points and limitation of the 

previous studies  

 The studies reviewed focus on how interest introduce new classes of 

analytic and  -valent (or multivalent) functions and investigate their 

properties. Also, what effect of fractional derivative operator on functions 

belonging to these classes. The review of related literature studied by the 

researcher is divided in the following categories:  

 Univalent and multivalent functions 

 Fractional calculus operators 

 Functions with negative coefficients and related classes 

 Starlikeness and convexity conditions 

 Coefficient bounds 

 Differential subordination and superordination 

 Strong Differential subordination and superordination 

 conclusions 
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 The studies have been analyzed by keeping objectives, methodology 

and findings of the study to draw the conclusion to strengthen the rationale of 

the present research.  

 

1.1.1 Univalent and multivalent functions 

 The theory of univalent functions is a classical problem of complex 

analysis which belongs to one of the most beautiful subjects in geometric 

function theory. It deals with the geometric properties of analytic functions, 

found around the turn of the 20th century. In spite of the famous coefficient 

problem, the Biberbach conjecture which was solved by (Branges, 1985). 

The geometry theory of functions is mostly concerned with the study of 

properties of normalized univalent functions which belong to the class   and 

defined in the open unit disk               . The image domain of   

under univalent function is of interest if it has some nice geometry properties. 

A convex domain is outstanding example of a domain with nice properties. 

Another example such domain is starlike with respect to a point. Certain 

subclasses of those analytic univalent functions which map   onto these 

geometric domains, are introduced and their properties are widely 

investigated, for example, the classes   and    of convex and starlike 

functions, respectively, see (Goodman, 1983), (Duren, 1983). It was 

observed that both of these classes are related with each other through 

classical Alexander type relation                 , see (Alexander, 

1915) and (Goodman, 1983). The special subclasses of the classes   and  

   are the classes      and       of convex and starlike functions of order 

         . If    , we obtain        and         . These classes 
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were first introduced by (Robertson, 1936) and were studied subsequently by 

(Schild, 1965), (Pinchuk, 1968), (Jack, 1971), and others. Moreover, the 

classes of convex and starlike functions are closely related with the class   

of analytic functions with positive real part      which satisfies        and 

         , see (Pommerenke, 1975).  

 The natural generalization of univalent function is  -valent (or 

multivalent) function which belong to the class            and defined in 

the open unit disk  . If      is  -valent function with    , then      is 

univalent function. In addition, the classes   and    of convex and starlike 

functions were extended to the classes      and       of  -valent convex 

and starlike functions, respectively, by (Goodman, 1950). The special 

subclasses of the classes      and       are the classes        and 

        of  -valent convex and starlike functions of order          . If 

   , we obtain             and              . The class        was 

introduced by (Owa, 1985a) and the class         was introduced by (Patil 

and Thakare, 1983).  

 

1.1.2 Fractional calculus operators 

  The theory of fractional calculus (that is, derivatives and integrals of 

arbitrary real or complex order) has found interesting applications in the 

theory of analytic functions in recent years. The classical definitions of 

fractional derivative operators have been applied in introducing various 

classes of univalent and  -valent functions and obtaining several properties 

such as coefficient estimates, distortion theorems, extreme points, and radii 

of convexity and starlikeness. For numerous works on this subject, one may 



6 
 

refer to the works by, (Altintas et al. 1995a), (Altintas et al. 1995b), (Khairnar 

and More, 2009), (Owa, 1978), (Owa and Shen, 1998), (Raina and Bolia, 

1998), (Raina and Choi, 2002), (Raina and Nahar, 2002), (Raina and 

Srivastava, 1996), (Srivastava and Aouf, 1992), (Srivastava and Aouf, 1995), 

(Srivastava and Mishra, 2000), (Srivastava et al.,1988), (Srivastava and 

Owa, 1984), (Srivastava and Owa, 1987),(Srivastava and Owa, 1989), 

(Srivastava and Owa, 1991b), (Srivastava and Owa, 1992) and (Srivastava 

et al., 1998). Moreover, the fractional derivative operators were applied to 

obtain the sufficient conditions for starlikeness and convexity of univalent 

functions defined in the open unit disk by (Owa, 1985b), (Raina and Nahar, 

2000) and (Irmak et al., 2002). 

 

1.1.3 Functions with negative coefficients and related classes 

 In this subsection we present various classes of analytic univalent and  -

valent functions with negative coefficients in the open unit disk. These 

functions are convex, starlike, prestarlike, uniformly convex and uniformly 

starlike which were introduced and their properties such as coefficient 

estimates, distortion theorems, extreme points, and radii of convexity and 

starlikeness were investigated by several authors. The problem of coefficient 

estimates is one of interesting problems which was studied by researchers 

for certain classes of starlike and convex ( -valent starlike and  -valent 

convex) functions with negative coefficient in the open unit disk. Closely 

related to this problem is to determine how large the modulus of a univalent 

or  -valent function together with its derivatives can be in particular subclass. 

Such results, referred to as distortion theorems which provide important 
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information about the geometry of functions in that subclass. The result 

which is as inequality is called sharp (best possible or exact) in sense, that it 

is impossible to improve the inequality (decrease an upper bound, or 

increase a lower bound) under the conditions given and it can be seen by 

considering a function such that equality holds. This function is called 

extermal function. A function belong to the class of functions is called an 

extreme point if it cannot be written as a proper convex combination of two 

other members of this class. The radius of convexity (stalikeness) problem 

for the class of functions is to determine the largest disk       , i.e. the 

largest number of           such that each function      in the class is 

convex (starlike) in      . One may refer to the books by (Nehari, 1952), 

(Goodman, 1983) and (Duren, 1983). Those problems have attracted many 

mathematicians involved in geometry function theory, for example, 

(Silverman, 1975) introduced and studied the classes       and      of 

starlike and convex functions with negative coefficients of order        

  . These classes were generalized to the classes         and        of  -

valent starlike and convex functions with negative coefficients of order 

          , by (Owa, 1985a). (Srivastava and Owa, 1987) established 

some distortion theorems for fractional calculus operators of functions 

belonging to the classes which were introduced by (Owa, 1985a).  

 In order to derive the similar properties above, two subclasses           

and          of univalent starlike functions with negative coefficients were 

introduced by (Srivastava and Owa, 1991a). In fact, these classes become 

the subclasses of the class which was introduced by (Gupta, 1984) when the 

function is univalent with negative coefficients. Using the results of 
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(Srivastava and Owa, 1991a), (Srivastava and Owa, 1991b) have obtained 

several distortion theorems involving fractional derivatives and fractional 

integrals of functions belonging to the these classes. Recently, (Aouf and 

Hossen, 2006) have generalized the classes of univalent starlike functions 

with negative coefficients due to (Srivastava and Owa, 1991a) to obtain 

coefficient estimates, distortion theorem and radius of convexity for certain 

classes             and            of  -valent starlike functions with 

negative coefficients. 

 Moreover, (Aouf ,1988) studied certain classes           and          

of  -valent functions of order   and type   which are an extension of the 

familiar classes which were studied earlier by (Gupta and Jain, 1976). More 

recently, (Aouf and Silverman, 2007) introduced and studied some 

subclasses of  -valent  -prestarlike functions of order  . Subsequently, 

(Aouf, 2007) introduced and studied the classes   
       and   

       of  -

valent  -prestarlike functions of order   and type  . There are many 

contributions on prestarlike function classes, for example (Ahuja and 

Silverman, 1983), (Owa and Uralegaddi, 1984), (Silverman and Silvia, 1984) 

and (Srivastava and Aouf, 1995)  

 In addition, many authors have turned attention to the so-called 

classes of uniformly convex (starlike) functions for various subclasses of 

univalent functions. Those classes were first introduced and studird by 

(Goodman,1991a) and (Goodman,1991b), and were studied subsequently by 

(Rǿnning 1991), (Rǿnning 1993a),  (Minda and Ma, 1992), (Rǿnning 1993b), 

(Minda and Ma, 1993) and others. The classes of  -uniformly convex 

(starlike) functions were studied by (Kanas and Wisniowska, 1999) and 
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(Kanas and Wisniowska, 2000); where their geometric definitions and 

connections with the conic domains were considered. Encouraged by wide 

study of classes of univalent functions with negative coefficients, (Al-

Kharsani and Al-Hajiry, 2006) introduced the classes of uniformly  -valent 

starlike and uniformly  -valent convex functions of order  . More recently, 

(Gurugusundaramoorthy and Themangani, 2009), presented a study for 

class of uniformly convex functions based on certain fractional derivative 

operator to obtain the similar properties above. There are many other 

researchers who studied the classes of uniformly starlike and uniformly 

convex functions including (AL-Refai and Darus, 2009), (Khairnar and More, 

2009), (Sokôł and Wisniowska, 2011) and (Srivastava and Mishra, 2000). 

 

1.1.4 Starlikeness and convexity conditions 

 There is a beautiful and simple sufficient condition for univalence due 

independently to (Noshiro, 1934-1935) and (Warschawski, 1935), and then 

onwards the result is known as Noshiro-Warschawski Theorem. This says, if 

a function      is analytic in a convex domain   and           , then       

is univalent in   , see also (Duren, 1983) and (Goodman, 1983). The 

problem of sufficient conditions for starlikeness and convexity is concerning 

to find conditions under which function in certain class are starlike and 

convex, respectively. For example, (Owa and Shen, 1998) and (Raina and 

Nahar, 2000) introduced various sufficient conditions for starlikeness and 

convexity of class of univalent functions associated with certain fractional 

derivative operators by using known results for the classes of starlike and 

convex function due to (Silverman,1975) and by using results involving the 
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Hadamard product (or convolution) due to (Ruscheweyh and Sheil-Small, 

1973 ). 

 In addition, two results of (Jack, 1971) and (Nunokawa, 1992) which 

popularly known as jack’s Lemma and Nunokawa’s Lemma in literature 

have applied to obtain many of sufficient conditions for starlikeness and 

convexity for analytic functions, see (Irmak and Cetin, 1999), (Irmak et al., 

2002) and (Irmak and Piejko, 2005). 

 

1.1.5 Coefficient bounds 

 The problem of estimating the functional        
   where   is real 

parameter for the class of univalent functions is intimately related with the 

coefficient problem which called Fekete and Szegö problem, see (Keogh 

and Merkes, 1969). The result is sharp in the sense that for each    there 

is a function in the class under consideration for which the equality holds. 

Thus an attention to the so-called coefficient estimate problems for 

different subclasses of univalent and  -valent functions has been the 

main interest among authors. (Ma and Minda, 1994) discussed the similar 

coefficient problem for functions in the classes      and      . There are 

now several results for this type in literature, each of them dealing with 

       
   for various classes of functions. (Srivastava and Mishra, 2000) 

obtained Fekete-Szegö problem to parabolic starlike and uniformly 

convex functions defined by fractional calculus operator. Many of other 

researchers who successfully to obtain Fekete-Szegö problem for various 

classes of univalent and  -valent functions such as (Dixit and Pal, 1995), 

(Obradovič, 1998), (Ramachandran et al., 2007), (Ravichandran et al., 
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2004), (Ravichandran et al., 2005), (Rosy et al., 2009), (Tuneski and 

Darus, 2002), (Wang et al., 2005), and (Shanmugam et al., 2006a). On 

other hand, (Prokhorov and Szynal, 1981) obtained the estimate of the 

functional              
           within the class   of all analytic 

functions of the form             
     

      in the open unit disk 

and satisfying the condition               . Very recently, (Ali et al., 

2007) obtained the sharp coefficient inequalities for            
   and 

       for various classes of  -valent analytic functions by using the 

results of (Ma and Minda, 1994) and (Prokhorov and Szynal, 1981).  

 

1.1.6 Differential subordination and superordination 

 The study of differential subordinations, which is the generalization from 

the differential inequalities, began with the papers according to (Miller and 

Mocanu, 1981) and (Miller and Mocanu, 1985). In very simple terms, a 

differential subordination in the complex plane is the generalization of a 

differential inequality on the real line. Obtaining information about properties 

of a function from properties of its derivatives plays an important role in 

functions of real variable, for example, if        , then   is an increasing 

function. Also, to characterizing the original function, a differential inequality 

can be used to find information about the range of the original function, a 

typical example is given by, if        and              , then       . 

 In the theory of complex-valued functions there are several differential 

implications in which a characterization of a function is determined from a 

differential condition, for example, the Noshiro-Warschawski Theorem: if    is 

analytic in the unit disk  , then            implies   is univalent function in 
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 , see (Noshiro, 1934-1935), (Warschawski, 1935), (Goodman, 1983) and 

(Duren, 1983). In addition, to obtain properties of the range of a function from 

the range of a combination of the derivatives of a the function, a typical 

example is given by, if   is real and      is analytic function in  , then  

                        implies          , see (Miller and Mocanu, 

2000). 

 The dual problem of differential subordination, that is differential 

superordination was introduced by (Miller and Mocanu, 2003) and studied by 

(Bulboaca, 2002a) and (Bulboaca, 2002b). The methods of differential 

subordination were used by (Ali et al., 2005), (Shanmugam et al., 2006b) for 

various classes of analytic functions. 

 

1.1.7 Strong differential subordination and superordination 

 Some recent results in the theory of analytic functions were obtained by 

using a more strong form of the differential subordination and 

superordination introduced by (Antonino and Romaguera, 1994) and studied 

by (Antonino and Romaguera, 2006)  called strong differential subordination 

and strong differential superordination, respectively. By using this notion, (G. 

Oros, 2007) and (G. Oros, 2009) introduced the dual notion of strong 

differential superordination following the theory of differential superordination 

introduced and developed by (Miller and Mocaun,1981) and (Miller and 

Mocaun,1985). Since then, many of interesting results have appeared in 

literature on this topic such as (G. Oros and Oros, 2007), (G. Oros and Oros, 

2009), (Oros, 2010),  (G. Oros, 2010) and (G. Oros, 2011). 
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1.1.8 conclusions 

 This research work provides the insight to have a concept regarding 

fractional derivative operators and analytic functions. Thus a perusal and 

scrutiny of the literature that though many studies on fractional derivative 

operators have been done for analytic functions with negative coefficients. 

Additional research is needed to introduce and study some classes of  -

valent functions with negative coefficients based on certain fractional 

derivative operator which generalize the previous classes and investigate 

their properties. Sufficient conditions for stalikeness and convexity of 

fractional derivative operators and coefficient bounds of functions involving 

the fractional derivative operators are not up to the desired level. This is 

another area that will require additional research. The review of differential 

subordination and superordination, and strong differential subordination and 

superordination of analytic functions defined in the open unit disk on complex 

plane reveals the need for investigating properties associated with fractional 

derivative operator for  -valent functions. Thus it reveals the importance and 

need of the present study. 

 

1.2  Univalent and multivalent functions 

 In this section we give the definitions of univalent and multivalent 

functions and their related classes   and      in the unit disk  . We also 

mention to the Hadamard product (or convolution) of any two functions in 

these classes. The classes   and      of analytic functions with negative 

coefficients are also defined.  
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 A complex-valued function      of a complex-variable is differentiable at 

     (  is a complex plane), if it has a derivative (Duren, 1983) 

         
    

          

    
 

at   . Such a function      is called analytic at    If it is differentiable at every 

point in some neighbourhood of   . A function      defined on a domain    is 

called analytic in     if it has a derivative at each point of   . 

 A function       analytic in the open unit disk                 is said 

to be univalent in  , if           assumes distinct values   for distinct   in 

 . In this case the equation           has at most one root in  . A function 

on   is called univalent if it provides one-to-one (injective) mapping onto its 

image. Various other terms are used for this concept such as simple, or 

schlicht (the German word for “simple”), see (Goodman, 1983). 

The selection of open unit disk   above instead of an arbitrary domain   

has the advantage of simplifying the computations and leading to short and 

elegant formulas. 

 We begin with the class      of all analytic functions in    and        be 

the subclass of        consisting of functions of the form 

                 
                                                  

with            and         .  

Let    denote the subclass of       consisting of functions of the form  
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which are analytic in   and normalized by        and        . The 

subclass of   consisting of univalent functions is denoted by  . The well-

known example in class     is the Koebe function,     , defined by 

     
 

      
       

 

   

                           

which is an extremal function for many subclasses of the class of univalent 

functions. It maps    one-to-one onto the domain   that consists of the entire 

complex plane except for a slit along the negative real axis from      to 

   
 

 
, see (Duren, 1983), (Goodman, 1983), (Pommerenke, 1975) and 

(Graham and Kohr, 2003). 

 A function      analytic in the open unit disk    is said to  -valent in   , 

(or multivalent of order  )           in    if the equation          has 

never more than  -solutions in   and there exists some   for which this 

equation has exactly   solutions. If      is  -valent with    , then      is 

univalent, see (Goodman, 1983) and (Hayman, 1958).  

Let      denote the subclass of      consisting of all functions of the form 

                 

 

   

                                                

which are analytic and   -valent in the unit disk   .  

For functions          given by (1.2.2) and          given by 

            

 

   

                        

the Hadamard product (or convolution) of   and   is denoted by           

and defined by  
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For functions             given by (1.2.3) and            given by 

                 

 

   

                         

the Hadamard product (or convolution) of     and     is denoted by          

and defined by 

                         

 

   

                     

Let   denote the subclass of     consisting of functions of the form 

            

 

   

                                                       

The class   is called the class of univalent functions with negative 

coefficients. Also, let      denote the subclass of      consisting of 

functions of the form 

                 

 

   

                                               

The class      is called the class of  -valent functions with negative 

coefficients.  

 

1.3 Subordinate principle  

 In this section we present the concept of subordination between analytic 

functions which was developed by (Littlewood, 1925, 1944) and (Rogosinski, 

1939, 1943). Here, we start with the following classical result, which is known 

by the name of Schwarz’s Lemma (Graham and Gabrela, 2003) as follows: 
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 Let      be analytic function in    and let       . If                 

then                  . The equality can hold only if         and  

     . We denote by   the class of Schwarz functions; i.e.      if and 

only if     is analytic function in     such that          and          .  

The formulation of Schwarz’s Lemma seems to assign a special role to the 

origin of the two planes. 

 The subordinate principle says: Let the functions      and      be 

analytic in   . The function   is said to be subordinate to  , written as     

or          , if there exists a Schwarz function   analytic in  , with 

       and          such that                 .  We note that  

                               

Furthermore, if the function   is univalent, then     if and only if      

     and           (Duren, 1983) and (Pommerenke, 1975). 

 

1.4 Functions with positive real part 

 In this section we define class   of analytic functions with positive real 

part. These functions map the open unit disk   onto right half plane. Many 

problems are solved by using the properties of these functions. Some related 

classes are introduced and their basic properties are given in this section. 

These properties will be very useful in our later investigations. 

 

 Let     denotes the class of all functions                 of the form 

            

 

   

                                

which satisfy the following inequality 
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The functions in the class   need not to be univalent. For example, the 

function 

                                         

but if n ≥ 2, this function is no longer to be univalent. The Möbius function 

      
   

   
       

 

   

                               

plays a central role in the class   . This function is in the class  , it is analytic 

and univalent in   , and it maps    onto the real half-plane (Goodman, 1983). 

By using the principle of subordination, any function in the class    is called a 

function with positive real part in    and satisfies  

            
   

   
   

 Some special subclasses of   play an important role in geometric 

function theory because of their relations with subclasses of univalent 

functions. Many such classes have been introduced and studied; some 

became the well-known. For instance, for given arbitrary numbers   

            , we denote by        the class of functions        

which satisfy the following conditions                   and 

     
    

    
                                 

The class        was first introduced by (Janowski, 1973), therefore we say 

that      is in the class        of Janowski functions. We note that 

(i)           ,  

(ii)                         defined by          . 
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1.5 Some special classes of analytic functions 

 In this section we consider some special classes of univalent and  -

valent functions defined by simple geometric properties. They are closely 

connected with functions of positive real part and with subordination. These 

classes can be completely characterized by simple inequality.  

 

1.5.1 Classes of Starlike and convex functions 

 Geometric function theory of a single-valued complex variable is mostly 

concerned with the study of the properties of univalent functions. Several 

special subsets in the complex plane   play an important role in univalent 

functions. The image domain of   under a univalent function is of interest if it 

has some nice geometric properties. Convex domain and starlike domain are 

outstanding examples of domains with interesting properties. In this 

subsection we introduce some classes of starlike and convex functions for 

univalent and  -valent functions in the open unit disk. 

 

 A domain   in    is said to be starlike with respect to a point     if the 

line segment connecting any point in   to     is contained in  .  A function 

        in    is said to be starlike with respect to     if     is mapped onto a 

domain starlike with respect to   . In the special case that     , the 

function      is said to be starlike with respect to the origin (or starlike) 

(Goodman, 1983). Let     denotes the class of all starlike functions in   .  An 

analytic description of the class      is given by  
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A special subclass of      is that the class of starlike functions of order  , with  

     , is denoted       and given by 

   
      

    
                                    

A function           is said to be  -valent starlike if      satisfies the 

condition 

   
      

    
                                

We denote by       the class of all  -valent starlike functions. A special 

subclass of       is that the class of  -valent starlike functions of order  , 

with           which denoted by         and consists of functions 

satisfy 

   
      

    
                            

 A domain   in   is said to be convex if the line segment joining any two 

points of   lies entirely in  . If a function        maps   onto a convex 

domain, then      is called a convex function (Goodman, 1983). Let   

denotes the class of all convex functions in  . An analytic description of the 

class    is given by  

     
       

     
                                  

A special subclass of   is the class of convex functions of order  , with 

     , is denoted by      and given by 

     
       

     
                           

A function           is said to be  -valent convex if      satisfies the 

following inequality 
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We denote by      the class of all  -valent convex functions. A special 

subclass of      that is the class of  -valent convex functions of order    

with           which denoted by        and consists of functions 

satisfy 

     
       

     
                                   

The class         was introduced by (Patil and Thakare, 1983) and the class 

       was introduced by (Owa, 1985a). For    , we have               

and             which were first studied by (Goodman, 1950). If    , 

we have               and             which were first introduced by 

(Robertson, 1936) and were studied subsequently by (Schild, 1965), 

(Pinchuk, 1968), (Jack, 1971), and others. 

 There is a closely analytic connection between convex and starlike 

functions that was first noticed by (Alexander, 1915), and then onwards the 

result is known as Alexander’s Theorem. This says that, if      be analytic 

function in   with        and        , then        if and only if  

         .  Further we note that 

                        

and for           , we have 

            
      

 
          

 Furthermore, we denote by         and        the classes obtained by 

intersections, respectively, of the classes          and        with     ; that 

is 
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and  

                    

 The classes         and        were introduced by (Owa, 1985a). In 

particular, the classes               and             when    , were 

studied by (Silverman, 1975). 

 A function           is called  -valent starlike of order   and type    if 

it satisfies 

          

      
    

  

      
    

     
                           

where             and     . We denote by           the class of 

all  -valent starlike functions of order   and type   .  A function           

is called   -valent convex of order     and type    if it satisfies 

          
  

       
     

  

  
       
     

     
                            

where              and     . We denote by          the class of 

all  -valent convex functions of order     and type   . We note that  

              
      

 
            

The classes           and          were studied by (Aouf, 1988) and 

(Aouf, 2007) which are extensions of the familiar classes were studied earlier 

by (Gupta and Jain, 1976) when    , we have                   and 

               . If    , we have the classes                   and 

                which were studied by (Patil and Thakare,1983) and 
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(Owa, 1985a), respectively. Also, we denote by           and          the 

classes obtained by taking intersections, respectively, of the classes 

           and            with      . Thus we have 

                          

and 

                        

The classes           and          were studied by (Aouf, 1988). In 

particular, for    , we have the classes                   and  

                which were introduced by (Owa, 1985a) and the classes 

                and               when      and     were studied 

by (Silverman, 1975). 

 Let us next define certain classes of starlike and convex functions with 

respect to the analytic function      by using the principle of subordination, 

which will be very useful in our later investigations in chapter 3. 

 Let      be an analytic function with positive real part in the unit disk   , 

with        and         which maps the unit disk   onto a region starlike 

with respect to   which symmetric with respect to the real axis. A functions  

           is said to be in the class    
      for which 

 

 

      

    
                                      

A functions             is said to be in the class         if it satisfies   

 

 
   

       

     
                                    

The classes   
      and       were introduced and studied by (Ali, et al. 

2007). For    , we get the classes       and      which were first 

introduced and studied by (Ma and Minda, 1994). The classes       and 
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     can be reduced to the familiar class       of starlike functions of order 

          and the class      of convex functions of order   , 

respectively, when 

     
         

   
                              

Also, the classes       and      can be reduced to the classes         and 

       of Janowski starlike functions and Janowski convex functions, 

respectively, when   

     
    

    
                         

 

1.5.2 Classes of close-to-convex functions 

 A function         is said to be close-to-convex of order           

if there is a convex function     such that  

   
     

     
                                

An equivalent formulation would involve the existence of a starlike function  

      such that 

   
      

    
                             

We denote by      to the class of all close-to-convex functions of order  . 

For    , we have the class   of all close-to-convex function in   . 

A function           is said to be  -valent close-to-convex of order 

            if there is a  -valent convex function        such that  
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An equivalent formulation would involve the existence of  -valent starlike 

function      such that 

   
      

    
                            

We denote by        to the class of all  -valent close-to-convex functions of 

order  . If    , we have            , the class of all  -valent close-to-

convex functions. For     and    , we have         . If    , we get  

           . See (Duren, 1983), (Goodman, 1983) and (Pommerenke, 

1975). 

 

1.5.3 Classes of prestarlike functions 

 The class of prestarlike functions of order           was introduced 

by (Ruscheweyh, 1977). It is denoted by   . A function        is called 

prestarlike of order    with      , if  

                          

where 

      
 

           
  

 Let        be the class of all function        which satisfy the following 

condition 

                 

This class        is called the class of  -prestarlike functions of order    

with              . This class were studied by ( Sheil-Small et al., 

1982). For    , we have the class           .  
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 For a function       , the class         is said to be the class of  -

prestarlike functions of order   and type   with                

     if 

                   

This class was introduced by (Ahuja and Silverman, 1983).  

 A function           is said to be  -valent  -prestarlike functions of 

order                     if 

     
               

where 

  
     

  

           
  

We denote by         the class of all  -valent  -prestarlike functions of 

order  . Further let          be the subclass of       consisting of functions 

satisfying  

             
      

 
         

The classes         and          were introduced by (Aouf and Silverman, 

2007). We note that,                         , the class which 

was studied by (Kumar and  Reddy, 1992). For    , we have          

   . 

 

1.5.4 Classes of starlike and convex functions of complex order 

 A function           is said to be  -valent starlike functions of complex 

order     , (  complex)  if and only if   
    

 
         , and 
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We denote by        the class of all such functions. A function           

is said to be  -valent convex function of complex order     , (  complex) 

that is             ,  if and only if          in     and 

     
 

 
 

 

  
   

       

     
                                      

We denote by        the class of all such functions.  

For    , we have              the class of starlike functions of complex 

order                   which was introduced by (Nasr and Aouf, 1985) 

and,             is the class of convex functions of complex order   

                which was introduced earlier by (Wiatrowshi, 1970) and 

considered by (Nasr and Aouf, 1982). For    , we have         and 

      . If      , then we get               and              

for      . Notice that  

                       

 

1.5.5 Classes of Uniformly starlike and uniformly convex functions 

 A function        is called uniformly convex (uniformly starlike) if       

maps every circular arc   contained in    with centre     onto a convex 

(starlike) arc      with respect to     . The classes of all uniformly convex 

and uniformly starlike functions were introduced by (Goodman, 1991a) and 

(Goodman, 1991b) which denoted by     and    . (Ma and Minda, 1992) 

and (Rønning, 1993a) independently showed that a function      is uniformly 

convex if and only if 

     
       

     
   

       

     
                              

Thus, a function            if the quantity 
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lies in the parabolic region                   . A corresponding class 

   of uniformly starlike functions consisting of parabolic starlike functions 

    , where             for      in    , was introduced by (Rønning, 

1993a) and studied by (Rønning,1993b). Clearly a function      is in the 

class      if and only if 

   
      

    
   

      

    
                                        

We note that, 

                    

Furthermore, (Kanas and Wisniowska, 1999) and (Kanas and Wisniowska 

2000) defined the functions         to be  -uniformly convex ( -uniformly 

starlike) if for           , the image of every circular arc   contained in     

with centre    where       is convex (starlike).  

 A function         is said to be  -uniformly convex of order        

      ,  denoted by          , if and only if 

     
       

    
      

       

     
                                 

A function         is said to be  -uniformly starlike of order          

    , denoted by          ,  if and only if 

   
      

    
      

      

    
                                   

Notice that,  
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 The classes          and          which were studied by various 

authors including (Ma and Minda,1993), (Kanas and Wisnionska, 1999, 

2000), and (Rønning,1991). In particular, for    , we have          

     and               . If    , we have                 and 

               , the classes of uniformly convex and uniformly starlike 

functions of order    , respectively.  

 A function            is said to be  -uniformly  -valent starlike of order 

                and      , denoted by            if and only if 

   
      

    
      

      

    
                               

 A function           is said to be  -uniformly  -valent convex of order 

                and      , denoted by            if and only if 

     
       

    
        

       

    
                                

We note that,  

                     

and 

                     

where          and          are the classes of uniformly  -valent starlike 

and uniformly  -valent convex functions of order            which were 

 introduced by (AL-Kharsani and AL-Hjiry, 2006). The classes             

         and                   of  -valent starlike and convex 

functions of order  . Furthermore,                     and   

                  are the classes of  -uniformly starlike and  -

uniformly convex functions of order  .  
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1.5.6 Classes of Bazilevič and non- Bazilevič functions 

 A functions        is said to be in the class      if it satisfies the 

following condition  

   
               

       
                                                            

for some     where        . Furthermore, we denote by       the 

subclass of       for which          in (1.5.6.1), for functions satisfying 

   
               

  
                                                             

Note that               .  The class       is called the class of Bazilevič 

functions of type     and was studied by (Singh, 1973). 

 On the other hand,  the class of non-Bazilevič functions was introduced 

by (Obradović, 1998). This class of functions is said to be non-Bazilevič type 

and denoted by       for      .  A function          is said to be in the 

class        if and only if 

         
 

    
 
   

                                                        

   

1.6 Fractional derivative operators 

 The study of operators plays an important role in geometric function 

theory. A large number of classes of analytic univalent and  -valent functions 

are defined by means of fractional derivative operators. For numerous 

references on the subject, one may refer to (Srivastava and Owa, 1989) and 

(Srivastava and Owa, 1992). In this section, we recall some definitions of the 

fractional derivative operators which are helpful in our later investigations. 
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 Let us begin with the operator     
  which was studied by (Owa, 1978), 

(Owa, 1985b), (Srivastava and Owa, 1984) and (Srivastava and Owa, 1989).   

 The fractional derivative operator of order   is denoted by     
  and 

defined by  

    
      

 

      

 

  
 

    

      

 

 

                                                  

where      is analytic function in a simply-connected region of the  -plane 

containing the origin, and the multiplicity of          involved in (1.6.1) is 

removed by requiring            to be real when         

 Next we define the generalized fractional derivative operator     
     

 which 

was given by (Srivastava, et al. 1988) and (Srivastava and Owa, 1989) in 

terms of the Gauss’s hypergeometric function             , for    , see 

(Srivastava and Karlsson, 1985)  

                 
             

       

 

   

 

where       is the Pochhammer symbol defined, in terms of the Gamma 

function, by 

         
      

    
  

                                                               
                          

                        

                                                                

 The generalized fractional derivative operator     
     

 is defined by 

    
     

      
 

  
 

    

      
        

 

 

                       
 

 
       

        

for       and       where      is analytic function in a simply-

connected region of the  -plane containing the origin with the order      
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           ,  where                  and the multiplicity of           

in (1.6.3) is removed by requiring            to be real when         

Under the hypothesis of the definition (1.6.3), the fractional derivative 

operator      
           

  of a function      is defined by 

    
           

     
  

   
     

     
                                                 

                    

Notice that 

    
     

          
                                                                 

By means of  the above definition (1.6.3), (Raina and Nahar, 2002) obtained  

    
     

   
                

                  
                                       

where           such that       and                . 

 For        , the fractional derivative operator        is defined by 

                     
                                                 

    
            

        

 

   

               

We note that 

                          

The operator        was introduced by (Owa and Srivastava, 1987) and 

studied by (Owa and Shen, 1998) and (Srivastava et al., 1998).  

 For        , the fractional derivative operator     
     

     is defined by 

    
     

     
              

        
         

     
                                            

where         and             .  
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The operator     
     

     was introduced by (Raina and Nahar, 2000). Notice 

that, for     we have      
     

           .  

 

1.7   Differential subordinations and superordinations 

 In the theory of differential equations of real-valued functions there are 

many examples of differential inequalities that have important applications in 

the general theory. In those cases bounds on a function   are often 

determined from an inequality involving several of the derivatives of  . In two 

articles (Miller and Mocanu, 1981) and (Miller and Mocanu, 1985), the 

authors extended these ideas involving differential inequalities for real-valued 

functions to complex-valued functions. In this section we present the 

concepts of differential subordination and differential superordination for 

analytic functions which will be helpful for our investigations in chapter 4.  

 

 Let us begin with the differential subordination for analytic functions in 

the open unit disk, which was introduced by (Miller and Mocanu, 1981).  

 Let                     and let      be univalent in  . If      is 

analytic in     and satisfies the (second-order) differential subordination 

                                                                                 

then      is said to be a solution of the differential subordination        . The 

univalent function      is called a dominant of the solutions of the differential 

subordination, or more simply a dominant, if           for all      satisfies 

(1.7.1). A dominant       that satisfies            for all dominants      of 

(1.7.1) is said to be the best dominant of (1.7.1). 

Let    be a subset of    and suppose (1.7.1) be replaced by 
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the condition in (1.7.2) will also be referred as a (second-order) differential 

subordination (Miller and Mocanu,  2000).  

 The first order linear differential subordination was defined by (Miller and 

Mocanu, 1985) in the following subordination condition 

                          

or 

                      

and the second order linear differential subordination is defined by 

                                            

where          and     are complex functions. 

 Next let us present the dual concept of differential subordination, that is, 

differential superordination which was recently investigated by (Miller and 

Mocanu, 2003). 

 Let                        and let      be analytic in   . If        and  

                            are univalent functions in  , and satisfies the 

(second-order) differential superordination 

                                                                                       

then      is called a solution of the differential superordination        . The 

analytic function   is called a subordinant of the differential superordination, 

or more simply a subordinant if             for all      satisfies (1.7.3). An 

univalent subordinant        that satisfies            for all subordinants      

of (1.7.3)  is said to be the best subordinant. 

Let    be a subset of    and suppose (1.7.3) be replaced by 
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the condition in (1.7.4) will also be referred as a (second-order) differential 

superordination, see (Miller and Mocanu,  2000). 

 

1.8 Strong differential subordinations and superordinations 

 Some recent results in the theory of analytic functions were obtained by 

using a more strong form of the differential subordination and 

superordination introduced by (Antonino and Romaguera, 1994) and studied 

by (Antonino and Romaguera, 2006) called strong differential subordination 

and strong differential superordination, respectively, which were developed 

by (G. Oros, 2007) and (G. Oros, 2009). In this section we present the 

concepts of strong differential subordination and strong differential 

superordination for analytic functions which will be helpful for our 

investigations in chapter 5.  

 

 Let us begin with some notations of strong differential subordination of 

analytic functions.  

 Let        analytic functions in     , where                is the 

closed unit disk of the complex plane. Let      be analytic and univalent in  . 

The function        is said to be strongly suborordinate to      written  

              

if for     , the function of  ,        is subordinate to     . (Antonino and 

Romaguera, 1994) and (G. Oros, 2011). Since      is analytic and univalent, 

then             and              . If            , then the strong 

differential subordinations becomes the usual differential subordinations.  
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      Let            , and let      be univalent in  . If      is analytic in 

   and satisfies the following (second-order) strong differential subordination 

                                                                               

then      is called a solution of the strong differential subordination. The 

univalent function      is called a domaint of the solution of the strong 

differential subordination or, more simply, a dominant if           for all 

     satisfying (1.8.1). A dominant       that satisfies            for all 

dominants       of (1.8.1) is said to be the best dominant. 

Let     be a set in    and suppose (1.8.1) is replaced by 

                                                                               

the condition in (1.8.2) will also be referred as a (second-order) strong 

differential subordination (G. Oros,  2011). 

 A strong differential subordination of the form (G. Oros, 2011) 

                                                                            

where                         is analytic in     for all       and       is an 

analytic and univalent function in   is called first order linear strong 

differential subordination.  

 Now let us present the dual concept of strong differential subordination, 

that is, strong differential superordination which was introduced recently by 

(G. Oros, 2009). 

 Let      be analytic in    and let        be analytic functions in        

and univalent in  . The function      is said to be strongly subordinate to 

       written  
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if there exists a function      analytic in    with        and       <1 and 

such that               . If        is univalent in   for all     , then 

             if                   and             . 

 Let            , and let      be univalent in  . If      and 

                            are univalent in   for all      and satisfy the 

following (second-order) strong differential superordination 

                                                                                

then      is called a solution of the strong differential superordination. The 

univalent function      is called a subordinant of the solution of the strong 

differential superordination or, more simply a subordinant if           for all  

     satisfying (1.8.4). A univalent dominant         that satisfies            

for all subordinants        of (1.8.4) is said to be the best subordinant. 

Let     be a set in    and suppose (1.8.4) is replaced by 

                                                                           

the condition in (1.8.5) will also be referred as a (second-order) strong 

differential superordination. 

 A strong differential superordination which was defined by (G. Oros, 

2007) in the form 

                                                           

where      is analytic in   and                         is univalent in    for 

all     ,  is called first order linear strong differential superordination.  

 The next classes consist in the fact that the coefficients of the functions 

in those classes are not constants but complex-valued functions. Using those 

classes, a new approach in studying the strong differential subordinations 

can be developed (G. Oros, 2011). 
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 Let         denote the class of analytic functions in      and let 

                         

                         
                  

where         are analytic functions in                and     , and  

                                                               

Let  

  
                    

        

      
                

be the class of starlike functions in      , and 

  
                      

         

       
                

be the class of convex functions in      . 

 Let        and        analytic functions in      . The function        is 

said to be strongly subordinate to        or        is said to be strongly 

superordinate to        if there exists a function   analytic in    with 

       and          such that                   for all      .  In such 

a case we write 

                                             

If        is analytic functions in     , and univalent in  , for all     , then 

             , for all      and                . If               

and            , then the strong subordination becomes the usual notation 

of subordination. 
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1.9 Motivations and outlines  

 The attention to the so-called coefficient estimate problems for different 

subclasses of univalent and  -valent functions has been the main interest 

among authors. Hence there are many new subclasses and new properties 

of univalent and  -valent functions have been introduced. The study of 

operators plays a vital role in mathematics. To apply the definitions of 

fractional calculus operators (that are derivatives and integrals) for univalent 

and  -valent functions and then study its properties, is one of the hot areas 

of current ongoing research in the geometric function theory.  

 In this thesis, motivated by wide applications of fractional calculus 

operators in the study of univalent and  -valent functions including (Altintas 

et al. 1995a), (Altintas et al. 1995b), (Khairnar and More, 2009), (Irmak et al., 

2002), (Owa, 1978), (Owa, 1985b), (Owa and Shen, 1998), (Raina and Bolia, 

1998), (Raina and Nahar, 2000), (Raina and Choi, 2002), (Raina and Nahar, 

2002), (Raina and Srivastava, 1996), (Srivastava and Aouf, 1992), 

(Srivastava and Aouf, 1995), (Srivastava and Mishra, 2000), (Srivastava et 

al.,1988), (Srivastava and Owa, 1984), (Srivastava and Owa, 

1987),(Srivastava and Owa, 1989), (Srivastava and Owa, 1991b), 

(Srivastava and Owa, 1992) and (Srivastava et al., 1998) we present a study 

based on fractional derivative operator and its applications to certain classes 

of  -valent (or multivalent) functions in the open unit disk regarding various 

properties of some classes of functions with negative coefficients, sufficient 

conditions for starlikeness and convexity, sharp coefficient bounds, 

differential subordination and superordination, and strong differential 
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subordination and superordination. Our finding will provide interesting new 

results and extensions of an number known results. 

 

1.9.1 Functions with negative coefficients and related classes 

 Several classes of univalent functions have been extended to the case of 

 -valent functions in obtaining some properties such as coefficient estimates, 

distortion theorem, extreme points, inclusion properties, modified Hadamard 

product  and radius of convexity and starlikeness. (Aouf and Hossen, 2006) 

have generalized certain classes of univalent starlike functions with negative 

coefficients due to (Srivastava and Owa, 1991a) to obtain coefficient 

estimates, distortion theorem and radius of convexity for certain class of  -

valent starlike functions with negative coefficients. More recently, (Aouf and 

Silverman, 2007) studied certain classes of  -valent  -prestarlike functions of 

order  . Subsequently, (Aouf, 2007) extended the classes of (Aouf and 

Silverman, 2007) to case  -valent  -prestarlike functions of order   and type 

 . Moreover, (Gurugusundaramoorthy and Themangani, 2009) introduced 

class of uniformly convex functions based on certain fractional derivative 

operator. 

 The above observations motivate us to define some new classes of  -

valent functions with negative coefficients           in the open unit disk 

by using certain fractional derivative operator. This leads to the results 

presented in Chapter 2. Some of the results established in this chapter 

provide extensions of those given in earlier works.  

  An outline of chapter 2 is as follows:  

   Section 2.1 is an introductory section.  
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   Section 2.2 consists the definitions of the modification of fractional      

    derivative operator      
     

      and the classes       
           and 

                    of       as follows: 

 A function            is said to be in       
           if it satisfies the  

following inequality 

        
 

 
       

     
     

 

    
  

      
     

     
 

    
     

 

 
                                                       

                                     

                       

for the function  

             

 

   

                              

belonging to         , where 

    
     

                      
     

                                             

         and 

               
                  

                
      

Further, if           satisfies the condition (1.9.1.1) for            , 

we say  that                     . 

Also, We obtain coefficient inequalities, distortion properties and 

convexity of functions in these classes. 
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 Section 2.3 gives the definition of the classes       
 

          and  

      
           of      by using the Hadamard product (or convolution) 

involving the fractional derivative operator     
     

     as follows: 

 A function            is said to be in the class        
            if and 

only if 

 

 
     

     
     

 

   
     

    
  

     
     

     
 

   
     

    
     

 

 

                  

with 

   
     

                    
     

      

where           is given by 

              
    

    

 

   

       

 and      
     

     is given by (1.9.1.2), for                        

                                          and 

   . Further, a function           is said to be in the class  

      
           if and only if           

      

 
       

             

Here, we study coefficient estimates, distortion properties, extreme 

points, modified Hadmard products, inclusion properties, radii of close-

to-convex, starlikeness, and convexity for functions belonging to these 

classes.  
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 Section 2.4 presents the definition of the classes           
     

      

and             
     

      of  -uniformly  -valent starlike and convex 

functions in the open unit disk as follows: 

 The function           is said to be in the class           
     

      if 

and only if 

   
     

     
    

    
     

    
      

     
     

    

    
     

    
                         

                                                       

                                 

where     
     

     and      
     

     as given in (1.9.1.2). We let 

           
                     

                 

Also, we derive some properties for these classes including coefficient 

estimates, distortion theorems, extreme points, closure theorems and 

radii of  -uniform starlikeness, convexity and close-to-convexity. 

 

1.9.2 Starlikeness,  convexity and coefficient bounds 

 The problem of sufficient conditions for starlikeness and convexity is 

concerning to find conditions under which function in certain class are 

starlike and convex, respectively. (Owa and Shen, 1998) and (Raina and 

Nahar, 2000) introduced various sufficient conditions for starlikeness and 

convexity of some classes of univalent functions associated with certain 

fractional derivative operators. Also, the results of (Jack, 1971) and 

(Nunokawa, 1992) which popularly known as jack’s Lemma and 

Nunokawa’s Lemma in literature have applied to obtain many of sufficient 
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conditions for starlikeness and convexity for analytic functions and were 

studied by (Irmak and Cetin, 1999), (Irmak and Piejko, 2005) and (Irmak 

et al., 2002).  

 There are now several results for Fekete and Szegö problem in 

literature, each of them dealing with        
   for various classes of 

functions. The unified treatment of various subclasses of starlike and 

convex functions (Ma and Minda, 1994) and the coefficient bounds for 

various classes (Ali et al., 2007), (Ramachandran et al., 2007), (Rosy et 

al., 2009) and (Shanmugam et al., 2006a) motivate one to consider 

similar classes defined by subordination.  

 The above contributions on sufficient conditions for starlikeness and 

convexity of univalent functions and sharp coefficient bounds for some 

classes of univalent and  -valent functions encourage us to obtain 

conditions for starlikeness and convexity to case  -valent functions 

associated with certain fractional derivative operator and also, to obtain 

coefficient bounds for            
   and        for certain classes of  -

valent analytic function associated with fractional derivative operator. This 

leads to the results presented in Chapter 3. Some of our results in this 

chapter generalize previously known results. This chapter contains of 

three sections: 

 An outline of chapter 3 is as follows:  

 Section 3.1 is an introductory section and contains some preliminary 

results which are absolutely essential for completing the results used 

in subsequent sections. 
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 Section 3.2 gives some sufficient conditions for starlikeness and 

convexity and divided into three subsections. 

 Subsection 3.2.1  gives some sufficient conditions for starlikeness and 

convexity by using the results of the classes         and         due 

to (Owa, 1985a). 

 subsection 3.2.2 contains some sufficient conditions for starlikeness 

and convexity involving the Hadamard product (or convolution). 

 Subsection 3.2.3 is concerned to apply Jack’s Lemma and 

Nunokakawa’s Lemma for  -valent functions involving the operator 

    
     

     to obtain some sufficient conditions for starlikeness and 

convexity. 

 Section 3.3 gives coefficient bounds for  -valent functions associated 

with the operator     
     

     belonging to certain classes and is 

divided into three subsections. 

 Subsection 3.3.1 gives the definition of the classes         
     

          
     of      as follows: 

  A function            is in the class            
      if 

  
 

 
 
    

           
    

    
     

    
                                

Also, we let            
             

     . 

Here, we obtain some coefficient bounds for functions belonging to the 

classes         
     and            

    . 
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   Subsection 3.3.2 gives the definitions of some classes of  -valent 

Bazilevič functions such as the classes       
     

    and         
     

    of   

      as follows: 

 A function           is in the class          
     

     if 

  
 

 
       

    
     

    

  
 

 

  
    

           
    

    
     

    
 
    

     
    

  
 

 

    

       

where 

                                         

                     

 Also, we let          
               

     
   .  

Here, we obtain some coefficient bounds for functions belonging to the 

classes        
     

    and         
     

   . 

Moerover, we define the classes       
     

    and         
     

   , of      as 

follows: 

A function             is in the class          
     

     if 

  
 

 
                        

where   

                               

    
           

    

    
     

    
 
    

     
    

  
 

 

            
    

           
    

    
           

    
  

       
    

           
    

    
     

    
   

    
           

    

    
     

    
      



47 
 

                                       

                    

Also, we let          
               

     
   .  

We obtain some coefficient bounds for functions belonging to the 

classes       
     

    and         
     

   .  

 Subsection 3.3.3 contains the definitions of the classes       
     

    and  

        
     

     of  -valent non-Bazilevič functions as follows: 

  A function             is in the class          
     

     if 

  
 

 
       

  

    
     

    
 

 

  
    

           
    

    
     

    
 

  

    
     

    
 

 

    

       

where 

                                             

                  

 Also, we let           
               

     
   .  

          Here, we obtain some coefficient bounds for functions belonging to the   

classes        
     

    and          
     

   . 

 

1.9.3 Differential subordination and superordination  

 By using the differential superordination, (Miller and Mocann, 2003) 

obtained conditions on           and   for which the following implication 

holds   
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 With the results of (Miller and Mocann, 2003), (Bulboaca, 2002a) 

investigated certain classes of first order differential superordinations as well 

as superordination-preserving integral operators (Bulboaca, 2002b). (Ali, et 

al., 2004) used the results obtained by (Bulboaca, 2002b) and gave the 

sufficient conditions for certain normalized analytic functions to satisfy 

      
      

    
        

where       and       are given univalent functions in   with         and 

       . (Shanmugam et al., 2006b) obtained sufficient conditions for 

normalized analytic functions to satisfy  

      
    

      
        

and 

      
       

      
         

where       and       are given univalent functions in     with         and 

       .  

 Motivated by the above results, we investigate some results 

concerning an application of first order differential subordination, 

superordination for  -valent functions involving certain fractional 

derivative operators. This leads to the results presented in Chapter 4.  

 An outline of Chapter 4  is as follows:  

 Section 4.1 is an introductory section. 

 Section 4.2 contains some new differential subordination results for 

analytic functions associated with the operator     
     

    . 
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 Section 4.3 contains some new differential superordination results for 

analytic functions associated with the operator     
     

    . 

 Section 4.4 contains some sandwich results for analytic functions 

associated with the operator     
     

     by combining the results of 

sections 4.2 and 4.3. 

 

1.9.4 Strong Differential subordination and superordination  

 As a motivation of some works on strong differential subordination and 

superordination due to (G. Oros and Oros, 2007), (G. Oros, 2007), (G. Oros 

and Oros, 2009) and (G. Oros, 2009), we study strong differential 

subordination and superordination for  -valent functions involving certain 

fractional derivative operator in the open unit disk. This leads to the results 

presented in Chapter 5.  

 An outline of Chapter 5  is as follows:  

 Section 5.1 is introductory section. 

 Section 5.2 gives new results for strong differential subordination and 

superordination for analytic functions involving the operator     
     

     

by investigating appropriate classes of admissible functions. 

Sandwich-type results are also obtained.  

 Section 5.3 discusses some results of first order linear strong 

differential subordination involving the operator      
     

    . 

 Section 5.4 discusses some results of strong differential subordination 

and superordination involving the operator     
     

       based on the 
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fact that the coefficients of the functions are not constants but 

complex-valued functions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



51 
 

Chapter 2 

 

Properties for certain classes of  -valent 

functions with negative coefficients 

  

 This chapter is devoted to the study of certain classes of      of  -valent 

functions whose non-zero coefficients, from the second on, are negative 

defined by a fractional derivative operator with an aim to obtain coefficient 

conditions for functions to be in some subclasses of      and distortion 

theorems. Further results given extermal properties, closure theorems, 

modified Hadamard product, inclusion properties, and the radii of close-to-

convexity, starlikeness, and convexity for functions belonging to those 

subclasses are also considered. Moreover, relevant connections of the 

results which are presented in this chapter with various known results are 

also discussed. In section 2.1, we give preliminary details which are require 

to prove our results. In section 2.2, we give the definition of fractional 

derivative operator     
     

     and introduce two new classes        
           

and                 of  -valent functions by using results of (Owa, 1985a). 

We obtain coefficient inequalities, distortion properties, and the radii of 

convexity for functions belonging to those classes . In section 2.3, we define 

the classes       
           and       

           of  -valent functions by using 

the Hadamard product in order to obtain coefficient estimates and distortion 

properties. Results including extreme points, modified Hadamard products, 
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inclusion properties, and the radii of convexity, starlikeness, and close-to-

convexity for functions belonging to those classes are also discussed. 

Section 2.4 is mainly concerned with the classes            
     

      of  -

uniformly  -valent functions. The results presented include coefficient 

estimates, distortion properties, extreme points and closure theorems. The 

radii of convexity, starlikenesss and close-to-convexity for functions 

belonging to those classes are also determined.  

 

 The results of sections 2.2 and 2.3 are, respectively, from the published 

papers in Sutra: Int. J. Math. Sci. Education. (Amsheri and V. Zharkova, 

2011a) and Int. J. Contemp. Math. Sciences (Amsheri and V. Zharkova, 

2011b), while the results of section 2.4 are from British Journal of 

Mathematics & Computer Science (Amsheri and V. Zharkova, 2012j) and 

from Int. J. Mathematics and statistics (Amsheri and V. Zharkova, 2012a). 

 

2.1 Introduction and preliminaries  

 We refer to Chapter 1 for related definitions and notations used in this 

chapter. First, to introduce our main results in section 2.2, we consider the 

classes             and           , of  -valent starlike functions with 

negative coefficients in   which were introduced by (Aouf and Hossen, 2006) 

and defined as follows: 

 A function            is said to be in the class              if it satisfies 

the condition 

http://www.sciencedomain.org/journal-home.php?id=6
http://www.sciencedomain.org/journal-home.php?id=6
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for                     defined by 

                 

 

   

                                                           

 where       and      . If           satisfies the condition (2.1.1) 

for                   ,       and      , we say that the 

function      is in the class           . 

For these classes, results concerning coefficient estimates, distortion 

theorems and the radii of convexity are obtained by authors. In fact, these 

classes are extensions of the classes which introduced and studied by 

(Srivastava and Owa, 1991a) and (Srivastava and Owa, 1991b) when     . 

 Next, to introduce our main results in section 2.3, we consider the 

classes           and          of      consisting, respectively, of functions 

which are  -valent starlike functions of order   and type   and  -valent 

convex of order    and type   which were studied by (Aouf, 1988) and (Aouf, 

2007). These classes are extensions of the familiar classes were studied 

earlier by (Gupta and Jain, 1976) when    . For    , the classes 

                  and                 were studied by (Patil and 

Thakare,1983) and (Owa, 1985a), respectively. We denote by           and 

         the classes obtained by taking intersections, respectively, of the 

classes            and          with     . The classes           and 

         were studied by (Aouf, 1988). In particular, for    , we have the 

classes                   and                  which were introduced 
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by (Owa, 1985a) and the classes                 and               

when      and     were studied by (Silverman, 1975). Furthermore, we 

define the class   
       of      which was studied by (Aouf, 2007) by 

means of the Hadamard product (or convolution) as follows: 

 A function            is said to be in the class    
       if it satisfies the 

condition 

     
                                                              

where  

  
     

  

           
                                                      

The class   
       is called the class of  -valent  -prestarlike functions of 

order   and type   where                   and    . The 

class   
       for functions satisfy  

       
       

      

 
   

        

is also studied. (Aouf, 2007) obtained several results for functions with 

negative coefficients belonging the classes   
       and   

 
      such as 

coefficient estimates, distortion theorems, extreme points and radii of 

starlikeness and convexity. Further results concerning the modified 

Hadamard product are also established. The classes of functions   
       

and   
       include, as its special cases various other classes were studied 

in many earlier works, for example, (Ahuja and Silverman,1983), (Aouf and 

Silverman, 2007), (Owa and Uralegaddi, 1984), (Silverman, 1975) and 

(Srivastava and Aouf, 1995).  
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 Finally, to introduce our main results in section 2.4, we consider the 

classes of uniformly convex functions and uniformly starlike functions which 

were first introduced and studied by (Goodman, 1991a) and (Goodman, 

1991b), and were studied subsequently by (Rǿnning 1991), (Rǿnning 

1993a), (Rǿnning 1993b), (Minda and Ma, 1992), (Minda and Ma, 1993) and 

others. More recently, (Murugusundaramoorthy and Themangani, 2009) 

introduced and studied certain class of uniformly convex functions based on 

fractional calculus operator and defined as: 

 A function         is said to be in the class            if it satisfies  

   
      

      
     

      

      
                                                        

where                           and 

                 
       

We let                         . Here, the authors investigated some 

results such as coefficient estimates, extreme points and distortion bounds.   

 

 In this chapter, motivated by the above discussion we introduce new 

classes of  -valent functions with negative coefficients associated with 

certain fractional derivative operator. These classes generalize the concepts 

of starlike and convex, prestarlike, and uniformly starlike and uniformly 

convex functions.  We obtain coefficient estimates and distortion theorems. 

Further results given extermal properties, closure theorems, modified 

Hadamard product, inclusion properties, and the radii of close-to-convexity, 

starlikeness, and convexity for functions belonging to those classes are also 

considered. Moreover, relevant connections of the results which are 

presented in this chapter with various known results are also discussed. 
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 Let us now give the following lemmas 2.1.1 and 2.1.2 for the classes 

        and        following the methodology by (Owa, 1985a) which will be 

required in the investigation presented in the next section. 

Lemma 2.1.1. Let the function      defined by  

                 

 

   

                                               

Then       is in the class          if and only if 

                   

 

   

                                               

Lemma 2.1.2. Let the function      defined by (2.1.6). Then      is in the 

class        if and only if 

                             

 

   

                                            

 

2.2 Classes of  -valent starlike functions involving results of Owa 

In this section we first give the definition of the modification of fractional 

derivative operator     
     

  (Amsheri and Zharkova, 2011a) for           by  

    
     

                      
     

                                               

where 

               
                  

                
                                  

for                                 . By using (1.2.3), we can 

write      
     

      in the form 
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If          , we can write      
     

      in the form 

     
     

                    

 

   

                                          

where 

            
          

           
 

                

                  
                          

It is easily verified from (2.2.3) that (Amsheri and Zharkova, 2011d) 

       
     

     
 

           
           

           
     

                         

This identity plays a critical role in obtaining the information about functions 

defined by use of the fractional derivative operator. We note that 

     
     

              
     

     
      

 
    

 Now, let us give the following definition of the classes       
            

and                 of  -valent starlike functions based on the fractional 

derivative operator     
     

     (Amsheri and Zharkova, 2011a). 

Definition 2.2.1. The function           is said to be in the class 

      
            if 

        
 

 

       
     

     
 

    
  

      
     

     
 

    
     

 

 
                                       

                               

                           



58 
 

for the function      defined by (2.1.6) belonging to the class         and  

    
     

     is given by (2.2.4). Further, if           satisfies the condition 

(2.2.7) for            , we say that                       

 The above-defined classes       
           and                 contain 

many well-known classes of analytic functions. In particular, for      , 

we have 

      
                       

and 

                           

where             and            are precisely the classes of  -valent 

starlike functions which were studied by (Aouf and Hossen, 2006). 

Furthermore, for       and     , we obtain  

      
                     

and 

                         

where           and          are the classes of starlike functions which 

were studied by (Srivastava and  Owa, 1991a) and ( Srivastava and  Owa, 

1991b). 

 In next subsections let us obtain some properties for functions belonging 

to the classes       
           and                . 

2.2.1 Coefficient estimates  

 In this subsection, we first state and prove the sufficient condition for 

the functions           in the form (1.2.5) to be in the class  

      
           according (Amsheri and Zharkova, 2011a). 
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Theorem 2.2.1.1.  Let the function      defined by (1.2.5 ). If        belongs 

to the class        
          ,  then    

                 

 

   

          
                 

     
          

          

where              is given by (2.2.5).  

Proof.  We have from (2.2.4) that 

    
     

         
                

                  
       

   

 

   

  

Since             
          , there exist a function      belonging to the 

class          such that 

           
      

     
     

 

      

      
     

     
 

           
                                          

It follows from (2.2.1.2) that 

   
                   

                    
 

                                              
   

       

          

Choosing values of    on the real axis so that        
     

     
 

      is real, 

and letting        through real axis, we have  

                  

 

   

                

                                             

 

   

   

or, equivalently, 
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Note that, by using Lemma 2.1.1,                 implies 

        
   

     
                                                                     

Making substituting (2.2.1.5) in (2.2.1.4), we complete the proof of Theorem 

2.2.1.1.      

 Now we can obtain the following corollary from Theorem 2.2.1.1 

(Amsheri and Zharkova, 2011a). 

Corollary 2.2.1.2. Let the function      defined by (1.2.5) be in the class  

      
          . Then    

      
                                

                            
                         

where             is given by (2.2.5). The result (2.2.1.6) is sharp for a 

function of the form: 

        
                                

                            
                     

with respect to  

                      
   

     
                                                          

Remark 1. By letting            and     in Corollary 2.2.1.2, we 

obtain the result which was proven by [(Gupta, 1984), Theorem 3].  

 In the similar manner, Lemma 2.1.2 can be used to prove the following 

theorem for coefficient estimates of the class                 (Amsheri and 

Zharkova, 2011a). 
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Theorem 2.2.1.3. Let the function      defined by (1.2.5) be in the class  

               . Then  

                 

 

   

          
                  

            
           

           

where               is given by (2.2.5). 

 Now we can obtain the following corollary from Theorem 2.2.1.3 

(Amsheri and Zharkova, 2011a). 

Corollary 2.2.1.4. Let the function      defined by (1.2.5) be in the class 

               . Then    

      
                                      

                             
                 

where             is given by (2.2.5). The result (2.2.1.10) is sharp for a 

function of the form: 

        
                                      

                             
      

           

with respect to  

             
      

            
                                     

 

2.2.2    Distortion Properties 

 Let us investigate the modulus of  the function      and its derivative for 

the class        
           (Amsheri and Zharkova, 2011a).  

Theorem 2.2.2.1.  Let           such that 
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Also, let      defined by (1.2.5) be in the class        
          . Then  

                                                                                                  

                                                                                                  

                                                                                        

and 

                                                                                        

for      , provided that               and         where 

                 
                                     

                           
    

          

The estimates for        and          are sharp. 

Proof.  We observe that the function             defined by (2.2.5) satisfy 

the inequality 

                                             

provided that       
   

 
   Thereby, showing that             is non-

decreasing. Thus under conditions stated in (2.2.2.1)  we have for all      

  
              

                
                                              

For            
          , (2.2.1.4) implies 

                           

 

   

                  

 

   

            

          

For              , Lemma 2.2.1 yields 
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so that (2.2.2.8) reduces to 

                

 

   

  
                                     

                           
   

                                                                                                              

Consequently, 

                         

 

   

                                                       

and 

                        

 

   

                                                       

On using (2.2.2.11), (2.2.2.12) and (2.2.2.10), we easily arrive at the desired 

results (2.2.2.2) and (2.2.2.3). 

 Furthermore, we note from (2.2.1.4) that 

                           

 

   

                  

 

   

           

           

which in view of (2.2.2.9), becomes 

           

 

   

  
                                     

                          
 

                                                                                 

Thus, we have 

                                

 

   

                                         

and  
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On using (2.2.2.15), (2.2.2.16) and (2.2.2.14), we arrive at the desired results 

(2.2.2.4) and (2.2.2.5). 

 Finally, we can prove that the estimates for        and         are sharp 

by taking the function 

          
                                     

                           
      

           

with respect to  

        
   

     
                                                    

This completes the proof of Theorem 2.2.2.1. 

Remark 2. By letting           and     in Theorem 2.2.2.1, we 

obtain the result which was proven by [(Gupta, 1984), Theorem 4].  

 Let us now investigate the modulus of the function      and its derivative 

for the class                 (Amsheri and Zharkova, 2011a).  

Theorem 2.2.2.2. Under the conditions stated in (2.2.2.1), let the function 

     defined by (1.2.5) be in the class                 . Then 

                                                                                         

                                                                                       

                                                                             

and 

                                                                           

for    , provided that               and      ,  where  
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The estimates for        and         are sharp. 

Proof. By using Lemma 2.1.2, we have 

       

 

   

 
      

            
                                                      

Since            , the assertions (2.2.2.19), (2.2.2.20), (2.2.2.21) and 

(2.2.2.22) of Theorem 2.2.2.2 follow if we apply (2.2.2.24) to (2.2.1.4). The 

estimates for        and          are attained by the function 

          
                                                        

                           
       

           

with respect to  

             
      

            
                                           

This completes the proof of Theorem 2.2.2.2. 

  Next let us investigate further distortion properties for the class 

      
           involving generalized fractional derivative operator     

     
  

(Amsheri and Zharkova, 2011a). 

Theorem 2.2.2.3. Let                            and    . 

Also, let the function      defined by (1.2.5) be in the class       
          . 

Then 

      
     

      
      

         
   

                   

            
                        

and 

     
     

      
      

         
   

                   

            
                          

for     and           is given by (2.2.2).  
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Proof. Consider the function     
     

     defined by (2.2.4). With the aid of 

(2.2.2.7) and (2.2.2.14), we find that 

     
     

                                       

 

   

  

      
                   

            
                         

and 

      
     

                                        

 

   

 

      
                   

            
                       

which yields the inequalities (2.2.2.27) and (2.2.2.28) of Theorem 2.2.2.3. 

 In the similar manner, we can establish the distortion property for the 

class                 (Amsheri and Zharkova, 2011a). 

Theorem 2.2.2.4. Let                            and    . let 

the function      defined by (1.2.5) be in the class                 . Then 

     
     

       

      

         
   

                                      

                 
       

           

and 

     
     

       

      

         
   

                                      

                 
      

           

for     and           is given by (2.2.2).  
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Remark 3. By letting         and using the relationship (1.6.5) in 

Theorem 2.2.2.3, Theorem 2.2.2.4, we obtain the results, which were proven 

by [(Srivastava and Owa, 1991b), Theorem 5 and Theorem 6, respectively]. 

 

2.2.3 Radii of Convexity  

 Let us solve the radius of convexity problem that is to determine the 

largest disk               such that each function      in the class 

      
           is   -valent convex in       (Amsheri and Zharkova, 2011a).  

Theorem 2.2.3.1. Let the function      defined by (1.2.5) be in the class 

      
          . Then        is   -valent convex in the disk       , where 

            
  

                          
 

 
  

                                    

and                   is given by (2.2.2.6).  

Proof.  It suffices to prove 

      
       

     
                                                          

Indeed we have 

      
       

     
     

               
   

               
   

  

 

 
        

           

                 
   

                          

Hence (2.2.3.2) is true if 

       

 

   

                           
 

   

                           

that is, if 
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with the aid of (2.2.2.14), (2.2.3.5) is true if 

             
  

                    
                                         

Solving (2.2.3.6) for    ,  we get  

      
  

                          
 

 
  

                                          

This completes the proof of Theorem 2.2.3.1. 

 In the similar manner,  we can find the radius of convexity for functions in 

the class                 .  

Theorem 2.2.3.2. Let the function      defined by (1.2.5) be in the class 

               . Then       is  -valent convex in the disk        , where 

             
  

                          
 

 
  

                                 

and                  is given by (2.2.2.23).  

 

2.3 Classes of  -valent starlike and convex functions involving the 

Hadamard product 

 In this section we introduce new certain classes of  -valent starlike and 

convex functions with negative coefficients by using the Hadamard product 

(or convolution) involving the fractional derivative operator     
     

     given 

by (2.2.4) and investigate some properties for functions belonging to these 

classes. Let us begin with the following definition according to (Amsheri and 

V. Zharkova, 2011b). 
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Definition 2.3.1. A function           is said to be in the class 

      
            if and only if 

 

 

     
     

     
 

   
     

    
  

     
     

     
 

   
     

    
     

 

 
                                           

                                 

                                    

with 

   
     

                    
     

                                                      

where 

              
    

    

 

   

       

and     
     

     is given by (2.2.4). Further, a function           is said to 

be in the class       
           if and only if           

      

 
       

                                                    

 We note that, by specifying the parameters             and   for those 

generalized classes, we obtain the most of the subclasses which were 

studied by various authors: 

1. For     and        we get       
                    , that is 

the class of  -valent starlike functions of order   and type  , which 

was studied by (Aouf, 1988). 
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2. For           and      we have        
                  , 

that is the class of starlike functions of order   and type  , which was 

studied by (Gupta and Jain, 1976). 

3. For           and      we obtain the class       
           

       , which was introduced by (Owa, 1985a). 

4. For               and      we have       
           

     , which was studied by (Silverman, 1975). 

5. For                      and      , we obtain 

      
                  

      , that is the class of  -valent  -

prestarlike functions of order   and type  , which was studied by 

(Aouf, 2007). 

6. For                            and    , we have 

      
                       , that is the class of  -valent  -

prestarlike functions of order  , which was studied by (Aouf and 

Silverman, 2007).  

7. For           and      we have the class        
           

       , which was studied by (Gupta and Jain, 1976). 

8. For     and      , we have the class       
           

        , that is the class of  -valent convex functions of order   and 

type   ,  which was studied by (Aouf, 1988).  

9. For           and    , we have the class       
           

      , which was studied by (Owa, 1985a). 

10.  For               and    , we obtain the class 

      
               , which was studied by (Silverman, 1975).  
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11.  For                      and      , we obtain the 

class       
                  

      , which was studied by (Aouf, 

2007).  

12. For                            and    , we have 

       
                       , which was studied by (Aouf and 

Silverman, 2007).  

Thus, the generalization classes       
           and       

           defined 

in this section is proven to account for most available classes discussed in 

the previous papers and generalize the concept of prestarlike functions. 

 In the next subsections let us obtain some properties for functions 

belonging to the classes       
           and       

          . 

2.3.1 Coefficient estimates 

 In this subsection we state and prove the necessary and sufficient 

conditions for functions to be in the classes       
          according to 

(Amsheri and V. Zharkova, 2011b). 

Theorem 2.3.1.1. Let the function      to be defined by (1.2.5). Then       

belongs to the class       
           if and only if 

               

 

   

  
                                                

where 

     
             

                    

                      
                             

Proof.  We have from (2.3.2) that 
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Let the function      be in the class       
          . Then in view of (2.3.1), 

we have 

 

 

     
     

     
 

   
     

    
  

     
     

     
 

   
     

    
     

 

 
  

 
   

     
                   

 

                   
                    

   

                      

Since               for all     we have 

    
   

     
                   

 

                   
                    

   

                           

Choosing values of   on the real axis so that       
     

     
 

   
     

       is 

real, and letting        through real axis, we get 

  

 

   

  
                    

                     
                 

 

   

   

which implies that the assertion (2.3.1.1).  

 Conversely, let the inequality (2.3.1.1) holds true, then  

      
     

     
 

     
     

             
     

     
 

          
     

       

                

 

   

  
                                               

by the assumption. This implies that             
             

 Now we can obtain the following corollary from Theorem 2.3.1.1 

according (Amsheri and Zharkova, 2011b).  
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Corollary 2.3.1.2.  If the function      is in the class        
          ,  then 

     
       

                
            

                                      

where   
             is given by (2.3.1.2). The result (2.3.1.7) is sharp for the 

function      of the form 

        
       

                
            

                                 

 In the similar manner, we can establish the necessary and sufficient 

conditions for functions to be in the classes       
           according 

(Amsheri and V. Zharkova, 2011b). 

Theorem 2.3.1.3. The function      belongs to the class       
            if 

and only if 

                    

 

   

  
                                      

where    
              is given by (2.3.1.2). 

 Now we can obtain the following corollary from Theorem 2.3.1.3  

(Amsheri and V. Zharkova, 2011b). 

Corollary 2.3.1.4.  If the function      is in the class        
          , then 

     
        

                     
            

                            

where    
              is given by (2.3.1.2). The result (2.3.1.10) is sharp for 

the function       of the form 
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2.3.2 Distortion Properties 

 Let us find the modulus of      and its derivative for the class 

      
           according to (Amsheri and V. Zharkova, 2011b). 

Theorem 2.3.2.1. Let         such that                      

                
   

 
              . If      belongs to the 

class        
          , then  

             
                        

                             
        

          

               
                        

                             
        

          

                 
                        

                        
      

          

and 

                  
                        

                        
         

          

for     and    . The estimates for        and           are sharp. 

Proof. Under the hypothesis of the theorem, we observe that the function  

  
            is a decreasing function for    , that is 

      
               

              

for all    ,  thus 
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Therefore from (2.3.1.1) we have 

           

 

   

 
       

                
            

 

 
                        

                             
                            

since 

                        

 

   

                                               

and 

                       

 

   

                                               

On using (2.3.2.6) to (2.3.2.7) and (2.3.2.8), we easily arrive at the desired 

results (2.3.2.1) and (2.3.2.2).  Furthermore, we observe that 

                               

 

   

                                       

and 

                               

 

   

                                  

On using (2.3.2.6) to (2.3.2.9) and (2.3.2.10), we easily arrive at the desired 

results (2.3.2.3) and (2.3.2.4).   

 Finally, we can see that the estimates for        and         are sharp for 

the function 

        
                        

                             
                     

The proof is complete. 



76 
 

 In the similar manner, we can establish the following distortion properties 

for functions in the class        
           (Amsheri and Zharkova, 2011b). 

Theorem 2.3.2.2. Let          such that                  ;   

                
   

 
               . If      belongs to the 

class       
          ,  then  

             
                         

                              
        

           

             
                         

                              
        

           

                 
                         

                             
        

           

and 

                  
                         

                             
       

           

for      and     . The estimates for        and         are sharp. 

 In the similar manner, we can establish further distortion properties for 

the class       
           involving the operator   

     
 defined by (2.3.2) 

(Amsheri and Zharkova, 2011b). 

Theorem 2.3.2.3. Let                                      

                          and     . Also, let the function      be in 

the class        
          . Then 
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and 

     
     

     
 

          
            

              
        

for      and   
     

     is defined by (2.3.2). 

 Also, we can establish further distortion properties for the class 

      
           involving the operator   

     
 defined by (2.3.2) (Amsheri and 

Zharkova, 2011b) 

Theorem 2.3.2.4.  Let                                      

                         and     .  Also, let the function      be in 

the class       
            Then 

     
     

           
        

                   
        

      
     

           
        

                   
           

     
     

     
 

          
        

              
             

and 

     
     

     
 

          
        

              
          

for       and    
     

     is defined by (2.3.2). 
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2.3.3 Extreme points 

 Let us investigate the extreme points which are functions belonging to 

the class       
           following (Amsheri and Zharkova, 2011b).  

Theorem 2.3.3.1.   Let  

                                                                                     

and 

             
       

                
            

                      

          

Then            
           if and only if it can be expressed in the form 

            

 

   

                                                                

where 

                

 

   

                                                          

Proof.  Let  

                       

 

   

        

      
       

                
            

 

   

                         

Then, in view of (2.3.3.4), it follows that 

 
                

            

       

 

   

  
       

                
            

      

      

 

   

                                                                                                       

So, by Theorem 2.3.1.1,      belongs to the class        
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 Conversely, let the function      belongs to the class       
          . 

Then  

     
       

                
            

                                    

Setting 

     
                

            

       
                                       

and 

           

 

   

                                                               

we see that      can be expressed in the form (2.3.3.3). This completes the 

proof of the Theorem 2.3.3.1. 

 Now we can obtain the following corollary from Theorem 2.3.3.1 

according to (Amsheri and Zharkova, 2011b). 

Corollary 2.3.3.2. The extreme points of the class        
           are the 

functions       and        , given by (2.3.3.1) and (2.3.3.2), respectively. 

 In the similar manner, we can obtain the extreme points for the class  

      
          . 

Theorem 2.3.3.3.  Let  

                                                                          

and 

            
        

                     
            

                   

           

Then             
            if and only if it can be expressed in the form 
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where 

                

 

   

                                                               

 Now we can obtain the following corollary from Theorem 2.3.3.3 

according to (Amsheri and Zharkova, 2011b). 

Corollary 2.3.3.4. The extreme points of the class       
           are the 

functions       and          given by (2.3.3.10) and (2.3.3.11), respectively. 

 

2.3.4 Modified Hadmard Products 

 Let us obtain the Hadamard product of any two functions in the class 

      
           following (Amsheri and Zharkova, 2011b). 

Theorem 2.3.4.1. Let the functions               defined by 

                

 

   

                                                      

 be in the class        
          . Then                  

          ,  where 

    
                              

                                                         
                      

Proof.  To prove the theorem, we need to find the largest     such that 

 
                

            

       

 

   

                                       

since 

 
                

            

       

 

   

                                        

and 
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we have 

 
                

            

       

 

   

                                    

Thus, it is sufficient to show that 

                
            

     
                                        

                
            

     
                                               

That is, that 

              
                   

                   
                                   

Note that 

              
       

                
            

                    

Consequently, we need only to prove that 

       

                
            

 
                   

                   
    

           

or, equivalently that 

    
              

                 
                      

                     

Let  

       
              

                 
                      

     

           

Letting       in (2.3.4.12), we obtain 
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which completes the proof of Theorem 2.3.4.1.   

 In the similar manner, we can obtain the Hadamard product of any two 

functions in the class       
           according to (Amsheri and Zharkova, 

2011b). 

Theorem 2.3.4.2. Let the functions               defined by (2.3.4.1) be in 

the class       
          . Then                  

          ,  where 

    
                               

                                                           
      

 

2.3.5 Inclusion properties 

 In this subsection let us investigate inclusion property for any two 

functions in the classes       
           according to (Amsheri and Zharkova, 

2011b). 

Theorem 2.3.5.1 Let the functions               defined by (2.3.4.1) be in 

the class       
          . Then the function 

                
        

  

 

   

                                         

belongs to the class       
          , where 

    
                              

                                                         
                  

Proof. By virtue of Theorem 2.3.1.1, we obtain  
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and 

  
                

            

       
 

  

   

      
          

  
                

            

       

 

   

        

 

                           

It follows from (2.3.5.3) and (2.3.5.4) that 

 
 

 
 
                

            

       
 

  

   

       
        

                   

Therefore we need to find the largest     such that 

                
            

       
  

 

 
 
                

            

       
 

 

                                

that is 

    
              

                 
                      

                     

Let 

       
              

                 
                      

                  

Letting       in (2.3.5.8), we obtain 

    
                              

                                                         
                   

 which completes the proof of this theorem. 

 In the similar manner, we can establish the inclusion property for the 

class       
          . 
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Theorem 2.3.5.2. Let the functions                defined by (2.3.4.1) be in 

the class       
          . Then the function      defined by (2.3.5.1) belongs 

to the class       
          , where 

    
                               

                                                           
   

 Next let us investigate further inclusion property for functions in the class 

      
           according to (Amsheri and Zharkova, 2011b). 

Theorem 2.3.5.3. Let the functions                  be in the class 

      
          . Then the function   

        
 

 
        

 

   

 

   

                                              

belongs to the class        
          . 

Proof.  Since              
          , by Theorem 2.3.1.1, we have 

 
                

            

       

 

   

                             

so 

 
                

            

       

 

   

 
 

 
        

 

   

                

 

 
   

                
            

       

 

   

        

 

   

    

which shows that            
          . 

 In the similar manner, we can establish further inclusion property for 

functions in the class       
           according to (Amsheri and Zharkova, 

2011b). 
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Theorem 2.3.5.4. Let the functions                   be in the class 

      
          . Then the function      defined by (2.3.5.10) belongs to the 

class       
          . 

 

2.3.6 Radii of close-to-convexity, starlikeness, and convexity 

 Let us obtain the largest disk for functions in the class       
           to 

be  -valent close-to-convex according to (Amsheri and Zharkova, 2011b).  

Theorem 2.3.6.1. Let the function      be in the class       
          . Then 

      is  -valent close-to-convex of order             in        , where 

          
                     

            

            
 

 
  

                     

and    
             is given by (2.3.1.2). The result is sharp with the extremal 

function      given by (2.3.1.8). 

Proof.  It suffices to show that 

 
     

    
                                                                      

Indeed, we have 

 
     

    
              

 

   

                                                  

Hence (2.3.6.3) is true if 

          

 

   

         

or 
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By Theorem 2.3.1.1, (2.3.6.4) is true if 

  
         

     
 

                
            

       
                           

Solving (2.3.6.5) for    ,  we get the desired result (2.3.6.1). 

 

 In the similar manner, we can obtain the radii of starlikeness for  

functions in the class       
           according to (Amsheri and Zharkova, 

2011b).  

Theorem 2.3.6.2.  Let the function      be in the class        
          . Then 

     is  -valently starlike of order           in        ,  where 

           
                     

            

              
 

 
  

    

and    
             is given by (2.3.1.2). The result is sharp with the extremal 

function      given by (2.3.1.8). 

Also, we can obtain the radii of convexity for functions in the class 

      
           according to (Amsheri and Zharkova, 2011b).  

Theorem 2.3.6.3. Let the function      be in the class       
          . Then 

     is  -valently convex of order           in        ,  where 

          
                      

            

                   
 

 
  

   

and    
             is given by (2.3.1.2). The result is sharp with the extremal 

function      given by (2.3.1.8). 
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2.4 Classes of  -uniformly  -valent starlike and convex functions  

 In this section we introduce new certain classes of  -uniformly  -valent 

starlike and convex functions defined by the fractional derivative operator 

    
     

     given by (2.2.1) and investigate some properties for functions 

belonging to these classes. Let us begin with the following definition 

according to (Amsheri and Zharkova, 2012j). 

Definition 2.4.1. The function           is said to be in the class   

        
     

       if and only if  

   
     

     
    

    
     

    
      

     
     

    

    
     

    
                                             

for 

                                         

                                 

where     
     

     and     
     

     are given by (2.2.1). We let 

           
                     

                                                          

The above-defined class           
     

      contain subclass           
     

    

of  -uniformly starlike and convex functions when     for        which 

satisfies the condition (Amsheri and Zharkova, 2012a) 

   
    

     
    

    
     

    
      

    
     

    

    
     

    
                                         

where     
     

     is defined by (1.6.8). We let 

           
                   

                                                   

 

Also, for              and     , we have  
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and 

           
                        

where            and             are precisely the subclasses of 

uniformly convex functions which were studied by (Gurugusundaramoorthy 

and Themangani, 2009). Furthermore, by specifying the parameters 

            and  , we obtain the most of subclasses which were studied 

by various other authors: 

1.  For             and    , the class           
           can 

be reduced to         , the class of uniformly  -valent starlike 

functions of order   ,  see (Al-Kharsani and AL-Hajiry, 2006). 

2. For                 and    , we obtain       , the 

class of uniformly starlike functions of order  , see (Owa, 1998) and 

(Rønning, 1991). 

3. For                     and    , we obtain    , the 

class of uniformly starlike functions,  see (Goodman, 1991b). 

4. For             and    , we obtain        , the class of all 

 -valent starlike functions of order   , see (Partil and Thakare, 1983). 

5. For                 and    , we have      , the class 

of starlike functions of order  , see (Duren, 1983), (Jack, 1971), 

(Robertson, 1936), (Pinchuk, 1968) and (Schild, 1965).   

6. For                     and    , we have   , the 

class of starlike functions , see (Duren, 1983). 
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Thus, the generalization class           
           defined in this section is 

proven to account for most available subclasses discussed in the previous 

papers and generalize the concept of uniformy starlike and uniformly convex 

functions. 

 In the next subsections let us obtain some properties of functions 

belonging to the classes           
           and            

          . 

2.4.1 Coefficient estimates 

 In this subsection we start with the coefficient estimates for the class 

          
     

      following (Amsheri and Zharkova, 2012j). 

Theorem 2.4.1.1. The function      defined by (1.2.3) is in the class 

          
     

       if 

                                            

 

   

                       

where  

            
         

           
 

                

                  
                     

and   

            
         

           
 

                

                  
                      

with             and             are given by (2.2.2 ). 

Proof.  We have from (2.2.3) that 

    
     

                              

 

   

  

and  
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Since                
     

     , it suffices to show that 

  
     

     
    

    
     

    
       

     
     

    

    
     

    
         

Notice that 

  
     

     
    

    
     

    
       

     
     

    

    
     

    
           

     
     

    

    
     

    
    

                            
                                 

    
   

                          
   

  

         
                                       

 
   

               
           

  

The last inequality above is bounded by       if 

                                            

 

   

      

This completes the proof. 

 Now by letting     in Theorem 2.4.1.1 we obtain the coefficient 

estimates for the class           
     

    following (Amsheri and Zharkova, 

2012a). 

Theorem 2.4.1.2. The function      defined by (1.2.2) is in the class 

          
     

    if 

                                    

 

   

                              

where 
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and   

          
                

                  
                                                

Proof.  We have from (1.6.8) that 

    
     

                       

 

   

  

and  

    
     

                       

 

   

  

Since                
     

   , it suffices to show that 

  
    

     
    

    
     

    
       

    
     

    

    
     

    
         

Notice that 

  
    

     
    

    
     

    
       

    
     

    

    
     

    
          

    
     

    

    
     

    
    

                                      
                          

  
   

                   
   

  

                             
                                

 
   

             
         

  

The last inequality above is bounded by        if 

                                    

 

   

      

This completes the proof. 

 Next, let us obtain the necessary and sufficient conditions for      to be 

in the classes             
     

      following (Amsheri and Zharkova, 2012j). 
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Theorem 2.4.1.3. The function      defined by (1.2.5) is in the class 

           
     

       if and only if 

                                          

 

   

                         

where             and             are given by (2.4.1.2) and (2.4.1.3) 

respectively. 

Proof.  In view of Theorem 2.4.1.1, we need to prove the sufficient part. Let 

                
     

       and     be real, then by the inequality (2.4.1) 

   
     

     
    

    
     

    
      

     
     

    

    
     

    
            

or 

     
                     

 

                      
   

    

  
                                 

  
   

                        
   

   

Letting       along the real axis, we obtain 

                                                
 
   

                   
 
   

    

This is only possible if (2.4.1.7) holds. Therefore we obtain the desired result 

and the proof is complete. 

 Next, let us obtain the necessary and sufficient condition for      to be in 

the classes            
     

   , following (Amsheri and Zharkova, 2012a). 

Theorem 4.2.1.4. The function      defined by (1.2.4) is in the class  

           
     

     if and only if 
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where           and           are given by (2.4.1.5) and (2.4.1.6) 

respectively.  

Proof. In view of Theorem 2.4.1.2, we need to prove the sufficient part. Let  

                
     

     and     be real, then by the inequality (2.4.3) 

   
    

     
    

    
     

    
      

    
     

    

    
     

    
     

or 

             
         

   

                    
   

     
                          

    
   

                    
   

   

Letting       along the real axis, we obtain 

                                        
 
   

               
 
   

    

This is only possible if (2.4.1.8) holds. Therefore we obtain the desired 

results and he proof is complete. 

 Now we can obtain the following corollary from Theorem 2.4.1.3 

according to (Amsheri and Zharkova, 2012j). 

Corollary 2.4.1.5. Let the function      defined by (1.2.5) be in the class 

           
          ,  then 

     
   

                                     
                 

with equality for the function      given by  
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 Also we can obtain the following corollary from Theorem 2.4.1.4 

according to (Amsheri and Zharkova, 2012a). 

Corollary 2.4.1.6. Let the function      defined by (1.2.4) be in the class 

           
        , then 

   
   

                               
               

with equality for the function      given by  

       
   

                               
                             

 

2.4.2 Distortion properties 

 Next let us obtain the modulus for functions      belonging to the class 

           
           according to (Amsheri and Zharkova, 2012j).  

Theorem 2.4.2.1. Let the function      defined by (1.2.5) be in the class 

           
           such that                           

                  
   

 
    and        

   

 
 .  Then  

           
                                   

                                  

where 

      
           

   

                                     
                   

The estimates for          are sharp. 

Proof. We observe that the functions             and             defined 

by (2.4.1.2) and (2.4.1.3), respectively, satisfy the inequalities             

              and                                provided that 
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  and       

   

 
 . So             and             are 

non-decreasing functions for all     

  
              

                
                                               

and 

  
              

                
                                             

Since                 
     

     , then 

                                             

 

   

    

                                            

 

   

                        

  So that (2.4.2.5) reduces to  

     

 

   

 
   

                                     
       

            

          

From (1.2.5), we obtain 

                       

 

   

                                             

and  

                       

 

   

                                          

on using (2.4.2.6) to (2.4.2.7) and (2.4.2.8), we arrive at the desired result 

(2.4.2.1). 

 Finally, we can see that the estimates for        are sharp by taking the 

function  
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This completes the proof of Theorem 2.4.2.1. 

 Now by letting     in Theorem 2.4.2.1, we can obtain the modulus for 

functions      belonging to the class            
         according to (Amsheri 

and Zharkova, 2012a).   

Theorem 2.4.2.2. Let the function      defined by (1.2.4) be in the class 

           
         such that                           

              
   

 
   and      

   

 
 . Then  

                 
                                                     

and 

                 
                                                      

where 

      
         

   

                               
                        

The estimates for        are sharp. 

Proof. We observe that the functions           and           defined by 

(2.4.1.5) and (2.4.1.6), respectively, satisfy the inequalities           

            and                             provided that   

  
   

 
  and     

   

 
 .  So           and           are non-decreasing 

functions for all       

  
        

            
                                                  

and 
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Since                 
     

   , then 

                                  

 

   

                  

                                  

 

   

                        

 So that (2.4.2.15) reduces to  

   

 

   

 
   

                               
       

                               

From (1.2.4), we obtain 

                  

 

   

                                                      

and  

                  

 

   

                                                    

On using (2.4.2.16) to (2.4.2.17) and (2.4.2.18), we arrive at the desired 

results (2.4.2.10) and (2.4.2.11). Finally, we can prove that the estimate for 

       are sharp by taking the function  

       
   

                               
                            

This completes the proof of Theorem 2.4.2.2.                                                                                           

 

2.4.3 Extreme points 

 Let us obtain the extreme points for the class            
          , 

following (Amsheri and Zharkova, 2012j). 
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Theorem 2.4.3.1.  Let                   and  

           
   

                                     
                 

          

Then                 
            if and only if it can be expressed in the form 

          

 

   

                                                                

where          and        
 
       

Proof.  Let      be expressible in the form 

          

 

   

         

Then 

         
   

                                     
         

 

   

  

Now 

   
                                     

   
 

 

   

 

  
         

                                     
       

      

 

   

         

Therefore,                 
            

 Conversely, suppose that                  
            Thus 

     
   

                                     
                  

Setting 
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and  

          

 

   

  

we see that      can be expressed in the form (2.4.3.2).The proof is 

complete. 

 Now by letting     in Theorem 2.4.3.1, we can obtain the extreme 

points for the class            
        , following (Amsheri and Zharkova, 

2012a). 

Theorem 2.4.3.2.  Let           and  

        
   

                               
                            

Then                 
          if and only if it can be expressed in the form 

        

 

   

                                                             

where       and     
 
       

Proof.  Let      be expressible in the form 

        

 

   

       

Then 

        
   

                               
     

 

   

  

Now 
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Therefore,                 
           

 Conversely, suppose that                  
          Thus 

   
   

                               
                       

Setting 

   
                               

   
    

and  

        

 

   

  

we see that      can be expressed in the form (2.4.3.4). The proof is 

complete.                                                                         

 Now from Theorem 2.4.3.1 we have the following corollary for functions 

in the class            
          , following (Amsheri and Zharkova, 2012j). 

Corollary 2.4.3.3. The extreme points of the class            
           are  

          

and  

           
   

                                     
              

 Also from Theorem 2.4.3.2 we have the following corollary for functions 

in the class            
        , following (Amsheri and Zharkova, 2012a). 
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Corollary 2.4.3.4. The extreme points of the class             
         are 

       , 

and  

        
   

                               
                 

 

2.4.4 Closure properties 

 Let the function           defined by (1.2.5) and the function      be in 

the class      defined by (2.1.6), the class      is said to be convex if 

                           

where       . 

 Now let us prove that  the class            
           is convex according 

to (Amsheri an Zharkova, 2012j). 

Theorem 2.4.4.1. The class             
            is convex. 

Proof. Let      defined by (1.2.5) and      defined by (2.1.6) be in the class 

           
          , then  

                                          

 

   

  

Applying Theorem 2.4.1.2 for the functions      and      , we get 

                                                        

 

   

  

                                  

This completes the proof of the Theorem 2.4.4.1. 

 Next by letting     in Theorem 2.4.4.1 we can prove that  the class  

           
         is convex according to (Amsheri and (Zharkova, 2012a). 
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Theorem 2.4.4.2. The class            
         is convex. 

Proof. Let      defined by (1.2.4) and      defined by 

            

 

   

                                                         

 be in the class             
        , then  

                                   

 

   

  

Applying Theorem 2.4.1.4 for the functions      and      , we get 

                                              

 

   

  

                       

This completes the proof of the Theorem 2.4.4.2.       

    Let us now prove further theorem for functions       in the class   

         
            following (Amsheri and Zharkova, 2012j), where       

                defined by  

                    

 

   

                                             

Theorem 2.4.4.3. Let the function       defined by (2.4.4.2) be in the class 

           
            for each            . Then the function      defined 

by 

        
 

 
         

 

   

     

 

   

                                        

is in the class            
           where                with       . 

Proof.  Since 
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By applying Theorem 2.4.1.2, we observe that 

                                       

 

   

             

Hence 

                                         

 

   

 
 

 
       

 

   

   

 
 

 
                                               

 

   

 

 

   

 

 
 

 
  

 

   

                                                                                           

which in view of Theorem 2.4.1.2, again implies that  

                
            

The proof is complete. 

 Next by letting     in Theorem 2.4.4.3 we can prove further theorem 

for functions       in the class            
          following (Amsheri and 

Zharkova, 2012a), where                     defined by  

               

 

   

                                                           

Theorem 2.4.4.4. Let the function       defined by (2.4.4.4) be in the class 

           
          for each              Then the function       defined by 

       
 

 
       

 

   

   

 

   

                                                

is in the class            
         where                with        . 
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Proof. Since                  
                     , by applying Theorem 

2.4.1.4, we observe that 

                                 

 

   

           

Hence 

                                 

 

   

 
 

 
     

 

   

   

 

 
                                       

 

   

  

 

   

 

 

 
  

 

   

           

which in view of Theorem 2.4.1.4, again implies that 

                
          

The proof is complete. 

 

2.4.5 Radii of starlikeness, convexity, and close-to-convexity 

 Let us obtain the radii of starlikeness for functions in the class   

         
           according to (Amsheri and Zharkova, 2012j). 

Theorem 2.4.5.1. Let the function      defined by (1.2.5) be in the class 

           
          . Then      is  -valent starlike of order             in 

the disk       , where 

          
                                          

            
 

 
 

   

          

The result is sharp with the extremal function given by (2.4.1.9). 
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Proof.  It suffices to show that 

 
      

    
                                                              

Indeed we have 

 
      

    
     

          
  

   

            
   

  

   
           

  
   

             
 
   

                                   

Hence (2.4.5.3) is true if 

           
 

 

   

                      
 

 

   

  

That is, if 

                 
 

 

   

      

or 

  
      

   
         

 

 

   

                                                               

By Theorem 2.4.1.2, (2.4.5.3) is true if  

      

   
     

                                     

     
                 

Solving  (2.4.5.5) for    ,  we get 

     
                                          

            
 

   

  

or  
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The proof is complete. 

 Now by letting      in Theorem 2.4.5.1 we can obtain the radii of 

starlikeness for functions in the class            
         according to (Amsheri 

and Zharkova, 2012a). 

Theorem 2.4.5.2. Let the function      defined by (1.2.4) be in the class 

           
        . Then      is starlike of order           in the disk 

       where 

          
                                    

            
 

 
      

              

The result is sharp with the extremal function given by (2.4.1.10). 

Proof. It suffices to prove 

 
      

    
                                                                      

Indeed we have 

 
      

    
     

       
    

   

            
   

  
         

    
   

              
   

                       

Hence (2.4.5.9) is true if 

         
   

 

   

                    
   

 

   

  

That is, if 

               
   

 

   

      

or 

  
      

   
       

   

 

   

                                            

By Theorem 2.4.1.4, (2.4.5.9) is true if  
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Solving (2.4.5.11) for      we get 

     
                                    

            
 

       

  

or  

          
                                    

            
 

       

               

The proof is complete. 

 In the similar manner, we can obtain the radii of convexity for the class 

           
           following (Amsheri and Zharkova, 2012j). 

Theorem 2.4.5.3. Let the function      defined by (1.2.5) be in the class 

           
          . Then      is  -valent convex of order           in 

the disk       , where 

          
                                           

                 
 

 
 

   

The result is sharp with the extremal function given by (2.4.1.9). 

 By letting     in Theorem 2.4.5.3 we can obtain the radii of convexity 

for the class            
         following (Amsheri and Zharkova, 2012a). 

Theorem 2.4.5.4. Let the function      defined by (1.2.4) be in the class 

           
        . Then      is convex of order           in the disk 

       where 

          
                                    

                 
 

       

  

The result is sharp with the extremal function given by (2.4.1.10). 
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 Also, we can obtain the radii of close-to-convexity for the class   

         
           following (Amsheri and Zharkova, 2012j). 

Theorem 2.4.5.5. Let the function      defined by (1.2.5) be in the class 

           
          . Then      is  -valent close-to-convex of order      

      in the disk        , where 

          
                                          

          
 

 
 

  

The result is sharp with the extremal function given by (2.4.1.9). 

 By letting     in Theorem 2.4.5.5 we can obtain the radii of close-to-

convexity for the class            
         following (Amsheri and Zharkova, 

2012a). 

Theorem 2.4.5.6. Let the function      defined by (1.2.4) be in the class 

           
        . Then      is close-to-convex of order           in the 

disk        where 

          
                                    

          
 

       

   

The result is sharp with the extremal function given by (2.4.1.10). 

 

 

 

 

 

 

 

 



109 
 

Chapter 3 

 

Properties of certain classes and inequalities 

involving   -valent functions 

 

 This chapter is composed of two types of problems. The first type is 

concerned with the sufficient conditions for starlikeness and convexity of  -

valent functions associated with fractional derivative operator, while the 

second type is concerned with the coefficient bounds for some classes of  -

valent functions by making use of certain fractional derivative operator. This 

chapter is organized as follows: Section 3.1 is introductory in nature and 

contains some lemmas those are require to prove our results. In section 3.2, 

we present some sufficient conditions for starlikeness and convexity by using 

the results of (Owa, 1985a). Further results involving the Hadamard product 

(or convolution) are obtained. Sufficient conditions for starlikeness and 

convexity by using Jack’s Lemma and Nunokakawa’s Lemma are also 

studied. In section 3.3 we obtain the coefficient bound for the functional 

           
   and bounds for the coefficient      of the function belonging to 

some classes of  -valent functions in the open unit disk involving certain 

fractional derivative operator. We obtain the coefficient bounds for the 

function      belonging to the classes          
    ,           

     of starlike 

functions. In addition, we study the similar problem to the classes       
     

   , 

        
     

   ,       
     

    and         
     

    of Bazilevič functions and to the classes 
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    and         
     

    of non-Bazilevič functions. Relevant connections of 

some results obtained in this chapter with those in earlier works are 

considered.  

 

 The results of section 3.2 are published in Far East J. Math. Sci. (FJMS), 

(Amsheri and V. Zharkova, 2010) and  accepted by Global Journal of pure 

and applied mathematics (GJPAM), (Amsheri and V. Zharkova, 2013b). The 

results of section 3.3 are published in International journal of Mathematical 

Analysis (Amsheri and V. Zharkova, 2012b), Int. J. Mathematics and 

statistics (IJMS), (Amsheri and V. Zharkova, 2013a), Far East J. Math. Sci. 

(FJMS) (Amsheri and V. Zharkova, 2012c) and Pioneer Journal of 

Mathematics and Mathematical Sciences, (Amsheri and V. Zharkova, 

2012d). 

 

3.1 Introduction and Preliminaries 

 We refer to Chapter 1 for related definitions and notations used in this 

chapter. First, to obtain the coefficient conditions for starlikeness and 

convexity in subsections 3.2.1 and 3.2.2 by using the results of (Owa, 1985a) 

and the Hadamard product, we  consider the fractional derivative operator 

    
     

     defined by (1.6.8), which was studied by (Raina and Nahar, 2000) 

in order to obtain many of sufficient conditions for starlikenesss and  

convexity, that are extensions of the results by (Owa and Shen, 1998) when 

   . Moreover, to introduce our main results in the subsection 3.2.3, we 

consider Jack’s Lemma (Jack, 1971) or (Miller and Mocanue, 2000) and 

Nunokakawa’s Lemma (Nunokakawa, 1992) which have been applied in 
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obtaining various sufficient conditions of starlikeness and convexity by many 

authors, including (Imark and Cetin, 1999), (Imark and Piejko, 2005) and 

(Imark, et al., 2002).  

 In addition, to investigate our main results in section 2.3 concerning the 

coefficient bounds for some classes of  -valent functions in the open unit 

disk defined by the fractional derivative     
     

     given as in (2.2.1), we 

consider the class    which defined in Chapter 1, section 1.4, for all analytic 

functions with positive real part in the open unit disk     defined by 

            

 

   

 

with        and                   . It is well known (C. Pommerenke, 

1975) that                 . (Livingston, 1969) proved that    
        

and (Ma and Minda, 1993) obtained that     
 

 
  

     
 

 
    

 . (Ma and 

Minda, 1994) introduced the classes       and      of the analytic function 

  with positive real part in the unit disk  , such that               , 

where    maps    onto a region starlike with respect to   and symmetric with 

respect to the real axis. They also determined bounds for the associated 

Fekete-Szegö functional. (Ali et al., 2007) defined and studied the class 

    
     of functions           for which 

  
 

 
 
 

 

      

    
                                 

 and the class          of functions for which 
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Also, (Ali et al., 2007) defined and studied the class          to be the class 

of all functions           for which 

  
 

 
 

     

     
                                    

Note that,     
           and             . The familiar class       of  

starlike functions of order   and the class      of convex functions of order 

          are the special case of     
     and        , respectively, when 

     
         

   
  

 To present our main results in the subsection 3.3.2 concerning the 

coefficient bounds for some classes of Bazilevič functions, we consider the 

class of Bazilevič functions             which was introduced by (Owa, 

2000) for all functions            satisfying 

      
    

  
 

 

  
      

     
 
    

  
 
 

 
    

    
  

where                        . Following the classes 

            and         which were studied, respectively, by (Owa, 2000) 

and (Ali et al., 2007), (Ramachandran et al., 2007) obtained the coefficient 

bounds for the class            , defined by  

  
 

 
       

    

  
 

 

  
      

     
 
    

  
 
 

          

where           .  

 Moreover, (Guo and Liu, 2007) introduced and studied the class of 

Bazilevič functions          for all functions          satisfying 
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where               . Following the class         , (Rosy et al., 

2009) obtained coefficient bounds for the class         , defined by 

 
      

    
 
    

 
 
 

     
       

     
 

      

    
   

      

    
            

where          . 

 On the other hand, to present our main results in the subsection 3.3.3 

concerning the coefficient bounds for some classes of non-Bazilevič 

functions, we consider the class of non-Bazilevič functions which was 

introduced by (Obradović, 1998) for all functions         such that 

         
 

    
 
 

     

where       and     . (Tuneski and Darus, 2002) obtained the Fekete-

Szegö inequality for this non-Bazilevič class of functions. Using this non-

Bazilevič class, (Wang et al., 2005) studied many subordination results for 

the class            of functions          such that 

      
 

    
 
 

        
 

    
 
   

 
    

    
  

for                   . Following this class, (Shanmugam et 

al., 2006a) obtained the Fekete-Szegö inequality for the class        , 

defined by 

      
 

    
 
 

        
 

    
 
   

       

where           . 

 

 Now, in order to prove our results in the subsection 3.2.1 for starlikeness 

and convexity, we need the following coefficient conditions that are sufficient 
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for the functions to be in the classes         and        according to (Owa, 

1985a). 

Lemma 3.1.1  Let the function          . If      satisfies 

                        

 

   

  

Then      is in the class         .  

Lemma 3.1.2  Let the function          . If        satisfies 

                                

 

   

  

Then      is in the class       . 

 Next, in order to prove our results in the subsection 3.2.2 for starlikeness 

and convexity by using the Hadamard product, we need the following result 

due to (Ruscheweyh and Sheil-Small, 1973 ). 

Lemma 3.1.3. Let      and      be analytic in       and satisfy      

                         Suppose also that  

        
     

    
                            

for   and   on the unit circle. Then, for a function      analytic in       

such that 

             

satisfies the inequality: 

    
         

        
                       

 Next to prove our results in the subsection 3.2.3 for starlikeness and 

convexity by using Jack’s Lemma and Nunokawa’s Lemma, we need to the 

following results of Jack and Nunokawa (Lemma 3.1.4 and Lemma 3.1.5) 
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which are popularly known as Jack’s Lemma (Jack, 1971) or (Miller and 

Mocaun, 2000) and Nunokawa’s Lemma (Nunokawa, 1992), respectively.  

Lemma 3.1.4. Let      be non-constant and analytic function in   with  

      . If         attains its maximum value on the circle            

   at the point   , then     
            ,  where    . 

Lemma 3.1.5. Let      be an analytic function in   with       . If there 

exists a point       such that  

                                                     

then 

                   
        

     
  

 

 
   

 

 
   

where     and    . 

 

 Now, to prove our main results in section 3.3, we mention to the following 

lemma 3.1.6 for functions      in the class    according to (Ma and Minda, 

1994) to obtain the sharp bound on coefficient functional        
  .  

Lemma 3.1.6. Let       . Then  

       
    

                                         
                                             
                                         

  

when     or    , the equality holds if and only if  

     
   

   
  

or one of its rotations. If      , then equality holds if and only if 

     
    

    
  

or one of its rotations. Inequality becomes equality when       if and only if 
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or one of its rotations, while for    , the equality holds if and only if      is 

the reciprocal of one of the functions such that equality in the case of      

Although the above upper bound is sharp, it can be improved as follows 

when       : 

       
        

                         
 

 
   

and  

       
            

                    
 

 
       

 

 Also, to prove our main results in section 3.3, we need to the following 

lemmas regarding the coefficients of analytic functions of the form       

       
     

    in the class     in the open unit disk   satisfying  

        . Lemma 3.1.7 is formulated according to (Ali et al., 2007) which is 

a reformulation of the corresponding result Lemma 3.1.6 for functions with 

positive real part. 

Lemma 3.1.7. If     , then 

       
    

                            
                   
                           

   

when      or    , the equality holds if and only if          or one of its 

rotations. If       , then equality holds if and only if         or one of 

its rotations. Equality holds for        if and only if 

      
   

    
                     

or one of its rotations, while for     , the equality holds if and only if 
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or one of its rotations. Although the above upper bound is sharp, it can be 

improved as follows when        : 

       
            

                        

and 

       
            

                     

 Also, for functions in the class  , we need to the following result to prove 

our main results in section 3.3, which is according to [(Keogh and Merkes, 

1969), Inequality 7, p.10].   

Lemma 3.1.8. If    , then for any complex number   , 

       
              

The result is sharp for the functions          or         . 

 We also need to the following result which is due to (Prokhorov and 

Szynal, 1981), see also  (Ali et al., 2007) 

Lemma 3.1.9. If    , then for any real numbers    and   , the following 

sharp estimate holds 

               
             

where 
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The sets                are defined as follows: 

                   
 

 
           

             
 

 
        

 

  
                           

                  
 

 
          

                 
 

 
     

 

 
            

                            

                         
 

  
   

       

                        
 

 
           

            
 

 
         

 

 
             

 

  
                      

                     
 

 
             

             

  
         

   

                      
             

  
         

     
 

  
   

       

                     
             

  
         

    
             

  
         

   

                     
             

  
         

    
 

 
            

 

3.2 Sufficient conditions for starlikeness and convexity of  -valent 

functions  

 In this section we mainly concentrate in obtaining the sufficient 

conditions for starlikeness and convexity of  -valent functions defined by 

fractional derivative operator.  
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3.2.1 Sufficient conditions involving  results of Owa 

 Let us first obtain the sufficient conditions for starlikeness of      
     

     

as given in (2.2.1) by using Lemmas 3.1.1 following the results by (Amsheri 

and Zharkova, 2010). 

Theorem 3.2.1.1. Let          such that 

                                
   

 
                       

Also,  let the function            satisfies 

 
       

     
       

 

   

 
                

              
                                   

for       . Then      
     

            . 

Proof.  We have from (2.2.3) 

      
     

                    

 

   

                                                    

where             is given by (2.2.5). We observe that the function 

            satisfies the inequality 

                                                    

provided that       
   

 
   Thereby, showing that             is non-

increasing. Thus under conditions stated in (3.2.1.1), we have 

                              
              

                
                 

Therefore, (3.2.1.2) and (3.2.1.3) yield 
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Hence, by Lemma 3.1.1, we conclude that 

    
     

              

and the proof is complete. 

Remark 1. The equality in (3.2.1.2) is attained for the function      defined 

by 

          
                     

                     
                                        

     In the similar manner, we can prove with the help of Lemma 3.1.2 the 

sufficient conditions for convexity of     
     

     according to (Amsheri and 

Zharkova, 2010). 

Theorem 3.2.1.2. Under the conditions stated in (3.2.1.1), let the function 

          satisfies 

  
            

      
       

 

   

 
                

              
                           

for      . Then      
     

             

Remark 2. The equality in (3.2.1.6) is attained for the function      defined 

by 

           
                      

                      
                                  

 

3.2.2 Sufficient conditions involving the Hadamard product 

 Let us obtain the sufficient conditions for starlikeness of      
     

     as 

given in (2.2.1) by using Lemmas 3.1.3 following the results by (Amsheri and 

Zharkova, 2010). 
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Theorem 3.2.2.1. Let the conditions stated in (3.2.1.1) hold true, and let the 

function           be in the class        , and satisfies:  

           
     

    
                                                       

for    and   on the unit circle, where 

          
                

                  

 

   

                                             

then      
     

               

Proof.  Using (2.2.3) and (3.2.2.2), we have 

     
     

         
                

                  

 

   

         

                                                                                             

By setting                     and      
      

    
  , in Lemma 3.1.3, 

we find with the help of (3.2.2.3) that 

     
         

        
     

        
          

        
       

        
          

        
       

                 
      

     
     

 

    
     

    
       

       
     

              

and the proof is complete. 
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 Next let us obtain the sufficient conditions for convexity of      
     

     as 

given in (2.2.1) by using Lemmas 3.1.3 following the results by (Amsheri and 

Zharkova, 2010). 

Theorem 3.2.2.2. Let the conditions stated in (3.2.1.1) hold true, and let the 

function           be in the class       , and satisfies:  

        
     

    
                                                         

for   and   on the unit circle, where      is given by (3.2.2.2). Then 

    
     

      is also in the class        . 

Proof.  Using (2.2.3) and Theorem 3.2.2.1, we observe that 

             
      

 
         

                                                     
     

 
      

 
          

                                            
   

 
             

                                         
          

 
         

                                                     

                                         
     

             

which completes the proof of Theorem 3.2.2.2. 

 

Remark 3. The results in subsections 3.2.1 and 3.2.2 can be reduced to the 

well known results, which were proven by (Raina and Nahar, 2000) when 

   , and to the results which were proven by (Owa and Shen, 1998) when 

     and    . 
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3.2.3 Sufficient conditions involving Jack’s and Nunokawa’s Lemmas 

 Let us obtain the sufficient conditions for starlikeness of      
     

     as 

given in (2.2.1) by using Jack’s lemma 3.1.4 and Nunokawa’s lemma 3.1.5 

following the results by (Amsheri and Zharkova, 2013b). 

Theorem 3.2.3.1. Let                                   and  

         . 

1. If 

          
    

           
    

    
           

    
      

    
           

    

    
     

    
  

      

      
    

          

then 

   
    

           
    

    
     

    
  

   

 
                                                    

 

2. If  

          
    

           
    

    
           

    
      

    
           

    

    
     

    
         

          

then 

   
    

           
    

    
     

    
                                                 

Proof.  First, we prove (1). Since   

    
           

    

    
     

    
            

                      

Define the function      by 
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It is clear that      is analytic in   with       . Also, we can find from 

(3.2.3.5) that 

      
           

     
 

    
           

    
 

      
     

     
 

    
     

    
 

       

       
 

      

      
                     

by using (2.2.6) to (3.2.3.6), we have 

       
    

           
    

    
           

    
      

    
           

    

    
     

    
 

 
       

       
 

      

      
                                                   

If there exists a point       such that 

    
        

                  

then by Lemma 3.1.4, we have 

   
                                            

Therefore, since          , we obtain 

          
    

           
     

    
           

     
      

    
           

     

    
     

     
  

    
         

        
 

        

       
                                                         

     
     

      
 

    

     
    

      

      
                                   

which is a contradiction to the condition (3.2.3.1). Therefore,          for 

all    . Hence (3.2.3.5) yields 
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which implies the inequality (3.2.3.2). This completes the proof of (1) in the 

Theorem 3.2.3.1. 

 For the proof of (2), we define a new function      by 

    
           

    

    
     

    
                                                           

where      is analytic in    with       . Then we find from (3.2.3.8) that 

      
           

     
 

    
           

    
 

      
     

     
 

    
     

    
 

           

           
                             

by using (2.2.6) to (3.2.3.9), we have 

       
    

           
    

    
           

    
      

    
           

    

    
     

    
   

 
           

           
                                                                          

If there exists a point       such that 

                                                        

Then by using Lemma 3.1.5, we have 

                
        

     
  

 

 
   

 

 
                          

Thus from (2.2.6) and (3.2.3.10), we have 
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which contradicts the condition (3.2.3.3). Hence,            for all     

and the equality (3.2.3.8) implies the condition (3.2.3.4). Therefore, the proof 

of the Theorem 3.2.3.1 is complete. 

 Now, to obtain the sufficient conditions for convexity of     
     

     as 

given in (2.2.1) we put          instead of      in the Theorem 3.2.3.1, then 

we have the following theorem according to (Amsheri and Zharkova, 2013b). 

Theorem 3.2.3.2. Let                                  and  

         .  

1. If 

          
    

           
 
      

  

    
           

 
      

  

      
    

           
 
      

  

    
     

 
      

  

  

 
      

      
                                                               

then 

   
    

           
 
      

  

    
     

 
      

  

  
   

 
                                             

2. If  

          
    

           
 
      

  

    
           

 
      

  

      
    

           
 
      

  

    
     

 
      

  

  

                                                                             

then 
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 Now by setting         in Theorem 3.2.3.1, we obtain the sufficient 

conditions for starlikeness of  -valent functions in   following (Amsheri and 

Zharkova, 2013b). 

Corollary 3.2.3.3.  Let                     .  

1. If 

   
       

     
 

      

    
  

      

      
                                 

then 

   
      

     
  

   

 
                        

2. If  

   
       

     
 

      

    
                                  

 then 

   
      

     
                                       

 

Remark 4. By setting     in Corollary 3.2.3.3, we get the corresponding 

result obtained by (Irmak and Piejko, 2005,  Corollary 2.3). 

Corollary 3.2.3.4.  Let                  .  

1. If  

   
       

     
 

      

    
  

      

      
   

then 

   
      

    
  

   

 
                       

2. If  
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then 

   
      

    
                     

 

 Next by setting         in Theorem 3.2.3.2, we obtain the sufficient 

conditions for convexity of p-valent functions in   following (Amsheri and 

Zharkova, 2013b). 

Corollary 3.2.3.5.  Let                     .  

1. If  

   
                  

             
 

       

     
  

   

      
  

then 

   
 

 
   

       

     
   

   

 
                            

2. If  

   
                  

             
 

       

     
        

then 

   
 

 
   

       

     
                           

 

Remark 5. By setting     in Corollary 3.2.3.5, we get the corresponding 

result obtained by (Irmak and Piejko,  2005, Corollary 2.4). 

Corollary 3.2.3.6.  Let                  .  

1. If 
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then 

     
       

     
  

   

 
                     

2. If  

   
                  

             
 

       

     
         

then 

     
       

     
                         

 

3.3 Coefficient bounds for some classes of generalized starlike and 

related functions 

 In this section we introduce various new classes of complex order of  -

valent functions associated with the fractional derivative     
     

     as given 

in (2.2.1), in order  to obtain the coefficient bounds of            
   and 

bounds for the coefficient      of the function belonging to those classes. 

Relevant connections of the results obtained in this section with those in 

earlier works are also considered. We set                 which defined as 

in (2.2.5).  

 

3.3.1 Coefficient bounds for classes of  -valent starlike functions     

 Motivated by the class     
     which was studied by (Ali et al., 2007), we 

now define a more general class of complex order           
     of  -valent 
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starlike functions associated with fractional derivative operator following the 

results by (Amsheri and Zharkova, 2012b). 

Definition 3.3.1.1. Let      be an univalent starlike function with respect to   

which maps the open unit disk   onto a region in the right half-plane and 

symmetric with respect to the real axis,        and        . A function 

           is in the class            
      if 

  
 

 
 
    

           
    

    
     

    
                                     

Also, we let            
             

     . 

 

 The above class           
     contains many well-known subclasses of 

analytic functions. In particular, for      , we have 

          
         

     

where     
      is precisely the class which was studied by (Ali et al., 2007). 

Furthermore, by specifying the parameters        and    we obtain the most 

of subclasses which were studied by other authors: 

1. For         and      , we get the class           
           

which studied by (Ma and Minda, 1994). 

2. For     and      , we have the class           
       

     which 

studied by (Ravichandran et al., 2005). 

3. For      and      , we have the class           
       

     which 

studied by (Ali et al., 2007). 
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Thus, the generalization class           
     defined in this subsection is 

proven to account for most available classes discussed in the previous 

papers and generalize the concept of starlike functions. 

 Now, to obtain the coefficient bounds of functions belonging to the class 

          
    , we use lemmas 3.1.7- 3.1.9 following (Amsheri and Zharkova, 

2012b).  

Theorem 3.3.1.2. Let                                   and 

   . Further, let               
     

    where    are real with 

         , and 

   
         

         
   

 

          
                                                 

   
         

         
   

 

          
                                                 

   
    

         
   

 

          
                                                             

If           belongs to           
    , then 

           
    

 
  
 

  
 

     

   
    

             
  

  
   

                  

       

   
                                                                           

 
     

   
    

             
  

  
   

            

                        

Further, if         , then 
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If         , then 

           
   

  
 

          
   

  

  
 

             
  

  
          

 
  

 
       

   
                                                                                             

For any complex number   , 

           
   

       

   
        

             
  

  
    

  

  
     

          

Further, 

       
       

   
                                                                      

where          is as defined in Lemma 3.1.9, 

   
            

 

   
                                                                         

and 

   
                       

 

   
                                                 

Proof.  If                 
    , then there is a Schwarz function 

            
       

such that 

    
           

    

    
     

    
                                                                   

since 
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we have from (3.3.1.11), 

     
       

  
                                                                                        

     
     

   

                 
    

                                       

and 

      
       

   
    

            
 

   
              

                        
 

   
  

                                              

Therefore, we have 

          
  

       

   

       
                                                               

where 

  
               

  

  
  

  

  
                                                                

Making use of (3.3.1.12)-(3.3.1.16), the results (3.3.1.4) - (3.3.1.7) are 

established by an application of Lemma 3.1.7, inequality (3.3.1.7) by Lemma 

3.1.8, and (3.3.1.8) follows from Lemma 3.1.9. To show that the bounds in 

(3.3.1.4) - (3.3.1.7) are sharp, we define the functions               by 

    
           

      

    
     

      
                              

 
          

and the functions               defined by 

    
           

     

    
     

     
   

      

    
                    

           

and  
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respectively. It is clear that the functions        and    belong to the class 

          
    . If      or     , then the equality holds if and only if     is       

or one of its rotations. When        , the equality holds if and only if     

is       or one of its rotations. If      , then the equality holds if and only if  

   is      or one of its rotations. If      , then the equality holds if and only if  

   is      or one of its rotations. The proof is complete. 

 In the similar manner, we can obtain the coefficient bound for       

     
   of functions in the class           

     according to (Amsheri and 

Zharkova, 2012b). 

Theorem 3.3.1.3. Let                                     

      and    . Further, let               
     

    where    are 

real with      and     . If           belongs to           
    , then for 

any complex number  , we have 

           
   

          

   
        

              
  

  
    

  

  
    

           

 

3.3.2 Coefficient bounds for classes of  -valent Bazilevič functions  

 Motivated by the class         which was studied by (Ali et al., 2007) and 

the class             of  -valent Bazilevič functions which was studied by 

(Ramachandran et al., 2007), we define a new general class of complex 

order         
     

    of  -valent Bazilevič functions associated with the fractional 
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derivative operator     
     

     as given in (2.2.1) following the results by 

(Amsheri and Zharkova, 2012c). 

Definition 3.3.2.1.  Let      be an univalent starlike function with respect to 

   which maps the open unit disk     onto a region in the right half-plane and 

symmetric with respect to the real axis,        and        . A function  

           is in the class          
     

     if 

  
 

 
       

    
     

    

  
 

 

  
    

           
    

    
     

    
 
    

     
    

  
 

 

         

           

where                                                 

       and     .  Also, we let          
               

     
   .  

 

 The above class         
     

    contains many well-known subclasses of 

analytic functions. In particular; for      , we have 

        
                     

where             is precisely the class which was studied by (Ramachandran 

et al., 2007). Furthermore, when           and      
    

    
      

   , we have 

        
                     

where              is the class which introduced by (Owa, 2000).  

 Now, to obtain the coefficient bounds of functions belonging to the class 

        
        , we use lemmas 3.1.7- 3.1.9 according (Amsheri and Zharkova, 

2012c). 



136 
 

Theorem 3.3.2.2. Let                                   and 

   . Further, let               
     

    where    are real with 

         , and 

   
  

            

     
                 

          

 
  

                      

           
                                                 

   
  

            

     
                 

          

 
  

                      

           
                                            

   
  

            

     
                 

     

 
  

                      

           
                                                 

and 

                
                   

       

   
            

                                      

If            belongs to         
        , then 

           
    

 
  
 

  
 

     

             
           

                                 

       

             
                                                                       

 
     

             
           

                           

                     

Further, if         , then 
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If         , then 

           
   

  
 

          
  

       
  

  
 

           

           
                

              
 
 

 
       

             
                                                                                                               

For any complex number   , 

           
     

       

             
                              

  

  
                           

Further, 

       
       

             
                                                                     

where          is as defined in Lemma 3.1.9, 

   
   

  
  

                       

                     
                                               

and 

    
  

  
 

        
                       

            
  

  
                       

                     
                                                

Proof.  If              
        , then there is a Schwarz function 

            
       

such that 
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since 

      
    

     
    

  
 

 

  
    

           
    

    
     

    
 
    

     
    

  
 

 

 

   
          

     
         

           

     
      

  

                                 

      
  

     
      

           

     
      

  

               
                

     
             

                
                     

      
  

     
                                      

we have from (3.3.2.13), 

     
         

            
                                                                                                

     
       

             
   

   
                       

            
 

  

  
   

                     

and 

     
       

             
               

                                                  

where    and    as defined (3.3.2.11) and (3.3.2.12), respectively. Therefore, 

we have 
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where 

                         
  

  
                                                          

By making use of (3.3.2.15)-(33.2.19), the results (3.3.2.6) - (3.3.2.9) are 

established by an application of Lemma 3.1.7, inequality (3.3.2.9) by Lemma 

3.1.8, and (3.3.2.10) follows from Lemma 3.1.9. To show that the bounds in 

(3.3.2.6) - (3.3.2.9) are sharp, we define the functions               by 

      
    

     
      

  
 

 

  
    

           
      

    
     

      
 
    

     
      

  
 

 

          

                
 
         

and the functions                defined by 

      
    

     
     

  
 

 

  
    

           
     

    
     

     
 
    

     
     

  
 

 

   
      

    
   

        
          

and  

      
    

     
     

  
 

 

  
    

           
     

    
     

     
 
    

     
     

  
 

 

 

        
      

    
    

         
          

respectively. It is clear that the functions        and    belong to the class 

        
        . If      or     , then the equality holds if and only if   is      

or one of its rotations. When        , the equality holds if and only if    is  

    or one of its rotations. If      , then the equality holds if and only if     
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is    or one of its rotations. If     , then the equality holds if and only if   is  

   or one of its rotations. The proof is complete. 

Remark 1. By specifying the parameters         and   in Theorem 3.3.2.2, 

we have the most the coefficient bound results which were obtained by other 

authors:  

1. Letting                
 

      
  

    and    , we get the 

corresponding result due to (Srivastava and Mishra, 2000). 

2. Letting             and      , we obtain the 

corresponding result due to (Ma and Minda, 1994) for the class 

       

3. Letting         and       , we obtain the result which 

was proven by (Ali et al., 2007) for the class   
      

4. Letting         and       , we obtain the result which was 

proven by (Ravichandran et al., 2004) for the class        

5. Letting      , we obtain the result which was proven by 

(Ramachandran et al., 2007) for the class              

Thus, the generalization of classes         
         defined in this subsection is 

proven to account for most available classes discussed in the previous 

papers generalize the concept of starlike and Bazilevič functions. 

 In the similar manner, we can obtain the coefficient bound for the 

functional            
   of functions belonging to the class         

         

according to (Amsheri and Zharkova, 2012c). 

 Theorem 3.3.2.3. Let                                   

and    . Further, let               
     

    where    are real 
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with          . If           belongs to         
        , then for any 

complex number   , 

           
   

          

             
                               

  

  
    

           

where                  is given by (3.3.2.5).  

Remark 2. By specifying the parameters         and    in Theorem 3.3.2.3, 

we the most coefficient bound results which were obtained by other authors.   

1. Letting             and      , we obtain the 

corresponding result due to (Ravichandran et al., 2005) for the class 

  
      

2. Letting                   and      
    

    
        

 , we obtain the results which were proven by (Dixit and Pal., 1995) 

for the class          

3. Letting         and       , we obtain the result which was 

proven by (Ali et al., 2007) for the class          

Thus, the generalization of classes         
         defined in this subsection is 

proven to account for most available classes discussed in the previous 

papers. 

 Next, motivated by the class         which introduced by (Rosy et al., 

2009), we introduce a more general class of complex order         
     

    of 

Bazilevič functions by using the fractional derivative operator     
     

     as 

given in (2.2.1) following the results by (Amsheri and Zharkova, 2013a). 
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Definition 3.3.2.4.  Let        be an univalent starlike function with respect to 

   which maps the open unit disk   onto a region in the right half-plane and 

symmetric with respect to the real axis,         and        . A function  

           is in the class          
     

     if 

  
 

 
                                                              

where   

                     

    
           

    

    
     

    
 
    

     
    

  
 

 

            
    

           
    

    
           

    
  

       
    

           
    

    
     

    
   

    
           

    

    
     

    
                                   

where                                               

       and     .  Also, we let          
               

     
   .  

 

 The above class         
     

    contains many well-known subclasses of 

analytic functions. In particular; for          and       , we have 

        
                 

where         is precisely the class which was studied by (Rosy et al., 

2009).  

 Now, to obtain the coefficient bounds of functions belonging to the class 

        
     

   , we use lemmas 3.1.7- 3.1.9 following (Amsheri and Zharkova, 

2013a). 
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Theorem 3.3.2.5.  Let                                

             and     . Further, let               
     

    

where     are real with          , and 

   
  

    

           
           

       
 

  
                                                 

   
  

    

           
           

       
 

  
                                                  

   
  

    

           
      

       
 

  
                                                               

                                                                                                  

                                                                                                 

                                                                                              

                                                                                                     

                                                                                               

                                                                                              

                                                                                                      

                                                                                                    

and 

                
  

                 

   
   

                                            

If            belongs to         
        , then 
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Further, if         , then 

           
   

  
    

          
   

  

  
                         

 
  

   
       

   
                                                                                               

If         , then 

           
   

  
    

          
   

  

  
                         

 
  

 
       

   
                                                                                           

For any complex number   , 

           
   

       

   
                         

  

  
                        

Further, 

       
       

    
                                                                              

where            is as defined in Lemma 3.1.9, 

   
   

  
 

         

  
                                                                                         

and 

   
  

  
 

         

  
 

                                       
 

     
   

           

Proof.  If              
        ,  then there is a Schwarz function 

            
       

such that 
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since 

    
           

    

    
     

    
 
    

     
    

  
 

 

            
    

           
    

    
           

    
   

      
    

           
    

    
     

    
   

    
           

    

    
     

    
        

                 

     
         

                  

     
         

 
                                     

       
  

     
      

 
                  

     
        

               

     
    

                 

      
               

                    

      
   

   
              

      
   

     
       

we have from (3.3.2.42), 

     
         

   
                                                                                                  

     
       

   
     

       

   
 

  

  
   

                                                

     
       

    

               
                                                            

where    and    as defined in (3.3.2.40) and (3.3.2.41), respectively. 

Therefore, we have 
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where 

                    
  

  
                                                                        

By making use of (3.3.2.43)-(3.3.2.47), the results (3.3.2.35)-(3.3.2.38) are 

established by an application of Lemma 3.1.7, inequality (3.3.2.38) by 

Lemma 3.1.8, and (3.3.2.39) follows from Lemma 3.1.9. To show that the 

bounds in (3.3.2.35)-(3.3.2.38) are sharp, we define the functions        

       by 

    
           

      

    
     

      
 
    

     
      

  
 

 

  

           
    

           
      

    
           

      
   

      
    

           
      

    
     

      
   

    
           

      

    
     

      
                       

            
 
         

and the functions                 defined by 

    
           

     

    
     

     
 
    

     
     

  
 

 

            
    

           
     

    
           

     
   

      
    

           
     

    
     

     
   

    
           

     

    
     

     
       

      

    
            

        
          

and  
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respectively. It is clear that the functions        and    belong to the class 

        
        . If      or     , then the equality holds if and only if   is     

or one of its rotations. When        , the equality holds if and only if   is 

    or one of its rotations. If     , then the equality holds if and only if   is 

   or one of its rotations. If     , then the equality holds if and only if   is    

or one of its rotations. The proof is complete.                                                                                               

Remark 3. By specifying the parameters         and   in Theorem 3.3.2.5, 

we have the most the coefficient bound results which were obtained by other 

authors:  

1. By letting                
 

      
  

    and    , we get the 

corresponding result due to (Srivastava and Mishra, 2000). 

2. By letting             and      , we obtain the 

corresponding result due to (Ma and Minda, 1994) for the class        

3. By letting      and    , we obtain the result which was proven by 

(Amsheri and Zahrkova, 2012b) for the class         
      

4. By letting         and      , we obtain the result which was 

provenby (Ali et al., 2007) for the class   
      

5. By letting                and      , we obtain the result 

according to (Ma and Minda, 1994) for the class       

6. By letting         and       , we obtain the corresponding 

result due to (Ravichandran et al., 2004) for the class        

7. By letting     and       , we obtain the corresponding result due 

to (Rosy et al., 2009) for the class          
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Thus, the generalization of classes         
         defined in this subsection is 

proven to account for most available classes discussed in the previous 

papers and generalize the concept of starlike and  Bazilevič functions. 

 

 In the similar manner, we can obtain the coefficient bound for the 

functional            
   of functions belonging to the class         

         

following (Amsheri and Zharkova, 2013a). 

Theorem 3.3.2.6.  Let                                     

                       and    . Further, let               
  

   
    where     are real with      and      . If             belongs 

to         
        , then for any complex number   , we have 

           
   

          

   
                           

  

  
     

           

where   and                 are given by (3.3.2.27) and (3.3.2.34) 

respectively.                                  

Remark 4. By specializing the parameters         and   in Theorem 

3.3.2.6, we have the most the coefficient bound results which were obtained 

by other authors:  

1. Letting             and      , we obtain the corresponding 

result due to (Ravichandran et al., 2005) for the class   
    . 

2. Letting                    and      
    

    
        

 , we obtain the results which were proven by (Dixit and Pal, 1995) for 

the class          
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3. Letting         and      , we obtain the result which was 

proven by (Ali et al. 2007) for the class          

4. Letting     and     , we obtain the corresponding result due to 

(Amsheri and Zaharkova, 2012b) for the class           
      

Thus, the generalization of classes         
         defined in this subsection is 

proven to account for most available classes discussed in the previous 

papers. 

 

3.3.3 Coefficient bounds for classes of  -valent non-Bazilevič 

functions 

 Motivated by the class         which was introduced by (Shanmugam et 

al., 2006a), we introduce a more general class of complex order         
     

    

of  -valent non-Bazilevič functions by using the fractional derivative operator 

    
     

     as given in (2.2.1) following the results by (Amsheri and Zharkova, 

2012d). 

Definition 3.3.3.1.  Let       be an univalent starlike function with respect to 

   which maps the open unit disk     onto a region in the right half-plane and 

symmetric with respect to the real axis,         and        . A function  

           is in the class          
     

     if 

  
 

 
       

  

    
     

    
 

 

  
    

           
    

    
     

    
 

  

    
     

    
 

 

          

           

where                                                 

      and     .  Also, we let           
               

     
   .  
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 The above class         
     

    contains many well-known classes of 

analytic functions. In particular; for          , and        we have 

        
                 

where         is precisely the class which was studied by (Shanmugam et 

al., 2006a).  

 Now, to obtain the coefficient bounds of functions belonging to the class 

        
     

   , we use lemmas 3.1.7- 3.1.9 following (Amsheri and Zharkova, 

2012d). 

Theorem 3.3.3.2. Let                                     

         and    . Further, let               
     

    where 

    are real with          , and 

   
  

            

     
                 

  
  

                      

           

                                                                                                  

   
  

            

     
                 

  
  

                      

           

                                                                                                   

   
  

            

     
                 

  
  

                      

           

                                                                                                              

and 
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If           belongs to         
        , then 

           
    

 
  
 

  
 

     

             
            

                                 

        

             
                                                                         

     

             
           

                           

                    

Further, if         , then 

           
     

  
            

         
            

              
                       

 
 

 
        

             
                                                        

If         , then 

           
    

  
            

         
            

              
                       

 
 

 
        

             
                                                          

For any complex number   , 

           
    

        

             
                              

  

  
    

          

Further, 

       
       

             
                                                            

where          is as defined in Lemma 3.1.9, 
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Proof. If              
        , then there is a Schwarz function 

            
       

such that 

      
  

    
     

    
 

 

  
    

           
    

    
     

    
 

  

    
     

    
 

 

          

           

since 

      
  

    
     

    
 

 

  
    

           
    

    
     

    
 

  

    
     

    
 

 

  

      
          

     
         

           

     
  

     

 
  

     
             

           

     
                           

          

 
  

     
     

                                                                                            

we have from (3.3.3.13), 
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and 

     
        

             
               

                                                 

where    and    as defined (3.3.3.11) and (3.3.3.12), respectively. Therefore, 

we have 

          
  

        

             
       

                                                 

where 

                         
  

  
                                                          

By making use of (3.3.3.15)-(3.3.3.19), the results (3.3.3.6) - (3.3.3.9) are 

established by an application of Lemma 3.1.7, inequality (3.3.3.9) by Lemma 

3.1.8, and (3.3.3.10) follows from Lemma 3.1.9. To show that the bounds in 

(3.3.3.6) - (3.3.3.9) are sharp, we define the functions               by 

      
  

    
     

      
 

 

  
    

           
      

    
     

      
 

  

    
     

      
 

 

          

                
 
         

and the functions               defined by 

      
  

    
     

     
 

 

  
    

           
     

    
     

     
 

  

    
     

     
 

 

   
      

    
   

        
          

and  
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respectively. It is clear that the functions        and    belong to the class 

        
        . If      or     , then the equality holds if and only if   is      

or one of its rotations. When        , the equality holds if and only if    is  

    or one of its rotations. If     , then the equality holds if and only if    is  

    or one of its rotations. If     , then the equality holds if and only if    is  

    or one of its rotations. The proof is complete. 

 

Remark 1. By specifying the parameters         and   in Theorem 3.3.3.2, 

we have the most the coefficient bound results which were obtained by other 

authors:  

1. Letting     and      , we obtain the results which were proven 

by [(Shanmugam et al., 2006a), Theorem 2.1, Remark 2.4] for the 

class          

2. Letting      and     , we obtain the result which was proven by 

[(Shanmugam et al., 2006a), Theorem 3.1] for the class          

Thus, the generalization of class         
         defined in this subsection is 

proven to some classes discussed in the previous papers and generalize the 

concept of non-Bazilevič functions. 

 

 In the similar manner, we can obtain the coefficient bound for the 

functional            
   of functions belonging to the class         

         

following (Amsheri and Zharkova, 2012d). 
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 Theorem 3.3.3.3. Let                                 

            and    . Further, let               
     

    

where    are real with          . If            belongs to         
        , 

then for any complex number   , 

           
    

           

             
                               

  

  
   

           

where                  is given by (3.3.3.5).  
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Chapter 4 

 

Differential subordination, superordination and 

sandwich results for  -valent functions  

 

 The main objective of this chapter is to apply a method based upon the 

first order differential subordination and superordination, in order to derive 

some new differential subordination and superordination results for  -valent 

functions in the open unit disk described in the previous chapters involving 

certain fractional derivative operator. Section 4.1 consists of introduction and 

some lemmas required to prove our results. In section 4.2, we obtain 

differential subordination results. In section 4.3, the corresponding differential 

superordination problems are investigated. section 4.4, discusses various 

differential sandwich results.  

 

 The results of sections 4.2, 4.3 and 4.4 are published in Kargujevac 

journal of mathematics (Amsheri and Zharkova, 2011d) and Global Journal 

of pure and applied mathematics (Amsheri and  Zharkova, 2011c). 

 

4.1 Introduction and preliminaries 

 In this chapter  we will use the related definitions and notations described 

in Chapter 1, section 1.7. Let                   and let      be 
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univalent in  . If      is analytic in     and satisfies the (first-order) differential 

subordination 

                                                                      

then      is said to be a solution of the differential subordination (4.1.1) The 

univalent function      is called a dominant of the solutions of the differential 

subordination (4.1.1), or more simply a dominant, if           for all      

satisfies (4.1.1). The univalent  dominant       that satisfies            for all 

dominants      of (4.1.1) is called  the best dominant. If      and 

                 are univalent functions in   and if       satisfies the (first-

order) differential superordination 

                                                                      

then      is said to be a solution of the differential superordination (4.1.2). 

The univalent function      is called a subordinant of the solutions of the 

differential superordination (4.1.2), or more simply a subordinant, if      

     for all      satisfies (4.1.2). The univalent  subordinant       that 

satisfies            for all dominants      of (4.1.2) is called  the best 

subordinant, see (Miller and Mocanu, 2002). 

 To introduce our main results concerning differential subordination, 

differential superordination and sandwich type results, we consider the 

differential superordination which was given by (Miller and Mocanu, 2003) to 

obtain the conditions on           and   for which the following implication 

holds true: 

                                

With the results of (Miller and Mocanu, 2003), (Bulboaca, 2002a) 

investigated certain classes of first order differential superordinations as well 



158 
 

as superordination-preserving integral operators (Bulboaca, 2002b). (Ali et 

al., 2005) have used the results of (Bulboaca, 2002b) to obtain sufficient 

conditions for normalized analytic functions         to satisfy 

      
      

    
        

where       and       are given univalent functions in     with         and 

       . Recently, (Shanmugam et al., 2006b) obtained sufficient 

conditions for a normalized analytic functions        to satisfy the 

conditions 

      
    

      
        

and 

      
       

      
         

where       and       are given univalent functions in     with         and 

       . 

 In this chapter, we will derive several subordination, superordination and 

sandwich results involving the fractional derivative operator     
     

     as 

defined in (2.2.1) for  -valent functions          .   

 Let us first mention the following known definition according to (Miller 

and Mocanu, 2003) for a class   of univalent functions defined on the unit 

disk.  

Definition 4.1.1. Denoted by    the set  of all functions   that are analytic 

and injective in           where 

                        . 
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and are such that         for          . Further let the subclass of   

for which         be denoted by               and         . 

 In order to prove our results, we need to the following result according to 

(Shanmugam et al., 2006b), which deals with finding the best dominant from 

the differential subordination.  

Lemma 4.1.2. Let   be univalent in the open unit disk    with          and  

     . Further assume that 

     
       

     
            

 

 
    

If      is analytic in   , and 

                             

then 

           

and     is the best dominant. 

 We also need to the following result according to (Shanmugam et al., 

2006b), which deals with finding the best subordinant from the differential 

superordination. 

Lemma 4.1.3. Let   be univalent in the open unit disk   with         . Let  

      and    
 

 
   . If                                is univalent 

in  , and 

                             

then 

           

and     is the best subordinant. 
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4.2  Differential subordination results 

 Let us begin with establishing some new differential subordination results  

between analytic functions involving the fractional derivative operator 

     
     

    , by making use of lemma 4.1.2. Theorem 4.2.1 deals with finding 

the best dominant from the differential subordination according to (Amsheri 

and Zharkova, 2011d). 

Theorem 4.2.1. Let      be univalent in     with        , and suppose that 

     
       

     
            

 

 
                                              

If           ,  and 

                              
     

     
        

           
    

      
           

     
   

      
     

     
    

     
           

    
                                                  

If     satisfies the following subordination: 

                                                                    

                                         

then 

     
     

    

     
           

    
                                                             

and     is the best dominant. 

Proof.  Let the function        be defined by 

     
     

     
    

     
           

    
  

So that, by a straightforward computation, we have 
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By using the identity (2.2.6), we obtain 

               
     

     
        

           
    

      
           

     
   

      
     

     
    

     
           

    
                

The assertion (4.2.4) of Theorem 4.2.1 now follows by an application of 

Lemma 4.1.2, with    . 

Remark 1. For the choice       
    

     
          , in Theorem 4.2.1, 

we get the following corollary according to (Amsheri and Zharkova, 2011d). 

Corollary 4.2.2. Let         , and suppose that 

   
    

     
            

 

 
                                              

If          , and 

               
    

     
 

       

       
  

                                         

where                is as defined in (4.2.2), then 

     
     

    

     
           

    
  

    

     
  

and  
    

     
  is the best dominant. 

 Next, let us investigate further differential subordination results for the 

fractional derivative operator      
     

    , which deal with finding the best 
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dominant from the differential subordination according to (Amsheri and 

Zharkova, 2011d). 

Theorem 4.2.3. Let      be univalent in     with        , and assume that 

(4.2.1) holds. Let          ,  and 

                           
      

     
     

 

      
           

    
  

        
     

     
    

  
         

      
     

     
 

     
           

    

       
           

     
             

If     satisfies the following subordination: 

                              

                                         

then 

      
     

     
 

        
           

    
                                                             

and     is the best dominant 

Proof.  Let the function        be defined by 

     
      

     
     

 

        
           

    
  

So that, by a straightforward computation, we have 

      

    
 

        
     

     
 

     
     

    
   

       
           

     
 

     
           

    
                             

By using the identity (2.2.6), we obtain 
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The assertion (4.2.8) of Theorem 4.2.3 now follows by an application of 

Lemma 4.1.2, with    . 

Remark 2. For the choice       
    

     
          , in Theorem 4.2.3, 

we get the following result according to (Amsheri and Zharkova, 2011d). 

Corollary 4.2.4. Let         , and assume that (4.2.6) holds. If 

         , and 

               
    

     
 

       

       
  

                                         

where                is as defined in (4.2.7), then 

      
     

     
 

        
           

    
  

    

     
  

and  
    

     
  is the best dominant. 

 Next, let us investigate further differential subordination results for the 

fractional derivative operator     
     

    , which deal with finding the best 

dominant from the differential subordination according to (Amsheri and 

Zharkova, 2011c). 

 Theorem 4.2.5. Let   be univalent in   with       , and assume that 

(4.2.1) holds. If          , and 
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If    satisfies the following subordination: 

                                                                                   

                                          

then 

       
           

    

      
     

     
                                                               

and     is the best dominant. 

Proof. Let the function      be defined by 

     
       

           
    

      
     

     
   

So that, by a straightforward computation, we have 

      

    
   

       
           

     
 

     
           

    
 

        
     

     
 

     
     

    
                             

By using the identity (2.2.6), a simple computation shows that 

            
       

           
    

      
     

     
          

       
           

    

      
     

     
   

       
        

           
     

 

      
     

     
               

The assertion (4.2.12) of Theorem 4.2.5 now follows by an application of 

Lemma 4.1.2, with     . 

Remark 3. For the choice       
    

     
          , in Theorem 4.2.5, 

we get the following corollary according to (Amsheri and Zharkova, 2011c). 
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Corollary 4.2.6. Let         , and assume that (4.2.6) holds. If 

         , and 

                
    

     
 

       

        
   

                                         

where                is as defined in (4.2.10), then 

       
           

    

      
     

     
   

    

     
  

and  
    

     
  is the best dominant. 

 Now, let us prove further differential subordination result for the fractional 

derivative operator      
     

     following the results by (Amsheri and 

Zharkova, 2011c). 

Theorem 4.2.7. Let   be univalent in   with       , and assume that 

(4.2.1) holds. If          , and 

                    
     

           
    

     
     

    
         

     
           

    

     
     

    
 

       
      

           
     

 

      
     

     
                                                  

If    satisfies the following subordination: 

                              

                                          

then 

     
           

    

     
     

    
                                                              

and   is the best dominant. 
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Proof. Let the function      be defined by 

     
     

           
    

     
     

    
   

So that, by a straightforward computation, we have 

      

    
 

       
           

     
 

     
           

    
 

       
     

     
 

     
     

    
                             

By using the identity (2.2.6), a simple computation shows that 

     
     

           
    

     
     

    
         

     
           

    

     
     

    
  

      
      

           
     

 

      
     

     
                  

The assertion (4.2.15) of Theorem 4.2.7 now follows by an application of 

Lemma 4.1.2, with     . 

Remark 3. For the choice       
    

     
          , in Theorem 4.2.7, 

we get the following result according to (Amsheri and Zharkova, 2011c). 

Corollary 4.2.8. Let         , and assume that (4.2.6) holds. If 

         , and 

                
    

     
 

       

        
   

                                         

where                is as defined in (4.2.14), then 

     
           

    

     
     

    
  

    

     
 

and  
    

     
  is the best dominant. 
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4.3 Differential superordination results 

 In this section Let us investigate some new differential superordination 

results  between analytic functions involving the fractional derivative operator 

     
     

    , by making use of lemma 4.1.3. The following Theorems 4.3.1 

and 4.3.2 deal with finding the best subordinant from the differential 

superordination according to (Amsheri and Zharkova, 2011d).  

Theorem 4.3.1. Let      be convex in    and     with       . If      

    , 

  
     

     
    

     
           

    
            

and                  is univalent in    ,  then 

                                                                      

                                    

implies 

     
     

     
    

     
           

    
                                                  

and   is the best subordinant where                is as defined in (4.2.2). 

Proof. Let the function      be defined by 

     
     

     
    

     
           

    
  

Then from the assumption of Theorem 4.3.1, the function      is analytic in   

and (4.2.5) holds. Hence, (4.3.1) is equivalent to 

                           

The assertion (4.3.2) of Theorem 4.3.1 now follows by an application of 

Lemma 4.1.3. 
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Theorem 4.3.2. Let      be convex in    and     with       . If      

    , 

  
      

     
     

 

       
           

    
            

and                  is univalent in    ,  then 

                                                                      

                                    

implies 

     
      

     
     

 

       
           

    
                                                  

and   is the best subordinant where                is as defined in (4.2.7). 

Proof. Let the function      be defined by 

     
      

     
     

 

       
           

    
  

Then from the assumption of Theorem 4.3.2, the function      is analytic in   

and (4.2.9) holds. Hence, (4.3.3) is equivalent to 

                           

The assertion (4.3.4) of Theorem 4.3.2 now follows by an application of 

Lemma 4.1.3. 

 Next, by making use of lemma 4.1.3, we prove the following Theorems 

4.3.3 and 4.3.4, which deal with finding the best subordinant from differential 

superordination according to (Amsheri and Zharkova, 2011c). 

Theorem 4.3.3.  Let   be convex in   and     with       . If      

    , 
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and                  is univalent in    , then 

                                                                                 

                                    

implies 

     
       

           
    

      
     

     
                                                            

and     is the best subordinant where                 is as defined in (4.2.10). 

Proof. Let the function      be defined by 

     
       

           
    

      
     

     
   

Then from the assumption of Theorem 4.3.3, the function      is analytic in   

and (4.2.13) holds. Hence, (4.3.5) is equivalent to 

                           

The assertion (4.3.6) of Theorem 4.3.3 now follows by an application of 

Lemma 4.1.3. 

Theorem 4.3.4. Let   be convex in   and     with       . If          , 

  
     

           
    

     
     

    
            

and                 is univalent in   , then 

                                                                                 

                                    

implies 
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and    is the best subordinant where                is as defined in (4.2.14). 

Proof. Let the function      be defined by 

     
     

           
    

     
     

    
   

Then from the assumption of Theorem 4.3.4, the function      is analytic in   

and (4.2.16) holds. Hence, (4.3.7) is equivalent to 

                          

The assertion (4.3.8) of Theorem 4.3.4 now follows by an application of 

Lemma 4.1.3. 

 

4.4 Differential sandwich results 

 In this section we obtain the differential sandwich type results by 

combining the differential subordination results from section 4.2 and the 

differential superordination results from section 4.3. Let us begin by 

combining Theorem 4.2.1 and Theorem 4.3.1 to get the following sandwich 

theorem for the fractional derivative operator     
     

     according to 

(Amsheri and Zharkova, 2011d). 

Theorem 4.4.1.  Let    and    be univalent functions in    such that       

       . Let       with        .  If            such that 

     
     

    

     
           

    
            

and                  is univalent in  , then 
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implies 

      
     

     
    

     
           

    
         

and    and    are respectively the best subordinant and the best dominant 

where                 is as defined in (4.2.2). 

Remark 1. For       in Theorem 4.4.1, we get differential sandwich 

result for  -valent function           in the open unit disk according to 

(Amsheri and Zharkova, 2011d). 

Corollary 4.4.2. Let    and    be convex functions in    with             

 . Let       with        .  If            such that 

     

      
            

and let 

                
          

        
        

    

      
  

is univalent in  , then 

          
                          

      

implies 

      
     

      
        

and    and    are respectively the best subordinant and the best dominant.  

 Now, by combining Theorem 4.2.4 and Theorem 4.3.2, we get the 

sandwich theorem for the fractional derivative operator     
     

     according 

to (Amsheri and Zharkova, 2011d). 
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Theorem 4.4.3.  Let    and    be univalent functions in    such that       

       . Let       with        . If            such that 

      
     

     
 

      
           

    
            

and                  is univalent in  , then 

          
                              

      

                                    

implies 

      
      

     
     

 

      
           

    
        

and    and    are respectively the best subordinant and the best dominant 

where                 is as defined in (4.2.7). 

Remark 2.  For        in Theorem 4.4.3, we get differential sandwich 

result for  -valent function           in the open unit disk according to 

(Amsheri and Zharkova, 2011d). 

Corollary 4.4.4. Let    and    be convex functions in    with             

 . Let       with        .  If            such that 

       
 

         
            

and let 

                     
       

 

         
     

    

  
    

            
 

         
    

is univalent in  , then 

          
                          

      

implies 
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and    and    are respectively the best subordinant and the best dominant.  

 Next, by combining Theorem 4.2.5 and Theorem 4.3.3, we get the 

following sandwich theorem for the fractional derivative operator     
     

     

according to (Amsheri and Zharkova, 2011c). 

Theorem 4.4.4. Let    and    be convex functions in    with             

 . Let       with       . If           such that  

       
           

    

      
     

     
             

and                 is univalent in   , then 

          
                              

         

                                         

implies 

      
       

           
    

      
     

     
           

and    and     are respectively the best subordinant and the best dominant 

where                 is as defined in           

Remark 3.  For        in Theorem 4.4.4, we get the following differential 

sandwich result for  -valent function           in the open unit disk 

according to (Amsheri and Zharkova, 2011c). 

Corollary 4.4.5. Let    and    be convex functions in    with             

 . Let      with       . If           such that  
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and let 

                     
         

       
   

          

       
    

           
 

       
     

is univalent in  , then 

          
                          

         

implies 

      
          

       
         

and    and     are respectively the best subordinant and the best dominant. 

 Next, by combining Theorem 4.2.7 and Theorem 4.3.4, we get the 

following sandwich theorem for the fractional derivative operator     
     

     

according to (Amsheri and Zharkova, 2011c). 

Theorem 4.4.6. Let    and    be convex functions in     with             

 . Let      with       . If           such that  

     
           

    

     
     

    
            

and                 is univalent in   , then 

          
                              

         

                                         

implies 

      
     

           
    

     
     

    
               

and    and    are respectively the best subordinant and the best dominant 

where                 is as defined in (4.2.14). 
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Remark 4.  For        in Theorem 4.4.6, we get differential sandwich 

result for  -valent function           in the open unit disk according to 

(Amsheri and Zharkova, 2011c). 

Theorem 4.4.7. Let    and    be convex functions in     with             

 . Let      with       . If           such that  

      

     
            

and let 

           
     

 

      

    
 

 

 
 
        

    
 

         
 

      
    

is univalent in   , then 

          
                          

         

implies 

      
      

     
         

and    and     are respectively the best subordinant and the best dominant. 
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Chapter 5 

 

Strong differential subordination and 

superordination for  -valent functions  

 

 In this chapter we derive several results for strong differential 

subordination and superordination of  -valent functions involving certain 

fractional derivative operator. Section 5.1 consists of introduction and some 

lemmas those are required to prove our results. In section 5.2, strong 

differential subordination and superordination properties are determined for 

some families of  -valent functions with certain fractional derivative operator 

by investigating appropriate classes of admissible functions. In addition, new 

strong differential sandwich-type results are also obtained. In section 5.3, we 

derive first order linear strong differential subordination results for certain  

fractional derivative operator of  -valent functions. In section 5.4, we obtain 

some new first order strong differential subordination and superordination 

results based on the fact that the coefficients of functions defined by the 

operator are not constants but complex-valued functions. 

 

 The results of section 5.2 are published in Pioneer Journal of 

Mathematics and Mathematical Sciences (Amsheri and V. Zharkova, 2012f). 

The results of section 5.3 are published in Far East J. Math. Sci. (FJMS) 

(Amsheri and V. Zharkova, 2012g). The results of section 5.4 are published 

in International journal of Mathematical Analysis (Amsheri and V. Zharkova, 
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2012h) and in Journal of Mathematical Sciences: Advances and Applications 

(Amsheri and V Zharkova, 2012i).  

 

5.1 Introduction and preliminaries  

 Some recent results in the theory of analytic functions were obtained by 

using a more strong form of the differential subordination and 

superordination introduced by (Antonino and Romaguera, 1994) and studied 

by (Antonino and Romaguera, 2006)  called strong differential subordination 

and strong differential superordination, respectively. By using this notion, (G. 

Oros and Oros, 2007), (G. Oros, 2007), (G. Oros and Oros, 2009) and (G. 

Oros, 2009) introduced the notions of strong differential superordination and 

strong differential subordination following the theory of differential 

subordination introduced by (Miller and Mocaun,1981) and was developed by 

(Miller and Mocaun,2000) and the dual problem differential superordination 

which was introduced by  (Miller and Mocanu, 2003). 

  

 To introduce our main results concerning strong differential subordination, 

and strong differential superordination, we consider the strong differential 

superordination which was given by (G. Oros, 2009). Let            , 

and let      be univalent in  . If      is analytic in    and satisfies the 

following (first-order) strong differential subordination 

                                                                     

then      is called a solution of the strong differential subordination. The 

univalent function      is called a domainant of the solution of the strong 

differential subordination or, more simply, a dominant if           for all 
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     satisfying (5.1.1). A dominant       that satisfies            for all 

dominants      of (5.1.1) is said to be the best dominant. If      and 

                 are univalent functions in   and if      satisfies the (first-

order) strong differential superordination 

                                                                         

then      is said to be a solution of the strong differential superordination 

(5.1.2). The univalent function      is called a subordinant of the solutions of 

the strong differential superordination (5.1.2), or more simply a subordinant, 

if           for all      satisfies (5.1.2). The univalent  subordinant       

that satisfies            for all dominants      of (5.1.2) is called  the best 

subordinant, see (G. Oros, 2011). 

 In this chapter we investigate appropriate classes of admissible functions 

involving the fractional derivative operator     
     

     which is as defined in 

(2.2.1) for  -valent functions by using the related definitions and notations 

defined in section 1.8, in order to obtain some new strong differential 

subordination, superordination, and sandwich type results. In addition, we 

obtain some new first order strong differential subordination and 

superordination results by considering that the coefficients of functions 

defined by the operator are not constants but complex-valued functions.  

 We refer to Chapter 4 of related  Definition 4.1.1 for the class  . In order 

to prove our main results let us define the class of admissible functions 

        following (G. Oros and Oros, 2009) .  

Definition 5.1.1. Let   be a set in  ,      and   be a positive integer. The 

class of admissible functions        , consists of those functions      

        that satisfy the admissibility condition: 
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whenever                  , and 

   
 

 
           

       

     
   

where                       and     . We write          as       . 

 In the special case when     is a simply connected domain,     , and 

   is a conformal mapping of     onto   , we denote this class by         . 

If              , then the admissibility condition (5.1.3) reduces to  

                                                                             

whenever                                       , and    .  

 We next define the class of admissible functions   
       following (G. 

Oros, 2009).  

Definition 5.1.2. Let   be a set in  ,             with        . The class 

of admissible functions   
      , consists of those functions           

   that satisfy the admissibility condition: 

                                                                              

whenever           
      

 
, and 

   
 

 
    

 

 
     

       

     
   

where                 and      . In particular, we write   
       

as        . 

 In the special case when     is a simply connected domain,     , and 

   is an analytic mapping of     onto   , we denote this class by    
      . 

If              , then the admissibility condition (5.1.5) reduces to  
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whenever            
      

 
                     , and    .  

 For the class         of admissible functions in Definition 5.1.1, (G. Oros 

and Oros, 2009) proved the following result. 

Lemma 5.1.3. Let           with       . If the analytic function  

            satisfies 

                                

then 

           

 On the other hand, for the class   
       of admissible functions in 

Definition 5.1.2 (G. Oros, 2009) proved Lemma 5.1.4. 

 Lemma 5.1.4.  Let     
       with       . If             and  

                             

is univalent in     for all     , then 

                                          

implies 

           

 Next let us give the following result regarding the subordination for 

analytic functions in the unit disk following (Miller and Mocanu,2000; p.24). 

Lemma 5.1.5. Let       , with        and let             

     
      be analytic in  , with        and    . If      is not 

subordinate to     , then there exist points       
      and            , 

and        such that 

1.              

2.    
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3.    
         

      
        

         

      
     

 

 Two particular cases corresponding to      being a disk and      being 

a half-plane, see (G. Oros, 2011) 

i. The function 

      
    

     
 

when           , satisfies the disk                 ,        

       and     , since          , with    , when      , the 

condition of admissibility (5.1.3) becomes 

                                                                             

when 

          
          

 

       
     

and 

   
 

 
     

           
 

       
                     

If    , then the condition (5.1.7) simplifies to 

                                                                         

and  

                 

ii. The function  
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with       , satisfies the half plane                   ,        

         and    , since          , when         , the condition of 

admissibility (5.1.3) becomes 

                                                                                

when            and 

   
 

 

       

    
                                

If    , then (5.1.9) implies 

                                                                                     

when            and 

   
 

 
                                    

 

 We also need to the following lemmas 5.1.6 due to (Miller and Mocanu, 

2000; p.71) which deals with finding the best dominant from strong 

differential subordination for analytic functions that have coefficients are not 

constants but complex-valued functions.  

Lemma 5.1.6. Let        be convex function with          for all      

and let     be a complex number with       . If                    and 

       
 

 
                  

then 

                        

where 

       
 

  
 
 

        
 
 
    

 

 

  

The function     is convex and it is the best dominant. 
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 We also need to lemma 5.1.7 following (Miller and Mocaun, 1985) which 

deals with finding the best dominant from strong differential subordination for 

analytic functions that have coefficients are not constants but complex-

valued functions.  

Lemma 5.1.7.  Let        be convex function in   for all      and let          

be defined by 

                                              

where       and     is a positive integer. If  

                              
                    

is analytic in      for all      , and satisfy 

                          

then 

                

and this result is sharp. 

 

 We also need to use the following lemmas 5.1.8 and 5.1.9 according to  

(Miller and Mocanu, 2003) which deal with finding the best subordinant from 

strong differential superordination for analytic functions that have coefficients 

are not constants but complex-valued functions.  

Lemma 5.1.8. Let        be convex with          for all      and let  

        be a complex number with       .  If                    . If   

               
 

 
          

then 
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where 

       
 

  
             

 

 

  

The function     is convex and it is the best subordinant. 

Lemma 5.1.9. Let        be  convex function in   , for all      and let  

       be defined by 

              
 

 
                             

where        . If                    ,        
 

 
          is univalent in 

   for all     , and satisfy  

               
 

 
           

then 

                

where 

       
 

  
             

 

 

  

The function    is the best subordinant. 

 

5.2 Admissible functions method  

 In this section we obtain some new strong differential subordination 

results and strong differential superordination results for  -valent functions 

associated with the fractional derivative operator     
     

     by investigating 

appropriate classes of admissible functions. Further results including strong 

differential sandwich-type are also considered.  
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5.2.1 Strong differential subordination results 

 Let us first define the class         of admissible functions that is 

required in our first result for strong differential subordination involving the 

fractional derivative operator     
     

     according to (Amsheri and Zharkova, 

2012f). 

Definition 5.2.1.1. Let   be a set in  , and               . The class of 

admissible functions         consists of those functions             

that satisfy the admissibility condition: 

                

whenever           
             

   
, and 

   
                              

         
        

       

     
   

where                                    and     . 

 Let us now prove the first result for strong differential subordination by 

making use of Lemma 5.1.3 following (Amsheri and Zharkova, 2012f). 

Theorem 5.2.1.2. Let          . If           satisfies 

       
     

         
          

         
           

                        

          

then 

    
     

           

Proof.  Define the analytic function       in    by 

         
     

                                                                             

Using the identity (2.2.6) in (5.2.1.2), we get 
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and 

    
           

      

 

            
                                                 

Define the transformations from   
 to   by 

      
    

   
   

            

            
                                 

Let  

                          

      
    

   
 
             

            
                                              

The proof shall make use of Lemma 5.1.3, using equations (5.2.1.2) - 

(5.2.1.4), and from (5.2.1.6), we obtain 

                             

      
     

         
          

         
           

                              

          

Hence (5.2.1.1) becomes 

                                                                              

The proof is completed if it can be shown that the admissibility condition for  

          is equivalent to the admissibility condition for   as given in 

Definition 5.1.1. Note that 

 

 
   

                              

         
  

and hence           . By Lemma 5.1.3, 
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         , 

or 

    
     

           

This completes the proof of Theorem 5.2.1.2. 

 We next consider the special situation when     is a simply connected 

domain. In this case        where      is a conformal mapping of     onto 

  and the class             is written as        . The following result is an 

immediate consequence of Theorem 5.2.1.2 according to (Amsheri and 

Zharkova, 2012f).  

  Theorem 5.2.1.3. Let           . If           satisfies 

       
     

         
          

         
           

                                 

for         , then 

    
     

           

 

 Let us now consider the particular case, the function             , 

corresponding to      being a disk                 . The class of 

admissible functions        , denoted by         is described below for 

this particular      according to (Amsheri and Zharkova, 2012f). 

Definition 5.2.1.4. Let   be a set in   with         and    . The 

class of admissible functions        , consists of those functions      

        such that 

        
   

   
      

               

            
          

whenever         , and                    for all       and    . 
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 Now let us apply Theorem 5.2.1.2 to the special case              

following (Amsheri and Zharkova, 2012f). 

 

Corollary 5.2.1.5.  Let          . If           satisfies 

       
     

         
          

         
           

                                  

then 

     
     

         

 

 Let us now consider the special case                   , the 

class         is simply denoted by       according to (Amsheri and 

Zharkova, 2012f). 

Corollary 5.2.1.6.  Let         . If           satisfies 

        
     

         
          

         
           

                              

then 

     
     

         

 

 To investigate further strong differential subordination results involving 

the fractional derivative operator     
     

    , let us define further class of 

admissible functions, that is the class           which is required in our next 

result  according to (Amsheri and Zharkova, 2012f). 

Definition 5.2.1.7. Let   be a set in  , and           . The class of 

admissible functions           consists of those functions           

   that satisfy the admissibility condition: 
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whenever           
 

       
 
       

    
             , and 

   
                                                

                 
  

                 
       

     
   

where                                        and     . 

 Let us prove the next result for strong differential subordination by 

making use of Lemma 5.1.3 following (Amsheri and Zharkova, 2012f). 

Theorem 5.2.1.8. Let             and     
     

      . If            

satisfies 

   
     

           
    

     
     

    
 
     

           
    

     
           

    
 
     

           
    

     
           

    
                      

           

then 

     
           

    

     
     

    
       

Proof.  Define the analytic function      in    by 

     
     

           
    

     
     

    
                                                         

Using (5.2.1.11), we get 

      

    
 

       
           

     
 

     
           

    
 

       
     

     
 

     
     

    
                                     

By making use of the identity (2.2.6) in (5.2.1.12), we get 

     
           

    

     
           

    
 

 

       
 
      

    
                                 

Further computations show that 
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Define the transformations from   
 to   by 

      
 

       
 
 

 
            

  
 

       
  

 

 
          

       
 
  

 
   

 
  

 

 
          

                   

Let  

                           

     
 

       
 
 

 
           

 

       
  

 

 
         

 
       

 
  

 
   

 
  

 

 
          

                                                                                      

 The proof shall make use of Lemma 5.1.3, using equations (5.2.1.11), 

(5.2.1.13) and (5.2.1.14), and from (5.2.1.16), we obtain 

                             

  
     

           
    

     
     

    
 
     

           
    

     
           

    
 
     

           
    

     
           

    
                             

Hence (5.2.1.10) becomes 
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The proof is completed if it can be shown that the admissibility condition for  

             is equivalent to the admissibility condition for     as given in 

Definition 5.1.1. Note that 

 

 
  

 
                                                

                 
  

and hence          . By Lemma 5.1.3, 

     
           

    

     
     

    
       

The of Theorem 5.2.1.8 is complete. 

 We next consider the special situation when     is a simply connected 

domain. In this case        where      is a conformal mapping of     onto 

  and the class               is written as          . The following result is 

an immediate consequence of Theorem 5.2.1.8 according to (Amsheri and 

Zharkova, 2012f). 

Theorem 5.2.1.9. Let             and     
     

      . If            

satisfies 

   
     

           
    

     
     

    
 
     

           
    

     
           

    
 
     

           
    

     
           

    
             

           

for          , then 

     
           

    

     
     

    
       

 Let us now consider the particular case, the function             , 

corresponding to      being a disk                 . The class of 
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admissible functions           denoted by           is described below for 

this particular      according to (Amsheri and Zharkova, 2012f). 

Definition 5.2.1.10. Let   be a set in   with         and    . The 

class of admissible functions          , consists of those functions       

        such that 

       
 

       
                    

  

       
              

 
                        

               
            

 whenever                                 ,  for all real  , and 

   . 

 Now let us apply Theorem 5.2.1.9 to the special case              

following (Amsheri and Zharkova, 2012f). 

Corollary 5.2.1.11.  Let             . If             satisfies 

   
     

           
    

     
     

    
 
     

           
    

     
           

    
 
     

           
    

     
           

    
          

for          , then 

 
     

           
    

     
     

    
                                 

 

 Let us now consider the special case                   , the 

class           is simply denoted by         following (Amsheri and 

Zharkova, 2012f). 

Corollary 5.2.1.12.  Let          . If           satisfies 
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for        , then 

 
     

           
    

     
     

    
                              

 

 

5.2.2 Strong differential superordination results 

 In this subsection the dual problem of strong differential subordination, 

that is, strong differential superordination of the fractional derivative operator 

     
     

     for  -valent functions is investigated following (Amsheri and 

Zharkova, 2012f). For this purpose we first define the class   
       of 

admissible functions.  

Definition 5.2.2.1. Let   be a set in  , and                     . The 

class of admissible functions   
       consists of those functions       

        that satisfy the admissibility condition: 

               

whenever           
             

      
, and 

   
                              

         
  

 

 
     

       

     
   

where                           and     . 

 Let us now prove the first result for strong differential superordination by 

making use of Lemma 5.1.4 following (Amsheri and Zharkova, 2012f). 

Theorem 5.2.2.2.  Let     
      . If                

     
         and 
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is univalent in   , then  

         
     

         
          

         
           

                       

          

implies 

         
     

      

Proof.  From (5.2.1.7) and (5.2.2.1), we have 

                                           

From (5.2.1.5), we see that the admissibility condition for     
       is 

equivalent to the admissibility condition for   as given in Definition 5.1.2. 

Hence      
       and by Lemma 5.1.4, 

         
     

      

The proof of Theorem 5.2.2.2 is complete. 

 We next consider the special situation when     is a simply connected 

domain. In this case        where      is a conformal mapping of     onto  

  and the class    
           is written as   

      . The following result is an 

immediate consequence of Theorem 5.2.2.2 according to (Amsheri and 

Zharkova, 2012f). 

Theorem 5.2.2.3. Let      be analytic on   and     
      . If          , 

    
     

         and 

      
     

         
          

         
           

           

is univalent in   , then  
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for         , implies 

         
     

      

 

 Next let us define further class of admissible functions, that is the class 

    
       which is required to investigate further strong differential 

superoedination involving the fractional derivative operator     
     

      

following (Amsheri and Zharkova, 2012f). 

Definition 5.2.2.4. Let   be a set in  , and        and       . The class 

of admissible functions     
       consists of those functions         

     that satisfy the admissibility condition: 

                

whenever           
 

       
 
      

     
             , and 

   
                                                

                 
  

          
 

 
      

       

     
   

where                                  and     . 

 Let us now prove the next result for strong differential subordination by 

making use of Lemma 5.1.4 following (Amsheri and Zharkova, 2012f). 

Theorem 5.2.2.5. Let       
      . If           

     
           

    

     
     

    
     and 

  
     

           
    

     
     

    
 
     

           
    

     
           

    
 
     

           
    

     
           

    
       

is univalent in   , then 
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implies 

     
     

           
    

     
     

    
  

Proof. From (5.2.1.17) and (5.2.2.3), we have 

                                          

In view of (5.2.1.16),the admissibility condition for       
       is 

equivalent to the admissibility condition for   as given in Definition 5.1.2. 

Hence           and by Lemma 5.1.4, 

     
     

           
    

     
     

    
  

This completes the proof of Theorem 5.2.2.5. 

 

 Next let us consider the special situation when     is a simply 

connected domain. In this case        for some conformal mapping       

of    onto   for the class     
           which is written as      

      . The 

following result is an immediate consequence of Theorem 5.2.2.5 according 

to (Amsheri and Zharkova, 2012f). 

Theorem 5.2.2.6. Let       ,      be analytic in    and       
      . If 

          
     

           
    

     
     

    
     and 

  
     

           
    

     
     

    
 
     

           
    

     
           

    
 
     

           
    

     
           

    
       

is univalent in    ,  then 
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for          , implies 

     
     

           
    

     
     

    
  

 

5.2.3 Strong differential sandwich results 

 In this subsection we obtain the strong differential sandwich type results 

by combining the strong differential subordination results from the subsection 

5.2.1 and the strong differential superordination results from the subsection 

5.2.2. Let us begin by combining Theorem 5.2.1.3 and Theorem 5.2.2.3 to 

get the following sandwich theorem for the fractional derivative operator 

    
     

     of  -valent functions according to (Amsheri and Zharkova, 2011f). 

Theorem 5.2.3.1. Let       and       be analytic functions in          be 

univalent function in   ,          with               and   

            
        . If                

     
                and 

      
     

         
          

         
           

                              

is univalent in   , then  

             
     

         
          

         
           

                  

implies 
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 Let us establish further strong differential sandwich result by combining 

Theorems 5.2.1.9 and 5.2.2.6. 

Theorem 5.2.3.2. Let       and       be analytic functions in          be 

univalent function in   ,          with               and   

                
        . If            

     
           

    

     
     

    
       and 

  
     

           
    

     
     

    
 
     

           
    

     
           

    
 
     

           
    

     
           

    
       

is univalent in    ,  then 

        

  
     

           
    

     
     

    
 
     

           
    

     
           

    
 
     

           
    

     
           

    
              

implies 

      
     

           
    

     
     

    
        

 

5.3 First order linear strong differential subordination 

 In this section, by making use of Definition 5.1.1 following (G. Oros and 

Oros, 2009) and the related definitions and notations described in chapter 1 

section 1.8, we investigate some new first order linear strong differential 

subordination properties of  -valent functions associated with fractional 

derivative operator. We begin by defining a first order linear strong 

differential subordination for  -valent functions involving the fractional 

derivative operator      
     

     according to (Amsheri and Zharkova, 2012g). 
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Definition 5.3.1. A strong differential subordination for the fractional 

derivative operator     
     

     of the form  

              
     

           
    

     
     

    
  

     
           

    

     
     

    
  

       
     

           
    

     
     

    
 

 

        
     

           
    

     
     

    
        

        

                                              

where 

     
     

           
    

     
     

    
  

and 

                                    

is analytic in   for all      and      is analytic in  , is called first order linear 

strong differential subordination for the fractional derivative operator 

     
     

     .  

 Let us investigate the first order liner strong differential subordination 

result of the fractional derivative operator     
     

     by making use of lemma 

5.1.5 following (Amsheri and Zharkova, 2012g). 

Theorem 5.3.2. Let 
     

           
    

     
     

    
       ,                   

with             analytic in     for all       and   

                                     

If  
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then 

     
           

    

     
     

    
     

Proof.  Let               

               

              
     

           
    

     
     

    
  

     
           

    

     
     

    
  

       
     

           
    

     
     

    
 

 

        
     

           
    

     
     

    
  

and (5.3.2) becomes 

                                                                                     

Since               , it gives                  . In this case (5.3.3) 

is equivalent to 

                                                                              

Suppose that 

     
           

    

     
     

    
  

is not subordinate to        . Then by using Lemma 5.1.5, we have that 

there exist        and         such that 
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where        when        , and 

       
     

           
     

     
     

     
 

     
           

     

     
     

     
  

      
     

           
     

     
     

     
 

 

     
                             

Hence we obtain 

                                                      

                     

                              

                                  

                                         

                                                   

Since this result contradicts (5.3.4), we conclude that that assumption made 

concerning the subordination relation between       and       is false, hence 

     
           

    

     
     

    
     

This completes the proof of Theorem 5.3.2. 

 Let us now establish the first order liner strong differential subordination 

of  -valent functions by letting       in Theorem 5.3.2 according to 

(Amsheri and Zharkova, 2012g). 

Corollary 5.3.3. Let  
      

     
                           with 
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  analytic function in     for all       and   

                                     

If  

       
        

     
 

      

     
 

 

 
 
      

    
 

 

        
      

     
               

                         

then 

      

     
     

 Next let us investigate further first order linear strong differential 

subordination of the fractional derivative operator     
     

     by making use 

of lemma 5.1.5 following (Amsheri and Zharkova, 2012g). 

Theorem 5.3.4. Let 
     

           
    

     
     

    
                           

with             analytic in     for all       and   

                                   

If  

                 
     

           
    

     
     

    
  

     
           

    

     
     

    
   

        
     

           
    

     
     

    
 

 

        
     

           
    

     
     

    
                  

                                                  

then 

   
     

           
    

     
     

    
     

Proof.  Let             , 



203 
 

               

              
     

           
    

     
     

    
  

     
           

    

     
     

    
  

       
     

           
    

     
     

    
 

 

        
     

           
    

     
     

    
  

In this case (5.3.5) becomes 

                                                                                  

Since      
    

    
          , and                     , hence 

(5.3.6) becomes 

            
    

    
                           

Suppose  

   
     

           
    

     
     

    
     

Meaning       
     

           
    

     
     

    
  is not subordinate to      

    

    
      

   . Using Lemma 5.1.5, we have that there exist       and        with  

       such that 

      
     

           
     

     
     

     
           

and 

       
     

           
     

     
     

     
 

     
           

     

     
     

     
 

       
     

           
     

     
     

     
 

 

     
         

where         and     
 

 
          .  Then we obtain 
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Hence                    which contradicts (5.3.6), and we conclude that 

   
     

           
    

     
     

    
     

This completes the proof. 

 Let us now establish further result for first order linear strong differential 

subordination of  -valent functions by letting       in Theorem 5.3.4 

according to (Amsheri and Zharkova, 2012g). 

Corollary 5.3.5. Let  
      

     
                           with 

           analytic function in     for all       and   

                                   

If  

          
        

     
 

      

     
 

 

 
 
      

    
 

 

        
      

     
      

                     

then 
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 Next let us investigate further result for first order linear strong differential 

subordination of the fractional derivative operator     
     

     by making use 

of lemma 5.1.5 following (Amsheri and Zharkova, 2012g). 

Theorem 5.3.6. Let 
     

           
    

     
     

    
                           

with             analytic in     for all       and   

                                                

If  

              
     

           
    

     
     

    
  

     
           

    

     
     

    
  

       
     

           
    

     
     

    
 

 

        
     

           
    

     
     

    
                 

                                                  

then 

     
           

    

     
     

    
 

    

    
                          

Proof.  Let             , 

               

              
     

           
    

     
     

    
  

     
           

    

     
     

    
  

       
     

           
    

     
     

    
 

 

        
     

           
    

     
     

    
  

and (5.3.7) becomes 

                                                                              

Since        , it gives            . Thus 
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Suppose that 

     
           

    

     
     

    
  

is not subordinated to      
    

    
         . Then by using Lemma 

5.1.5, we have that there exist        and         such that 

     
           

     

     
     

     
           

and 

       
     

           
     

     
     

     
 

     
           

     

     
     

     
 

       
     

           
     

     
     

     
 

 

              

where         and     
 

 
          . Then we obtain 

                                                                                                  

                                         

                                    

      
 

 
                               

                                
 

 
                          

 

 
                 

Hence we have 

                   

which contradicts (5.3.8), we conclude that 
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This completes the proof. 

 Let us now establish further result for first order linear strong differential 

subordination of  -valent functions by letting       and      
   

   
 in 

Theorem 5.3.6 according to (Amsheri and Zharkova, 2012g). 

Corollary 5.3.7. Let  
      

     
                           with 

           analytic function in     for any       and   

                                                

If  

       
        

     
 

      

     
 

 

 
 
      

    
 

 

        
      

     
     

                     

then 

      

     
 

   

   
  

 

5.4 On new strong differential subordination and superordination 

 This section is based on the fact that the coefficients of the functions in 

those classes           and       given in chapter 1 section 1.8, are not 

constants but complex-valued functions. Using these classes, a new 

approach in the studying strong subordination and superordination can be 

seen for the fractional derivative operator     
     

       defined for        

  
      according to (Amsheri and Zharkova, 2012h) and (Amsheri and 

Zharkova, 2012i). Let   
      be the class of functions           of the 

form 
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and set   
        

  
. We define the modification of the fractional derivative 

operator     
     

 for          
      by 

    
     

       
                  

                
        

     
                            

or 

     
     

                      

 

   

                                             

where                                           and 

            
                

                  
                                         

It is easily verified from (5.4.2) that 

       
     

       
 

           
           

             
     

                       

This identity plays a critical role in obtaining information about functions 

defined by use of the fractional derivative operator. Notice that  

     
     

               

and 

     
     

       
   

      

 
  

 

5.4.1 Strong differential subordination results 

 In this subsection we investigate some new strong differential 

subordination for the fractional derivative operator     
     

       by making 

use of Lemmas 5.1.6  and  5.1.7. The next result deals with finding the best 
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dominant from strong differential subordination by making use of Lemmas 

5.1.6 following (Amsheri and Zharkova, 2012h). 

Theorem 5.4.1.1. Let        be a convex function such that         . If  

    
       and the strong differential subordination 

 
    

     
      

    
 

 

 

                                                         

                                    

holds, then 

    
     

      

  
                                        

where 

       
 

 
         

 

 

  

The function     is convex and it is the best dominant. 

Proof.  Consider   

       
    

     
      

  
                  

     

and                    , we have 

  
       

     
     

       
 

 

  
  

      

 
  

we obtain 

          
        

    
     

      

    
 

 

 

                               

Then (5.4.1.1) becomes 

          
                                     

Since                  , using Lemma 5.1.6 for      and     , we have 
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or  

    
     

      

  
                                          

where 

       
 

 
         

 

 

  

The function     is convex and it is the best dominant. 

 Let us next find the best dominant from strong differential subordination 

by making use of Lemmas 5.1.7 following (Amsheri and Zharkova, 2012h). 

Theorem 5.4.1.2. Let        be a convex function such that          and  

   be the function defined by 

                 
                 

 If      
       and the strong differential subordination 

 
    

     
      

    
 

 

 

                                                            

                                    

holds, then 

    
     

      

  
                                   

and this result is sharp. 

Proof. Following the same steps as in the proof of Theorem 5.4.1.1 and 

considering   

       
    

     
      

  
  

we have 
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then 

          
        

    
     

      

    
 

 

 

  

The strong differential subordination (5.4.1.2) becomes 

          
                  

                            

By using Lemma 5.1.7, we have 

                

or  

    
     

      

  
                                 

 Let us now find the best dominant from strong differential subordination 

by making use of Lemmas 5.1.6, when        
         

   
  following (Amsheri 

and Zharkova, 2012h). 

Theorem 5.4.1.3.  Let        
         

   
  be a convex function in         

   . If     
       and the strong differential subordination 

 
    

     
      

    
 

 

 

                                                              

                                    

holds, then 

    
     

      

  
                                             

where    is given by 
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The function     is convex and it is the best dominant. 

Proof. Following the same steps as in the proof of Theorem 5.4.1.1 and 

considering   

       
    

     
      

  
  

The strong differential subordination (5.4.1.3) becomes 

          
               

         

   
                                

By using Lemma 5.1.6, for      and     , we have 

                        

or  

    
     

      

  
                                                

 
 

 
         

 

 

 

            
 

 
 

         

   
  

 

 

 

                                                      
      

 
                       

The function     is convex and it is the best dominant. 

 Let us now investigate further strong differential subordination result of 

the fractional derivative operator     
     

       to find best dominant by 

making use of Lemma 5.1.6 according to (Amsheri and Zharkova, 2012h). 

Theorem 5.4.1.4. Let        be a convex function such that         . If  

    
       and the strong differential subordination 
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holds, then 

    
           

      

    
     

      
                                          

where 

       
 

 
         

 

 

  

The function     is convex and it is the best dominant. 

Proof.  Consider   

       
    

           
      

    
     

      
                      

we have 

  
       

     
           

       
 

 

    
     

      
       

     
     

       
 

 

    
     

      
  

and we obtain 

          
        

     
           

      

    
     

      
 

 

 

  

Then (5.4.1.4) becomes 

          
                                    

By using Lemma 5.1.6 for      and     , we have 

                

or  

    
           

      

    
     

      
                                            

where 
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The function   is convex and it is the best dominant. 

 Let us now find the best dominant from strong differential subordination  

by making use of Lemma 5.1.7 according to (Amsheri and Zharkova, 2012h). 

Theorem 5.4.1.5.  Let        be a convex function such that          and 

  be the function defined by 

                 
         

 If      
       and the strong differential subordination 

 
     

           
      

    
     

      
 

 

 

                                                     

                                    

holds, then 

    
           

      

    
     

      
                                 

and this result is sharp. 

Proof. Following the same steps as in the proof of Theorem 5.4.1.4 and 

considering   

       
    

           
      

    
     

      
  

The strong differential subordination (5.4.1.5) becomes 

          
                  

                              

By using Lemma 5.1.7, we have 

                

or  
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 Let us next investigate further strong differential subordination result of 

the fractional derivative operator     
     

       to find best dominant by 

making use of Lemma 5.1.6 when        
         

   
  according to (Amsheri 

and Zharkova, 2012h). 

Theorem 5.4.1.6.  Let        
         

   
  be a convex function in        

   . If     
      and the strong differential subordination 

 
     

           
      

    
     

      
 

 

 

                                                      

                                    

holds, then 

    
           

      

    
     

      
                                    

where    is given by 

            
      

 
                                     

The function    is convex and it is the best dominant. 

Proof.  Following the same steps as in the proof of Theorem 5.4.1.4 and 

considering   

       
    

           
      

    
     

      
  

The strong differential subordination (5.4.1.6) becomes 
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By using Lemma 5.1.6, for      and     , we have 

                        

or  

    
           

      

    
     

      
                                                

 
 

 
         

 

 

 

            
 

 
 

         

   
  

 

 

 

                                     
      

 
                        

The function     is convex and it is the best dominant. 

 Let us investigate further strong differential subordination of the fractional 

derivative operator     
     

       by making use of lemma 5.1.6 following 

(Amsheri and Zharkova, 2012h). 

Theorem 5.4.1.7.  Let        be a convex function such that          . If  

    
       and the strong differential subordination 

            
    

           
      

  
  

              
    

           
      

  
  

        
    

     
      

  
                                            

                                    

holds, then 
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where 

       
 

 
         

 

 

  

The function     is convex and it is the best dominant. 

Proof.  Consider  the function 

        
    

     
      

    
 

 

 

                  
                       

 we have 

          
                   

    
           

      

  
  

              
    

           
      

  
         

    
     

      

  
  

Then (5.4.1.7) becomes 

          
                                    

By using Lemma 5.1.6, for      and       , we have 

                        

or  

 
    

     
      

    
 

 

 

                                    

where 

       
 

 
         

 

 

  

The function    is convex and it is the best dominant. 

 Next result deals with finding the best dominant from strong differential 

subordination by making use of Lemma 5.1.7 following (Amsheri and 

Zharkova, 2012h). 
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Theorem 5.4.1.8.  Let        be a convex function such that          and  

   be the function defined by 

                 
                                 

 If      
       and the strong differential subordination 

            
    

           
      

  
  

              
    

           
      

  
  

        
    

     
      

  
                                                   

                                    

holds, then 

 
    

     
      

    
 

 

 

                                   

and this result is sharp. 

Proof. Following the same steps as in the proof of Theorem 5.4.1.7 and 

considering   

        
    

     
      

    
 

 

 

  

The strong differential subordination (5.1.4.8) becomes 

          
                  

                            

By using Lemma 5.1.7, we have 

                

or  
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 Let us establish further result that deals with finding the best dominant 

from strong differential subordination when        
         

   
, by making use 

of Lemma 5.1.6 following (Amsheri and Zharkova, 2012h). 

Theorem 5.4.1.9. Let        
         

   
  be a convex function in        

   . If      
      and the strong differential subordination 

            
    

           
      

  
  

              
    

           
      

  
  

        
    

     
      

  
                                             

                                    

holds, then 

 
    

     
      

    
 

 

 

                                   

where    is given by 

            
      

 
                             

The function     is convex and it is the best dominant. 

Proof.  Following the same steps as in the proof of Theorem 6.4.1.7 and 

considering   

        
    

     
      

    
 

 

 

  

The strong differential subordination (5.4.1.9) becomes 
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By using Lemma 5.1.6, for      and     , we have 

                        

or  

 
    

     
      

    
 

 

 

                                                

 
 

 
         

 

 

 

            
 

 
 

         

   
  

 

 

 

                                                         
      

 
                       

The function     is convex and it is the best dominant. 

 

5.4.2 Strong differential superordination results 

 In this subsection we investigate some new strong differential 

superordination results for the fractional derivative operator     
     

       by 

making use of Lemmas 5.1.8  and  5.1.9. The next result deals with finding 

the best subordinant from strong differential superordination by making use 

of Lemmas 5.1.8 following (Amsheri and Zharkova, 2012i).  

Theorem 5.4.2.1. Let        be a convex function with         . If 

    
      and suppose that  

    
     

      

     
 

 

 is univalent and 

    
     

      

  
               

If the strong differential superordination 
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holds, then 

        
    

     
      

  
                      

where 

       
 

 
         

 

 

  

The function     is convex and it is the best subordinant.  

Proof.  Consider  the function 

       
    

     
      

  
                  

                     

we obtain 

 
    

     
      

    
 

 

 

           
                          

Then (5.4.2.1) becomes 

                  
                              

By using Lemma 5.1.8, for    , we have 

                

or  

        
    

     
      

  
     

where 

       
 

 
         

 

 

  

The function     is convex and it is the best subordinant. 

 Let us find the best subordinat from strong differential superordination by 

making use of lemma 5.1.9 according to (Amsheri and Zharkova, 2012i). 
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Theorem 5.4.2.2. Le        be a convex function and    be the function 

defined by 

                 
        

If      
       and suppose that   

    
     

      

     
 

 

 is univalent and 

    
     

      

  
              

and the strong differential superordination 

         
    

     
      

    
 

 

 

                                                   

                                    

holds, then 

        
    

     
      

  
                             

where 

       
 

 
         

 

 

  

The function     is the best subordinant.  

Proof. Following the same steps as in the proof of Theorem 5.4.2.1 and 

considering  

       
    

     
      

  
  

The strong differential superordination (5.4.2.2) becomes 

          
                  

                              

By using Lemma 5.1.9, for    , we have 

                

or  
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The function     is the best subordinant. 

 Let us now find the best subordinat from strong differential 

superordination when        
         

   
 by making use of lemma 5.1.8 

following (Amsheri and Zharkova, 2012i). 

Theorem 5.4.2.3.  Let        
         

   
  be a convex function in         

   . If     
      and suppose that  

    
     

      

    
 

 

 

 is univalent and  

    
     

      

  
               

If the strong differential superordination 

         
    

     
      

    
 

 

 

                                                    

                                    

holds, then 

        
    

     
      

  
                       

where    is given by 

            
      

 
                              

The function    is convex and it is the best subordinant.  

Proof. Following the same steps as in the proof of Theorem 5.4.2.1 and 

considering   

       
    

     
      

  
  



224 
 

The strong differential superordination (5.4.2.3) becomes 

       
         

   
            

                                

By using Lemma 5.1.8, for    , we have 

                

or  

       
 

 
         

 

 

 

                          
 

 
 

         

   
  

 

 

 

                                              
      

 
        

                                                    
    

     
      

  
                        

The function     is convex and it is the best subordinant. 

 Let us next investigate further strong differential superordination result 

for the fractional derivative operator     
     

       by making use of Lemma 

5.1.8 following (Amsheri and Zharkova, 2012i). 

Theorem 5.4.2.4. Let        be a convex function with         . If 

    
      and suppose that   

     
           

      

    
     

      
 

 

 

 is univalent and  

    
           

      

    
     

      
              

If the strong differential superordination 
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holds, then 

        
    

           
      

    
     

      
                        

where 

       
 

 
         

 

 

  

The function     is convex and it is the best subordinant.  

Proof.  Consider the function  

       
    

           
      

    
     

      
                           

we have 

  
       

     
           

       
 

 

    
     

      
       

     
     

       
 

 

    
     

      
  

 

and we obtain 

          
        

     
           

      

    
     

      
 

 

 

  

Then (5.4.2.4) becomes 

                  
                             

By using Lemma 5.1.8, for    , we have 

                

or  

        
    

           
      

    
     

      
                            

where 
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The function     is convex and it is the best subordinant. 

 Let us now find the best subordinant from strong differential 

superordination by making use of Lemma 5.1.9 following (Amsheri and 

Zharkova, 2012i). 

Theorem 5.4.2.5. Let        be a convex function and    be the function 

defined by 

                 
        

If     
      and suppose that  

     
           

      

    
     

      
 

 

 

 is univalent and  

    
           

      

    
     

      
               

 If the strong differential superordination 

         
     

           
      

    
     

      
 

 

 

                                                     

                                    

holds, then 

        
    

           
      

    
     

      
                           

where 

       
 

 
         

 

 

  

The function     is the best subordinant.  

Proof. Following the same steps as in the proof of Theorem 5.4.2.4 and 

considering  
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The strong differential superordination (5.4.2.5) becomes 

          
                  

                              

By using Lemma 5.1.9, for    , we have 

                

or  

       
 

 
         

 

 

   
    

           
      

    
     

      
                      

The function     is the best subordinant. 

 Let us next investigate further strong differential superordination result 

when        
         

   
  by making use of Lemma 5.1.8 following (Amsheri 

and Zharkova, 2012i). 

Theorem 5.4.2.6.  Let        
         

   
  be a convex function in         

   . If      
      and suppose that   

     
           

      

    
     

      
 

 

 

 is univalent and  

    
           

      

    
     

      
                

  If the strong differential superordination 

         
     

           
      

    
     

      
 

 

 

                                                    

                                    

holds, then 
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where    is given by 

            
      

 
                                  

The function     is convex and it is the best subordinant.  

Proof. Following the same steps as in the proof of Theorem 5.4.2.4 and 

considering   

       
    

           
      

    
     

      
  

The strong differential superordination (5.4.2.6) becomes 

       
         

   
            

                           

By using Lemma 5.1.8, for    , we have 

                

or  

       
 

 
         

 

 

 

                          
 

 
 

         

   
  

 

 

 

                                                 
      

 
        

                                              
    

           
      

    
     

      
        

The function     is convex and it is the best subordinant. 

 The next result deals with finding the best subordinat from strong 

differential superordination by making use of Lemma 5.1.8 according to 

(Amsheri and Zharkova, 2012i).  



229 
 

Theorem 5.4.2.7. Let        be a convex function such that         . If  

    
       and  

            
    

           
      

  
  

              
    

           
      

  
         

    
     

      

  
  

is univalent and  

 
    

     
      

    
 

 

 

              

If the strong differential superordination 

                    
    

           
      

  
  

              
    

           
      

  
         

    
     

      

  
  

          

                                    

holds, then 

         
    

     
      

    
 

 

 

                           

where 

       
 

 
         

 

 

  

The function     is convex and it is the best subordinant.  

Proof.  Consider the function  

        
    

     
      

    
 

 

 

                  
                    

we have 
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Then (5.4.2.7) becomes 

                  
                            

By using Lemma 5.1.8, for    , we have 

                

or  

         
    

     
      

    
 

 

 

                        

where 

       
 

 
         

 

 

  

The function     is convex and it is the best subordinant. 

 Let us next establish further strong differential superordination by making 

use of Lemma 5.1.9 following (Amsheri and Zharkova, 2012i). 

Theorem 5.4.2.8. Let        be a convex function and    be the function 

defined by 

              
 

 
                                 

If      
      and suppose that  

            
    

           
      

  
  

              
    

           
      

  
         

    
     

      

  
  

 is univalent and 
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If the strong differential superordination 

                    
    

           
      

  
  

              
    

           
      

  
         

    
     

      

  
  

          

                                    

holds, then 

         
    

     
      

    
 

 

 

                                

where 

       
 

 
         

 

 

  

The function     is the best subordinant.  

Proof. Following the same steps as in the proof of Theorem 5.4.2.7 and 

considering  

        
    

     
      

    
 

 

 

  

The strong differential superordination (5.4.2.8) becomes 

          
                  

                               

By using Lemma 5.1.9, for    , we have 

                

or  
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The function     is the best subordinant. 

 In the next result let us find the best subordinant from strong differential 

superordination when        
         

   
  by making use of Lemma 5.1.8 

according to (Amsheri and Zharkova, 2012i). 

Theorem 5.4.2.9. Let        
         

   
  be a convex function in        

   .  If     
       and suppose that   

            
    

           
      

  
  

              
    

           
      

  
         

    
     

      

  
  

 is univalent and 

 
    

     
      

    
 

 

 

               

If the strong differential superordination 

                    
    

           
      

  
  

              
    

           
      

  
         

    
     

      

  
  

          

                                    

holds, then 

         
    

     
      

    
 

 

 

                                   

where     is given by 
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The function     is convex and it is the best subordinant.  

Proof. Following the same steps as in the proof of Theorem 5.4.2.7 and 

considering   

        
    

     
      

    
 

 

 

  

The strong differential superordination (5.4.2.9) becomes 

       
         

   
            

                          

By using Lemma 5.1.8, for    , we have 

                

or  

       
 

 
         

 

 

 

                          
 

 
 

         

   
  

 

 

 

                                                 
      

 
        

                                  
    

     
      

    
 

 

 

    

The function     is convex and it is the best subordinant. 
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Conclusions 

 This research is mainly concerned  with the analytic functions defined in 

the open unit disk. In this thesis, by making use of the fractional derivative 

operator     
     

    , certain new classes of analytic and  -valent (or 

multivalent) functions with negative coefficients such as       
           

                      
                  

           and             
           were 

introduced and their properties were investigated. These classes generalized 

the concepts of starlike and convex, prestarlike, and uniformly starlike and 

convex functions. Several new sufficient conditions for starlikeness and 

convexity of the operator     
     

     by using certain results of (Owa, 1985a), 

convolution, Jack’s Lemma and Nunokakawa’ Lemma were obtained. The 

technique of subordination was employed to introduce new classes involving 

the operator     
     

     such as           
             

                 
          and 

        
         in order to obtain the bounds of the coefficient functional       

     
  . These classes generalized the concepts of starlike, Bazilevič and 

non-Bazilevič functions of complex order. Several differential subordination, 

superordination and sandwich type results were investigated for the 

fractional derivative operator     
     

    . By  making use of the notations of 

strong differential subordination and superordination, new classes of 

admissible functions were introduced such that subordination and 

superordination implications of functions involving the operator     
     

     

hold. First order linear strong differential subordination properties were 

investigated. Several strong differential subordination and superordination 
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results based on the fact that the coefficients of the functions     
     

       

are not constants but complex-valued functions. This thesis is composed of 

five chapters in which the research have been carried out.  

(i) First chapter is an introduction where we presented review of literature 

to provide background for certain classes of analytic functions. Some 

elementary concepts of univalent and  -valent functions, analytic 

functions with positive real part, special classes of analytic functions, 

fractional derivative operators, differential subordination and 

superordination, strong differential subordination and superordination 

are defined. The motivations and outlines of this research are also 

considered.  

(ii) Chapter 2 is dedicated for the application of fractional derivative    

operator to analytic and  -valent functions with negative coefficients in 

the open unit disk. More precisely, we introduced new classes 

      
           and                 of  -valent starlike functions with 

negative coefficients by using fractional derivative operator     
     

    . 

We obtained the sufficient conditions for functions to be the these 

classes by using the results of (Owa, 1985a) and investigated a number 

of distortion properties which determine how large the modulus of  -

valent function together with its derivatives can be in these classes. 

Further distortion properties involving generalized fractional derivative 

operator     
     

     of  -valent functions are also studied. The radii of 

convexity problem for the classes       
           and                 

which determine the largest disk       such that each function 
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belonging to these classes is convex in       are also considered. The 

well-known results according to (Aouf and Hossen, 2006), (Srivastava 

and Owa, 1991a) (Srivastava and Owa, 1991b) and (Gupta, 1984) 

follow as particular cases from the generalized results of the classes  

      
           and                 which are presented in this chapter 

by specialising the parameters. 

    Moreover, by using the Hadamard product (or convolution) involving 

the fractional derivative operator     
     

     we introduced new classes 

      
           and       

           of   valent starlike and convex 

functions with negative coefficients. The necessary and sufficient 

conditions for a function to be in such these classes are obtained. 

Further results including distortion properties, extreme points, modified 

Hadamard product and inclusion properties are also studied. We 

determined the radii of close-to-convexity, starlikeness and convexity. 

Relevant connections of the newly derived generalized results of the 

classes       
           and       

           which are presented in this 

chapter with various earlier results, for example, (Aouf, 1988), (Gupta 

and Jain, 1976), (Owa, 1985a), (Silverman, 1975), (Aouf, 2007) and 

(Aouf and Silverman, 2007) are also studied by specialising the 

parameters.  

       In addition, we introduced the new class            
           of  -

uniformly  -valent starlike and convex functions in the open unit disk 

associated with fractional derivative operator     
     

    . We obtained 

coefficient estimates, distortion theorems and extreme points for 
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functions belonging to such these classes. We established a number of 

closure properties. The radii of starlikeness, convexity and close-to-

convexity are also determined. We remark that several results given the 

coefficient estimates, distortion properties, extreme points, closure and , 

inclusion properties, and radii of convexity and starlikeness of functions 

which belong to various subclasses of            
           can be 

obtained by suitable choices of parameters, including some of the 

results obtained by (AL-Kharsani and AL-Hajiry, 2006), (Owa, 1998), 

(Rønning, 1991), (Goodman, 1991b) and (Partil and Thakare, 1983).  

(iii)   In chapter 3, we studied two types of problems. The first type deals 

sufficient conditions for starlikeness and convexity of  -valent functions 

associated with fractional derivative operator     
     

    . We found the 

sufficient conditions by using the results of (Owa, 1985a) and the 

Hadamard product. Further sufficient conditions for starlikeness and 

convexity by using Jack’s Lemma and Nunokakawa’s Lemma are also 

obtained. We remark that several characterization properties given the 

starlikeness and convexity properties of fractional derivative operator 

can be obtained by suitable choices of the parameters. Our results 

obtained here extend the previous results obtained by (Owa and Shen, 

1998), (Raina and Nahar, 2000) and (Imark and Piejko, 2005).   

    The second type is concerned with the coefficient bounds for some 

subclasses of  -valent functions of complex order defined by fractional 

derivative operator     
     

    . We obtained the bounds of the 

coefficient functional            
   and bounds for the coefficient      
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of function belonging to the new classes         
     and           

     of  -

valent functions. We studied the similar problem for more general new 

classes         
                 

                  
         and         

         of Bazilevič 

functions and for the new classes         
                 

         of non-

Bazilevič functions. Relevant connections of the newly results obtained 

here with those in earlier papers, for example, (Ali, et al., 2007), (Ma 

and Minda, 1994), (Ravichandram et al. 2004), (Ravichandran et al. 

2005), (Ramachandran et al. 2007), (Srivastava and Mishra, 2000), 

(Dixit and Pal,1995), (Rosy et al., 2009), (Obradović, 1998), 

(Shanmugam et al., 2006) and (Tuneski and Darus, 2002) are also 

provided. 

(iv)   In chapter 4,  the classical notations of differential subordinations and 

its dual, differential superordinations were introduced by (Miller and 

Mocaun,1981) and (Miller and Mocaun,1985)  and developed in (Miller 

and Mocaun,2000) are the starting point for new differential 

subordinations and superordinations obtained by using certain 

fractional derivative operator     
     

     of  -valent functions in the 

open unit disk. We investigated some new differential subordination 

and superordination results for the operator     
     

    . Several 

differential sandwich results are also obtained.  

(v)  In chapter 5, we investigated new classes of admissible functions of 

strong differential subordination and strong differential superordination 

involving the fractional derivative operator     
     

    , so that the 

subordination as well as superordination implications of functions 
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associated with the fractional derivative operator hold. New strong 

differential sandwich type results are also obtained. Moreover, we 

derived several first order linear strong differential subordination 

properties for the operator     
     

    . Further new strong differential 

subordination and superordination properties were obtained for the 

fractional derivative operator     
     

       on the fact that the 

coefficients of the functions are not constants but complex-valued 

functions.  

Overall, the careful research carried out earlier and in this thesis shows that 

the fractional calculus operator (that is; fractional derivative operator) has 

many extensive and interesting applications in the theory of analytic and 

multivalent functions. We observed that some well known results are 

reduced as special cases from our main results signifying the work presented 

in this thesis 
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Future work 

 The scope of this thesis has caused several limitations, which however 

provide basis for future research along the path to fractional calculus in 

several areas. These areas include: 

 application of fractional calculus to analytic functions theory, 

 application of fractional calculus to special functions,  

 application of fractional calculus to physics, and  

 application of fractional calculus to engineering.  

The following sections discuss each of these areas in more detail. 

1. Application of fractional calculus to analytic functions theory 

 The future improvement of this thesis to analytic functions theory can be 

developed in several ways. One possible extension is to investigate a more 

general linear operator that involving fractional calculus operator (that is, 

derivative or integral) or other linear operator such as Ruscheweh derivative 

operator, Multiplier differential operator and Salagean differential operator. 

The current framework requires that the linear operator be specified 

explicitly. It would be preferred that an initial linear operator be suggested 

and framework allowed to adapt or extend. Another possibility would be to 

use the fractional derivative operator which was studied in the present thesis 

to other fields of analytic functions such as high-order derivatives of 

multivalent functions, harmonic functions and meromorphic functions. 
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2. Application of fractional calculus to special functions  

 The field of special functions is ripe for further work, as there are many 

special functions appear as solutions of differential equations or integrals of 

elementary functions. For example, the Riemann zeta function is a function 

of complex variable defined by infinite series. The fractional calculus 

operators will be applied to the summation of the series and evaluation to 

definite integrals in corresponding zeta function. Some of properties will be 

derived such as the fractional derivative operator of zeta function is again 

zeta function. Moreover, by extending The Riemann zeta function and 

obtaining some properties such as analytic continuation and integral 

representation of the extended function. The connections between the 

extended function with other functions in the literature will be considered. It 

will expect that some of the results may find applications in the solution of 

certain fractional order differential and integral equations. 

3. Application of fractional calculus to physics  

 Development of solving problems in physics is an important area for 

future research. One possible direction of research is to fluid mechanics 

which studies fluids (liquids, gases, and plasmas) and the forces on them, 

i.e. work based on Mathematical Physics. The scope of future work in this 

area will deal with obtaining the solution of time-dependent viscous-diffusion 

problem of a semi-infinite fluid bounded by a flat plate by using fractional 

derivative operator. It can be obtained that, by making use of the equation 

describing the time-dependent of viscous-diffusion which is a partial 

differential equation of first order in time and second order in space. The 

http://en.wikipedia.org/wiki/Differential_equation
http://en.wikipedia.org/wiki/Integral
http://en.wikipedia.org/wiki/Elementary_functions
http://en.wikipedia.org/wiki/Infinite_series
http://en.wikipedia.org/wiki/Fluid
http://en.wikipedia.org/wiki/Liquid
http://en.wikipedia.org/wiki/Gas
http://en.wikipedia.org/wiki/Plasma_(physics)
http://en.wikipedia.org/wiki/Force
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initial and boundary conditions corresponding to the problem will be used. 

Together with the Laplace transform method of the equation, the application 

of fractional derivative operator to the equation in a semi-infinite space will be 

useful to reduce the order of the differential equation to yield explicit 

analytical (fractional) solutions. 

 Another possible application of fractional calculus in fluid mechanics will 

deal with obtaining the solution of the instability phenomenon in fluid flow 

through porous media with mean capillary pressure. When water is injected 

into oil saturated porous medium, as a result perturbation (instability) occurs 

and develops the finger flow. It can be obtained that, by making use of the 

equation describing the instability phenomenon which is a partial differential 

equation of fractional order. The solution of the problem will yield by making 

use of the initial and boundary conditions and fractional calculus together 

with Fourier and Laplace transforms method. 

4. Application of fractional calculus to engineering  

 The fractional calculus can be applied to other scientific areas such as 

engineering, and more particularly in electric. For example, Ultracapacitors 

(aka supercapacitors) are electrical devices which are used to store energy 

and offer high power density that is not possible to achieve with traditional 

capacitors. Nowadays, ultracapacitors have many industrial applications and 

are used wherever a high current in a short time is needed. They are able to 

store or yield a lot of energy in a short period of time. One of the most 

prominent is the ultracapacitor application in hybrid cars when a hybrid car is 

decelerating the electric motor acts as a generator producing a short, but 
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high value energy impulse. This is used to charge the ultracapacitor. 

Charging the conventional batteries with such a short impulse would be 

extremely ineffective. Similarly, during start-up of the electric motor a short-

time but substantial in value increase of the source power is needed. This is 

achieved by using the ultracapacitor. It is essential to have a fairly detailed 

model of ultracapacitor. This model makes the design of control systems 

possible. The more accurate model we have, the more advanced control 

schema can be achieved. Control systems are needed to stabilise the 

ultracapacitor voltage which tends to fluctuate significantly.  

 Ultracapacitors are large capacity and power density electrical energy 

storage devices. This large capacity is the effect of a very complicated 

internal structure. This structure also has a significant impact on the dynamic 

behaviour of the ultracapacitor. The scope of future works in this area will 

deal with describing the performance of the ultracapacitors by using 

fractional order model to give high accurate results of modelling over a wider 

range of frequencies. This will be made by using the fractional-order 

integrator which is based on the fractional calculus dealing with derivatives of 

arbitrary order. To define fractional order ultracapacitor models as functions 

and find frequency and time domain modelling of ultracapacitors which then 

will allow comparing fractional order models with the integer model for a 

better description of the behaviour. This model of the ultracapacitor will be 

used in either time or frequency domains. Also, by building a model of the 

ultracapacitor which will be composed of the part responsible for the integer 

order capacitor and the fractional order part responsible for a better 

description of the behaviour.  
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