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Abstract

The main object of this thesis is to obtain numerous applications of
fractional derivative operator concerning analytic and p-valent (or multivalent)
functions in the open unit disk by introducing new classes and deriving new
properties. Our finding will provide interesting new results and indicate
extensions of a number of known results. In this thesis we investigate a wide
class of problems. First, by making use of certain fractional derivative operator,
we define various new classes of p-valent functions with negative coefficients in
the open unit disk such as classes of p-valent starlike functions involving results
of (Owa, 1985a), classes of p-valent starlike and convex functions involving the
Hadamard product (or convolution) and classes of k-uniformly p-valent starlike
and convex functions, in obtaining, coefficient estimates, distortion properties,
extreme points, closure theorems, modified Hadmard products and inclusion
properties. Also, we obtain radii of convexity, starlikeness and close-to-
convexity for functions belonging to those classes. Moreover, we derive several
new sufficient conditions for starlikeness and convexity of the fractional
derivative operator by using certain results of (Owa, 1985a), convolution, Jack’s
lemma and Nunokakawa' Lemma. In addition, we obtain coefficient bounds for
the functional |a,., — 642,,| of functions belonging to certain classes of p-valent

functions of complex order which generalized the concepts of starlike, Bazilevi¢



and non-Bazilevi¢ functions. We use the method of differential subordination
and superordination for analytic functions in the open unit disk in order to derive
various new subordination, superordination and sandwich results involving the
fractional derivative operator. Finally, we obtain some new strong differential
subordination, superordination, sandwich results for p-valent functions
associated with the fractional derivative operator by investigating appropriate
classes of admissible functions. First order linear strong differential
subordination properties are studied. Further results including strong differential
subordination and superordination based on the fact that the coefficients of the
functions associated with the fractional derivative operator are not constants but

complex-valued functions are also studied.
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Chapter 1

Introduction

The purpose of this chapter is to give introduction to primitive
backgrounds and motivations for the remaining chapters. In section 1.1, we
present the review of literature. In section 1.2, we state the basic notations
and definitions of univalent and p-valent (or multivalent) functions in the open
unit disk, and their related classes. The Hadamard products (or
Convolutions) for analytic functions are also presented. Section 1.3 gives
subordinate principle. In section 1.4, we study the class of functions with
positive real part. In section 1.5, we consider some special classes,
including, starlike, convex, close-to-convex, prestarlike, starlike of complex
order, convex of complex order, uniformly starlike, uniformly convex,
Bazilevic and non- Bazilevic functions. Section 1.6 presents some definitions
of fractional derivative operators. Section 1.7 is devoted to the study of
differential subordination and its corresponding problem, that is differential
superordination. The notation of the strong differential subordination and
strong differential superordination are given in section 1.8. The motivations

and outlines of this study are given in section 1.9.

The thesis is organized with solutions to a number of problems. For
example, we consider the following problems:
e To identity some classes of p-valent functions with negative

coefficients associated with certain fractional derivative operator in the



open unit disk ¢/ and find coefficient estimates, distortion properties,
extreme points, closure theorems, modified Hadmard products and
inclusion properties. Also, to obtain radii of starlikeness, and convexity
and close-to-convexity for functions belonging to those classes.

To find sufficient conditions for p-valent functions defined by certain
fractional derivative operator to be starlike and convex by using some
known results such as results of (Owa, 1985a), results involving the
Hadamard product due to (Rusheweyh and Sheil-Small, 1973), Jack’s
Lemma (Jack, 1971) and Nunokakawa’s Lemma (Nunokakawa,
1992).

To define some classes of p-valent functions involving certain
fractional derivative operator, and obtain bounds for the functional
|ap+2 — 6a’,4| and bounds for the coefficient a,.; for functions
belonging to those classes.

By wusing the differential subordination and superordination
techniques, to find the sufficient conditions for p-valent functions
f(z) € A(p) associated with a fractional derivative operator to satisfy
q1(z) < p(2) < q2(z) where p(z) is analytic function in &4 and the
functions g; and g, are given univalent in &/ with g¢;(0) = q,(0) =1, so
that, they become respectively, the best subordinant and best
dominant.

By using the notion of strong differential subordination and
superordination techniques, to investigate appropriate classes of
admissible functions involving fractional derivative operator and to

obtain some strong differential subordination, superordination and



sandwich-type results. Also, to find the sufficient conditions for p-
valent functions f(z,{) € A;(p) associated with a fractional derivative
operator to satisfy, respectively p(z,{) <<q(z,{) and q(z{) <<

p(z,¢) forz ey and C €U where p(z {) is analytic function in &/ x U .

1.1 Review of literature

This section deals with the conceptual framework of the present research
problem and primary matters regarding the research. A survey of related
studies provides some insight regarding strong points and limitation of the
previous studies

The studies reviewed focus on how interest introduce new classes of
analytic and p-valent (or multivalent) functions and investigate their
properties. Also, what effect of fractional derivative operator on functions
belonging to these classes. The review of related literature studied by the
researcher is divided in the following categories:

e Univalent and multivalent functions

e Fractional calculus operators

¢ Functions with negative coefficients and related classes

e Starlikeness and convexity conditions

e Coefficient bounds

¢ Differential subordination and superordination

e Strong Differential subordination and superordination

e conclusions



The studies have been analyzed by keeping objectives, methodology
and findings of the study to draw the conclusion to strengthen the rationale of

the present research.

1.1.1 Univalent and multivalent functions

The theory of univalent functions is a classical problem of complex
analysis which belongs to one of the most beautiful subjects in geometric
function theory. It deals with the geometric properties of analytic functions,
found around the turn of the 20th century. In spite of the famous coefficient
problem, the Biberbach conjecture which was solved by (Branges, 1985).
The geometry theory of functions is mostly concerned with the study of
properties of normalized univalent functions which belong to the class S and
defined in the open unit disk &/ ={z € C: |z|] < 1}. The image domain of U/
under univalent function is of interest if it has some nice geometry properties.
A convex domain is outstanding example of a domain with nice properties.
Another example such domain is starlike with respect to a point. Certain
subclasses of those analytic univalent functions which map ¢/ onto these
geometric domains, are introduced and their properties are widely
investigated, for example, the classes K and S* of convex and starlike
functions, respectively, see (Goodman, 1983), (Duren, 1983). It was
observed that both of these classes are related with each other through
classical Alexander type relation f(z) € K & zf'(z) € S*, see (Alexander,
1915) and (Goodman, 1983). The special subclasses of the classes K and
S* are the classes K(a) and S*(a) of convex and starlike functions of order

a, (0<a<1).If a =0, we obtain K(0) = K and S*(0) = S*. These classes



were first introduced by (Robertson, 1936) and were studied subsequently by
(Schild, 1965), (Pinchuk, 1968), (Jack, 1971), and others. Moreover, the
classes of convex and starlike functions are closely related with the class P
of analytic functions with positive real part p(z) which satisfies p(0) = 1 and
Re p(z) > 0, see (Pommerenke, 1975).

The natural generalization of univalent function is p-valent (or
multivalent) function which belong to the class A(p), (p € N) and defined in
the open unit disk u. If f(z) is p-valent function with p =1, then f(z) is
univalent function. In addition, the classes K and S* of convex and starlike
functions were extended to the classes K(p) and S*(p) of p-valent convex
and starlike functions, respectively, by (Goodman, 1950). The special
subclasses of the classes K(p) and S*(p) are the classes K(p,a) and
S*(p, a) of p-valent convex and starlike functions of order a, (0 < a < p). If
a = 0, we obtain K(p,0) = K(p) and S*(p,0) = S*(p). The class K(p, a) was
introduced by (Owa, 1985a) and the class S*(p, @) was introduced by (Patil

and Thakare, 1983).

1.1.2 Fractional calculus operators

The theory of fractional calculus (that is, derivatives and integrals of
arbitrary real or complex order) has found interesting applications in the
theory of analytic functions in recent years. The classical definitions of
fractional derivative operators have been applied in introducing various
classes of univalent and p-valent functions and obtaining several properties
such as coefficient estimates, distortion theorems, extreme points, and radii

of convexity and starlikeness. For numerous works on this subject, one may



refer to the works by, (Altintas et al. 1995a), (Altintas et al. 1995b), (Khairnar
and More, 2009), (Owa, 1978), (Owa and Shen, 1998), (Raina and Bolia,
1998), (Raina and Choi, 2002), (Raina and Nahar, 2002), (Raina and
Srivastava, 1996), (Srivastava and Aouf, 1992), (Srivastava and Aouf, 1995),
(Srivastava and Mishra, 2000), (Srivastava et al.,1988), (Srivastava and
Owa, 1984), (Srivastava and Owa, 1987),(Srivastava and Owa, 1989),
(Srivastava and Owa, 1991b), (Srivastava and Owa, 1992) and (Srivastava
et al., 1998). Moreover, the fractional derivative operators were applied to
obtain the sufficient conditions for starlikeness and convexity of univalent
functions defined in the open unit disk by (Owa, 1985b), (Raina and Nabhar,

2000) and (Irmak et al., 2002).

1.1.3 Functions with negative coefficients and related classes

In this subsection we present various classes of analytic univalent and p-
valent functions with negative coefficients in the open unit disk. These
functions are convex, starlike, prestarlike, uniformly convex and uniformly
starlike which were introduced and their properties such as coefficient
estimates, distortion theorems, extreme points, and radii of convexity and
starlikeness were investigated by several authors. The problem of coefficient
estimates is one of interesting problems which was studied by researchers
for certain classes of starlike and convex (p-valent starlike and p-valent
convex) functions with negative coefficient in the open unit disk. Closely
related to this problem is to determine how large the modulus of a univalent
or p-valent function together with its derivatives can be in particular subclass.

Such results, referred to as distortion theorems which provide important



information about the geometry of functions in that subclass. The result
which is as inequality is called sharp (best possible or exact) in sense, that it
is impossible to improve the inequality (decrease an upper bound, or
increase a lower bound) under the conditions given and it can be seen by
considering a function such that equality holds. This function is called
extermal function. A function belong to the class of functions is called an
extreme point if it cannot be written as a proper convex combination of two
other members of this class. The radius of convexity (stalikeness) problem
for the class of functions is to determine the largest disk |z| < r , i.e. the
largest number of r (0 < r < 1) such that each function f(z) in the class is
convex (starlike) in |z| < r. One may refer to the books by (Nehari, 1952),
(Goodman, 1983) and (Duren, 1983). Those problems have attracted many
mathematicians involved in geometry function theory, for example,
(Silverman, 1975) introduced and studied the classes T*(a) and C(a) of
starlike and convex functions with negative coefficients of order a (0 < a <
1). These classes were generalized to the classes T*(p,a) and C(p, a) of p-
valent starlike and convex functions with negative coefficients of order
a (0 <a<p), by (Owa, 1985a). (Srivastava and Owa, 1987) established
some distortion theorems for fractional calculus operators of functions
belonging to the classes which were introduced by (Owa, 1985a).

In order to derive the similar properties above, two subclasses T*(«, 3,v)
and C(a, B,y) of univalent starlike functions with negative coefficients were
introduced by (Srivastava and Owa, 1991a). In fact, these classes become
the subclasses of the class which was introduced by (Gupta, 1984) when the

function is univalent with negative coefficients. Using the results of



(Srivastava and Owa, 1991a), (Srivastava and Owa, 1991b) have obtained
several distortion theorems involving fractional derivatives and fractional
integrals of functions belonging to the these classes. Recently, (Aouf and
Hossen, 2006) have generalized the classes of univalent starlike functions
with negative coefficients due to (Srivastava and Owa, 1991a) to obtain
coefficient estimates, distortion theorem and radius of convexity for certain
classes T*(p,a,B,y) and C(p,a,B,y) of p-valent starlike functions with
negative coefficients.

Moreover, (Aouf ,1988) studied certain classes T*(p,a,f) and C(p, a, B)
of p-valent functions of order a« and type g which are an extension of the
familiar classes which were studied earlier by (Gupta and Jain, 1976). More
recently, (Aouf and Silverman, 2007) introduced and studied some
subclasses of p-valent y-prestarlike functions of order a. Subsequently,

(Aouf, 2007) introduced and studied the classes R} [a,] and C;[a, ] of p-

valent y-prestarlike functions of order a« and type (. There are many
contributions on prestarlike function classes, for example (Ahuja and
Silverman, 1983), (Owa and Uralegaddi, 1984), (Silverman and Silvia, 1984)
and (Srivastava and Aouf, 1995)

In addition, many authors have turned attention to the so-called
classes of uniformly convex (starlike) functions for various subclasses of
univalent functions. Those classes were first introduced and studird by
(Goodman,1991a) and (Goodman,1991b), and were studied subsequently by
(Rénning 1991), (Rénning 1993a), (Minda and Ma, 1992), (Régnning 1993b),
(Minda and Ma, 1993) and others. The classes of k-uniformly convex

(starlike) functions were studied by (Kanas and Wisniowska, 1999) and



(Kanas and Wisniowska, 2000); where their geometric definitions and
connections with the conic domains were considered. Encouraged by wide
study of classes of univalent functions with negative coefficients, (Al-
Kharsani and Al-Hajiry, 2006) introduced the classes of uniformly p-valent
starlike and uniformly p-valent convex functions of order a. More recently,
(Gurugusundaramoorthy and Themangani, 2009), presented a study for
class of uniformly convex functions based on certain fractional derivative
operator to obtain the similar properties above. There are many other
researchers who studied the classes of uniformly starlike and uniformly
convex functions including (AL-Refai and Darus, 2009), (Khairnar and More,

2009), (Sokét and Wisniowska, 2011) and (Srivastava and Mishra, 2000).

1.1.4 Starlikeness and convexity conditions

There is a beautiful and simple sufficient condition for univalence due
independently to (Noshiro, 1934-1935) and (Warschawski, 1935), and then
onwards the result is known as Noshiro-Warschawski Theorem. This says, if
a function f(z) is analytic in a convex domain D and Re f'(z) > 0, then f(z)
is univalent in D, see also (Duren, 1983) and (Goodman, 1983). The
problem of sufficient conditions for starlikeness and convexity is concerning
to find conditions under which function in certain class are starlike and
convex, respectively. For example, (Owa and Shen, 1998) and (Raina and
Nahar, 2000) introduced various sufficient conditions for starlikeness and
convexity of class of univalent functions associated with certain fractional
derivative operators by using known results for the classes of starlike and

convex function due to (Silverman,1975) and by using results involving the



Hadamard product (or convolution) due to (Ruscheweyh and Sheil-Small,
1973).

In addition, two results of (Jack, 1971) and (Nunokawa, 1992) which
popularly known as jack’s Lemma and Nunokawa’s Lemma in literature
have applied to obtain many of sufficient conditions for starlikeness and
convexity for analytic functions, see (Irmak and Cetin, 1999), (Irmak et al.,

2002) and (Irmak and Piejko, 2005).

1.1.5 Coefficient bounds

The problem of estimating the functional |a; — ua3| where u is real
parameter for the class of univalent functions is intimately related with the
coefficient problem which called Fekete and Szeg6 problem, see (Keogh
and Merkes, 1969). The result is sharp in the sense that for each u there
is a function in the class under consideration for which the equality holds.
Thus an attention to the so-called coefficient estimate problems for
different subclasses of univalent and p-valent functions has been the
main interest among authors. (Ma and Minda, 1994) discussed the similar
coefficient problem for functions in the classes C(¢) and S*(¢). There are
now several results for this type in literature, each of them dealing with
las — na?| for various classes of functions. (Srivastava and Mishra, 2000)
obtained Fekete-Szegd problem to parabolic starlike and uniformly
convex functions defined by fractional calculus operator. Many of other
researchers who successfully to obtain Fekete-Szeg6 problem for various
classes of univalent and p-valent functions such as (Dixit and Pal, 1995),

(Obradovi¢, 1998), (Ramachandran et al., 2007), (Ravichandran et al.,
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2004), (Ravichandran et al., 2005), (Rosy et al.,, 2009), (Tuneski and
Darus, 2002), (Wang et al., 2005), and (Shanmugam et al., 2006a). On
other hand, (Prokhorov and Szynal, 1981) obtained the estimate of the
functional |c3 + pcicy + ved| (u, v € R) within the class Q of all analytic
functions of the form w(z) = ¢,z + ¢,z% + ¢3z> + -+ in the open unit disk
and satisfying the condition |w(z)| < 1 (z € U). Very recently, (Ali et al.,

2007) obtained the sharp coefficient inequalities for |a,,, — naz,| and

|ap+3| for various classes of p-valent analytic functions by using the

results of (Ma and Minda, 1994) and (Prokhorov and Szynal, 1981).

1.1.6 Differential subordination and superordination

The study of differential subordinations, which is the generalization from
the differential inequalities, began with the papers according to (Miller and
Mocanu, 1981) and (Miller and Mocanu, 1985). In very simple terms, a
differential subordination in the complex plane is the generalization of a
differential inequality on the real line. Obtaining information about properties
of a function from properties of its derivatives plays an important role in
functions of real variable, for example, if f'(x) > 0, then f is an increasing
function. Also, to characterizing the original function, a differential inequality
can be used to find information about the range of the original function, a
typical example is given by, if f(0) =1 and f'(x) + f(x) <1, then f(x) < 1.

In the theory of complex-valued functions there are several differential
implications in which a characterization of a function is determined from a
differential condition, for example, the Noshiro-Warschawski Theorem: if f is

analytic in the unit disk U, then Re f'(z) > 0 implies f is univalent function in
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U, see (Noshiro, 1934-1935), (Warschawski, 1935), (Goodman, 1983) and
(Duren, 1983). In addition, to obtain properties of the range of a function from
the range of a combination of the derivatives of a the function, a typical
example is given by, if a is real and p(z) is analytic function in U, then
Re[p(2) + azp'(z)/p(2)] > 0 implies Rep(z) > 0, see (Miller and Mocanu,
2000).

The dual problem of differential subordination, that is differential
superordination was introduced by (Miller and Mocanu, 2003) and studied by
(Bulboaca, 2002a) and (Bulboaca, 2002b). The methods of differential
subordination were used by (Ali et al., 2005), (Shanmugam et al., 2006b) for

various classes of analytic functions.

1.1.7 Strong differential subordination and superordination

Some recent results in the theory of analytic functions were obtained by
using a more strong form of the differential subordination and
superordination introduced by (Antonino and Romaguera, 1994) and studied
by (Antonino and Romaguera, 2006) called strong differential subordination
and strong differential superordination, respectively. By using this notion, (G.
Oros, 2007) and (G. Oros, 2009) introduced the dual notion of strong
differential superordination following the theory of differential superordination
introduced and developed by (Miller and Mocaun,1981) and (Miller and
Mocaun,1985). Since then, many of interesting results have appeared in
literature on this topic such as (G. Oros and Oros, 2007), (G. Oros and Oros,

2009), (Oros, 2010), (G. Oros, 2010) and (G. Oros, 2011).
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1.1.8 conclusions

This research work provides the insight to have a concept regarding
fractional derivative operators and analytic functions. Thus a perusal and
scrutiny of the literature that though many studies on fractional derivative
operators have been done for analytic functions with negative coefficients.
Additional research is needed to introduce and study some classes of p-
valent functions with negative coefficients based on certain fractional
derivative operator which generalize the previous classes and investigate
their properties. Sufficient conditions for stalikeness and convexity of
fractional derivative operators and coefficient bounds of functions involving
the fractional derivative operators are not up to the desired level. This is
another area that will require additional research. The review of differential
subordination and superordination, and strong differential subordination and
superordination of analytic functions defined in the open unit disk on complex
plane reveals the need for investigating properties associated with fractional
derivative operator for p-valent functions. Thus it reveals the importance and

need of the present study.

1.2 Univalent and multivalent functions

In this section we give the definitions of univalent and multivalent
functions and their related classes S and A(p) in the unit disk . We also
mention to the Hadamard product (or convolution) of any two functions in
these classes. The classes T and T(p) of analytic functions with negative

coefficients are also defined.
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A complex-valued function f(z) of a complex-variable is differentiable at

zy € C (Cis a complex plane), if it has a derivative (Duren, 1983)

£ = tim [A LG

z-7¢ Z— Zg

at z,. Such a function f(z) is called analytic at z, If it is differentiable at every
point in some neighbourhood of z,. A function f(z) defined on a domain D is
called analytic in D if it has a derivative at each point of D.

A function f (z) analytic in the open unit disk ¢/ ={z € C: |z| < 1} is said
to be univalent in U, if w = f (z) assumes distinct values w for distinct z in
U. In this case the equation f (z) = w has at most one root in . A function
on D is called univalent if it provides one-to-one (injective) mapping onto its
image. Various other terms are used for this concept such as simple, or
schlicht (the German word for “simple”), see (Goodman, 1983).

The selection of open unit disk ¢/ above instead of an arbitrary domain D
has the advantage of simplifying the computations and leading to short and
elegant formulas.

We begin with the class H (/) of all analytic functions in ¢/ and H|[a, n] be
the subclass of H(U) consisting of functions of the form

f(2) =a+a,z™+ ap 12" + -, (1.2.1)
with H, = H[0,1] and H = H|[1,1].

Let A denote the subclass of H () consisting of functions of the form

flz)=z+ Z a,z", (z e ). (1.2.2)
n=2
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which are analytic in ¢/ and normalized by f(0) =0 and f'(0) =1. The
subclass of A consisting of univalent functions is denoted by S. The well-

known example in class S is the Koebe function, K(z), defined by

z oo
K(Z)=m=Z+ZZTLZn, (ZEZ/{).

which is an extremal function for many subclasses of the class of univalent
functions. It maps ¢/ one-to-one onto the domain D that consists of the entire
complex plane except for a slit along the negative real axis from w = —oo to
w = —%, see (Duren, 1983), (Goodman, 1983), (Pommerenke, 1975) and
(Graham and Kohr, 2003).

A function f(z) analytic in the open unit disk ¢/ is said to p-valent in U,
(or multivalent of order p) (p =1,2,...) in U if the equation f (z) =w has
never more than p-solutions in &/ and there exists some w for which this
equation has exactly p solutions. If f(z) is p-valent with p = 1, then f(z) is
univalent, see (Goodman, 1983) and (Hayman, 1958).

Let A(p) denote the subclass of H(U{) consisting of all functions of the form

f(z) =2z + z apinzP*™,  (PEN; zell. (1.2.3)
n=1

which are analytic and p-valent in the unit disk /.

For functions f(z) € A given by (1.2.2) and g(z) € A given by

g(z)=z+2bnz" (zelU).
n=2

the Hadamard product (or convolution) of f and g is denoted by (f * g)(2)

and defined by
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FeD@=2+) aphpz",  (z€W).

For functions f(z) € A(p) given by (1.2.3) and g(z) € A(p) given by

g(z) =zP + Z bpinzP*™, peN; zel).

the Hadamard product (or convolution) of f and g is denoted by (f * g)(2)

and defined by
(F* D@D =2+ ) ayunbpnz™,  (pEN; 7 EU)
n=1

Let T denote the subclass of S consisting of functions of the form

f(z)=2z—- Z a,z", (a, =0; zeU). (1.2.4)

n=2
The class T is called the class of univalent functions with negative
coefficients. Also, let T(p) denote the subclass of A(p) consisting of
functions of the form

f(z) =zP — Z ApinzP*", (ap+n = 0; p €N). (1.2.5)

n:
The class T(p) is called the class of p-valent functions with negative

coefficients.

1.3 Subordinate principle

In this section we present the concept of subordination between analytic
functions which was developed by (Littlewood, 1925, 1944) and (Rogosinski,
1939, 1943). Here, we start with the following classical result, which is known

by the name of Schwarz’s Lemma (Graham and Gabrela, 2003) as follows:
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Let w(z) be analytic function in / and let w(0) = 0. If [w(2)| <1(z € lU)
then |w(2)| <|z| (z€ U). The equality can hold only if w(z) =kz and
k| = 1. We denote by Q the class of Schwarz functions; i.e. w € Q if and
only if w is analytic function in & such that w(0) =0 and |w(2)| < 1.

The formulation of Schwarz’s Lemma seems to assign a special role to the
origin of the two planes.

The subordinate principle says: Let the functions f(z) and g(z) be
analytic in & . The function f is said to be subordinate to g, written as f < g
or f(z) < g(z), if there exists a Schwarz function w analytic in U, with
w(0) = 0 and |w(z)| < 1 such that f(z) = g(w(z)), z € U. We note that

f(2) <g(2) = f(0) =g(0), f(U)cglD.
Furthermore, if the function g is univalent, then f < g if and only if f(0) =

g(0) and f(U) c g(Uf) (Duren, 1983) and (Pommerenke, 1975).

1.4 Functions with positive real part

In this section we define class P of analytic functions with positive real
part. These functions map the open unit disk ¢/ onto right half plane. Many
problems are solved by using the properties of these functions. Some related
classes are introduced and their basic properties are given in this section.

These properties will be very useful in our later investigations.

Let P denotes the class of all functions p(z) € H, p(0) = 1 of the form

p(z) = 1+chz”, (z€U).
n=1
which satisfy the following inequality
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Rep(z) >0, (z elh).
The functions in the class P need not to be univalent. For example, the
function
p(z)=1+z"€P, (neN).

but if n = 2, this function is no longer to be univalent. The Mébius function

L(z)—1+Z—1+ZZzn (z € U)
01—z ’ '

n=1
plays a central role in the class P . This function is in the class P, it is analytic
and univalent in ¢/, and it maps U/ onto the real half-plane (Goodman, 1983).
By using the principle of subordination, any function in the class P is called a

function with positive real part in ¢/ and satisfies

1+2z
1—-2z

p(z) € P = p(2) <

Some special subclasses of P play an important role in geometric
function theory because of their relations with subclasses of univalent
functions. Many such classes have been introduced and studied; some
became the well-known. For instance, for given arbitrary numbers A4,
B (-1 <B < A<1), we denote by P(4, B) the class of functions p(z) € H

which satisfy the following conditions p(0) = 1, Re p(z) > 0 and

1+ Az
1+ Bz

p(z) < (z eld).

The class P(A4, B) was first introduced by (Janowski, 1973), therefore we say
that f(z) is in the class P(4, B) of Janowski functions. We note that
@i PL,-H="P,

(i) P(1 - 2a, —1) =P(a) (0 < a < 1) defined by Re p(z) > «a.
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1.5 Some special classes of analytic functions

In this section we consider some special classes of univalent and p-
valent functions defined by simple geometric properties. They are closely
connected with functions of positive real part and with subordination. These

classes can be completely characterized by simple inequality.

1.5.1 Classes of Starlike and convex functions

Geometric function theory of a single-valued complex variable is mostly
concerned with the study of the properties of univalent functions. Several
special subsets in the complex plane C play an important role in univalent
functions. The image domain of &/ under a univalent function is of interest if it
has some nice geometric properties. Convex domain and starlike domain are
outstanding examples of domains with interesting properties. In this
subsection we introduce some classes of starlike and convex functions for

univalent and p-valent functions in the open unit disk.

A domain D in C is said to be starlike with respect to a point w, if the
line segment connecting any point in D to w, is contained in D. A function
f(z) €S inU is said to be starlike with respect to w, if U is mapped onto a
domain starlike with respect to w,. In the special case that w, =0, the
function f(z) is said to be starlike with respect to the origin (or starlike)
(Goodman, 1983). Let S* denotes the class of all starlike functions in S. An

analytic description of the class S* is given by

zf (2)
Re{f(z)}>0, (z elh).
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A special subclass of S is that the class of starlike functions of order a, with

0 < a <1, is denoted S*(a) and given by

Re {Z]]:(g)} > a, 0<a<1;zel).

A function f(z) € A(p) is said to be p-valent starlike if f(z) satisfies the

condition

Re {Zf'(z)} > 0, (peN; zel).

f(2)
We denote by S*(p) the class of all p-valent starlike functions. A special
subclass of S*(p) is that the class of p-valent starlike functions of order «,

with 0 < a < p, p € N which denoted by S*(p,«) and consists of functions

satisfy

Re {Z]{(,(ZZ))} > aq, (z el).

A domain D in C is said to be convex if the line segment joining any two
points of D lies entirely in D. If a function f(z) € S maps U onto a convex
domain, then f(z) is called a convex function (Goodman, 1983). Let K

denotes the class of all convex functions in S. An analytic description of the

class K is given by

zf ' (2)
Re{1+ f'(z)}>0' (zel).

A special subclass of K is the class of convex functions of order a, with

0 < a <1, is denoted by K(a) and given by

zf'(2)
f(@

Re{1+ }>a, 0<a<1;zel).

A function f(z) € A(p) is said to be p-valent convex if f(z) satisfies the
following inequality
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Re{1+%}>0, (peN; zel.

We denote by K(p) the class of all p-valent convex functions. A special
subclass of K(p) that is the class of p-valent convex functions of order «
with 0 < a <p, p € N which denoted by K(p,a) and consists of functions

satisfy

zf"(z)
Re{1+m}>a, (z e l).

The class S*(p, @) was introduced by (Patil and Thakare, 1983) and the class
K(p, @) was introduced by (Owa, 1985a). For a = 0, we have S*(p,0) = S*(p)
and K(p,0) = K(p) which were first studied by (Goodman, 1950). If p =1,
we have S*(1,a) = S*(a) and K(1,a) = K(a) which were first introduced by
(Robertson, 1936) and were studied subsequently by (Schild, 1965),
(Pinchuk, 1968), (Jack, 1971), and others.

There is a closely analytic connection between convex and starlike
functions that was first noticed by (Alexander, 1915), and then onwards the
result is known as Alexander’'s Theorem. This says that, if f(z) be analytic
function in U with f(0) =0 and f'(0) =1, then f(2) € K if and only if
zf'(z) € S*. Further we note that

f(2) € K(a) & zf'(2) € S*(),

and for f(z) € A(p), we have

f2) eK(pa) =

zf;)(z) € S*(p, a).

Furthermore, we denote by T*(p, @) and C(p, a) the classes obtained by
intersections, respectively, of the classes S*(p, «) and K(p, @) with T(p); that

is
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T*(p,a) = S*(p,a) N T(p),
and
Clp,a) =K, a)nT(p).

The classes T*(p,a) and C(p,a) were introduced by (Owa, 1985a). In
particular, the classes T*(1,a) = T*(a) and C(1,a) = C(a) when p = 1, were
studied by (Silverman, 1975).

A function f(z) € A(p) is called p-valent starlike of order ¢ and type g if

it satisfies

2f'(2)

fz) P
2f (2)
@

where 0 <a <p, 0<pB <1and p € N. We denote by S*(p, a, B) the class of

<B, (zel).

+p—2a

all p-valent starlike functions of order a« and type . A function f(z) € A(p)

is called p-valent convex of order a and type g if it satisfies

of' @)
O

1 +Z]]:,;(ZZ)) +p—2a

where0 <a<p, 0<f <1 and p € N. We denote by K(p, a, B) the class of

< B, (zelU).

all p-valent convex functions of order a and type S.We note that

zf'(2)
P

f(@2) EK(p,a,p) & € S*(p, a, B).

The classes S*(p,a,B) and K(p,a,B) were studied by (Aouf, 1988) and
(Aouf, 2007) which are extensions of the familiar classes were studied earlier
by (Gupta and Jain, 1976) when p =1, we have S*(1,a,8) = S*(a, ) and
K(1,a,B8) = K(a,B). If B =1, we have the classes S*(p,a,1) = S*(p,a) and

K(p,a,1) = K(p, ) which were studied by (Patil and Thakare,1983) and
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(Owa, 1985a), respectively. Also, we denote by T*(p, a, ) and C(p, a,B) the
classes obtained by taking intersections, respectively, of the classes
S*(p,a,B) and K(p,a,B) with T(p). Thus we have

T"(pa,B) =S5"(p,a, B) NT(p),
and

Cp,a,B) =K, a,p) N T(p).
The classes T*(p,a,8) and C(p,a,f) were studied by (Aouf, 1988). In
particular, for g =1, we have the classes T*(p,a,1) =T"(p,a) and
C(p,a,1) = C(p,a) which were introduced by (Owa, 1985a) and the classes
T*(1,a,1) =T*(a) and C(1,a,1) = C(a) when p =1 and 8 = 1 were studied
by (Silverman, 1975).

Let us next define certain classes of starlike and convex functions with
respect to the analytic function ¢(z) by using the principle of subordination,
which will be very useful in our later investigations in chapter 3.

Let ¢(z) be an analytic function with positive real part in the unit disk ,
with ¢(0) = 1 and ¢'(0) > 0 which maps the unit disk / onto a region starlike
with respect to 1 which symmetric with respect to the real axis. A functions

f(z) € A(p) is said to be in the class S;(¢) for which

12f'()
P @

A functions f(z) € A(p) is said to be in the class C,(¢) if it satisfies

< ¢(2), (peN; zel.

1 '@ |
5{1+m}<¢(2), (pEN, ZEZ/{).

The classes S;(¢) and C,(¢) were introduced and studied by (Ali, et al.
2007). For p =1, we get the classes S*(¢) and C(¢) which were first

introduced and studied by (Ma and Minda, 1994). The classes S*(¢) and
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C(¢) can be reduced to the familiar class S*(a) of starlike functions of order
a(0<a<1) and the class C(a) of convex functions of order «a,
respectively, when

1+(1—-2a)z
1—-z ’

¢(z) = 0<a<).

Also, the classes S*(¢) and C(¢) can be reduced to the classes S$*(4, B) and

C(A,B) of Janowski starlike functions and Janowski convex functions,

respectively, when

1+ Az
1+ Bz’

¢(z) = (-1<B<A<1).

1.5.2 Classes of close-to-convex functions
A function f(z) € A is said to be close-to-convex of order a (0 < a < 1)

if there is a convex function g such that

Re {@} > aq, (z el).
9'(2)

An equivalent formulation would involve the existence of a starlike function

h(z) such that

zf (2)
Re{h(z)}>a, (z elh).

We denote by C(«) to the class of all close-to-convex functions of order «a.
For a = 0, we have the class C of all close-to-convex function in I/ .
A function f(z) € A(p) is said to be p-valent close-to-convex of order

a (0 < a <p) ifthereis a p-valent convex function g(z) such that

Re <@> > a, (z e U).
9'(2)
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An equivalent formulation would involve the existence of p-valent starlike

function h(z) such that

zf (2)
Re(h(z))>a, (zel).

We denote by C(p, @) to the class of all p-valent close-to-convex functions of
order a. Ifa = 0, we have C(p,a) = C(p), the class of all p-valent close-to-
convex functions. For p =1 and a« = 0, we have C(1,0) =C. If p =1, we get
C(1,a) = C(a). See (Duren, 1983), (Goodman, 1983) and (Pommerenke,

1975).

1.5.3 Classes of prestarlike functions
The class of prestarlike functions of order a (0 < a < 1) was introduced
by (Ruscheweyh, 1977). It is denoted by R,. A function f(z) € S is called

prestarlike of order @ with 0 < a < 1, if

(f *Sa)(2) € S (),
where
Sq(z) = ;_
(1 _ Z)Z(l a)

Let R(y, @) be the class of all function f(z) € S which satisfy the following
condition
(f *S,)(@) € 5™(a).
This class R(y,«) is called the class of y-prestarlike functions of order «
with (0 <y <1, 0 <a <1). This class were studied by ( Sheil-Small et al.,

1982). For y = a, we have the class R(a,a) = R,.
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For a function f(z) € S, the class R, (a,f) is said to be the class of y-
prestarlike functions of order @« and type g with (0<y <1, 0<a<1, 0<
B<1)if

(f * y)(z) € S*(a, B).
This class was introduced by (Ahuja and Silverman, 1983).
A function f(z) € A(p) is said to be p-valent a-prestarlike functions of

orderf (0<a<p 0<B <1 peN)if

(f *S5)(2) € S* . B),
where
7P
) =G e

We denote by RP(a,p) the class of all p-valent a-prestarlike functions of
order S. Further let C?(a, ) be the subclass of A(p) consisting of functions

satisfying

€ RP(a, B)

f@) € CP(aB) = L p(z)

The classes R?(a,B) and CP(a, B) were introduced by (Aouf and Silverman,
2007). We note that, RP(a,a) = RP(a)(0 < a < p, p € N), the class which
was studied by (Kumar and Reddy, 1992). For p = 1, we have R'(a,a) =

Ry -

1.5.4 Classes of starlike and convex functions of complex order

A function f(z) € A(p) is said to be p-valent starlike functions of complex

order b # 0, (b complex) if and onlyif 2 %0, (z € ), and

1 (zf (2)
Re{1+3<pf(z)_1>}>0' (zelU).
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We denote by S(p, b) the class of all such functions. A function f(z) € A(p)
is said to be p-valent convex function of complex order b # 0, (b complex)

thatis f(z) € K(p,b), ifandonlyif f'(z) # 0in U and

1 1 zf " (2)
Re{1—5+%<1+ f'(Z) )}>O, (z el).

We denote by K (p, b) the class of all such functions.

For p = 1, we have S(1,b) = S(b) the class of starlike functions of complex
order b (b # 0,b complex) which was introduced by (Nasr and Aouf, 1985)
and, K(1,b) = K(b) is the class of convex functions of complex order b
(b # 0,b complex) which was introduced earlier by (Wiatrowshi, 1970) and
considered by (Nasr and Aouf, 1982). For b =1, we have S(1) =S* and
K(1)=K.lfb=1—a, thenwe get S(1—a) =S5S"(a) and K(1 —a) = K(a)
for 0 < a < 1. Notice that

£(2) € K(b) & zf'(2) € S(b).

1.5.5 Classes of Uniformly starlike and uniformly convex functions

A function f(z) € A is called uniformly convex (uniformly starlike) if f(z)
maps every circular arc y contained in &/ with centre { € U/ onto a convex
(starlike) arc f(y) with respect to f(¢). The classes of all uniformly convex
and uniformly starlike functions were introduced by (Goodman, 1991a) and
(Goodman, 1991b) which denoted by UCV and UST. (Ma and Minda, 1992)
and (Rgnning, 1993a) independently showed that a function f(z) is uniformly

convex if and only if

7f"(2)
@

>

Re {1 4 "(Z)} , (z € ).

f'(2)

Thus, a function f(z) € UCV if the quantity
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2f"(2)
Ok

lies in the parabolic region Q = {u + iv: v? < 2u — 1}. A corresponding class
S, of uniformly starlike functions consisting of parabolic starlike functions
f(z), where f(z) =2zg'(z) for g(z) in UCV, was introduced by (Rgnning,
1993a) and studied by (Rgnning,1993b). Clearly a function f(z) is in the
class S, if and only if

zf (2)
Re{ @) } =

2f (2)
f@

1’, (z e ).

We note that,
f(z) eUCV & zf (2) € S,.

Furthermore, (Kanas and Wisniowska, 1999) and (Kanas and Wisniowska
2000) defined the functions f(z) € S to be k-uniformly convex (k-uniformly
starlike) if for 0 < k < oo, the image of every circular arc y contained in U
with centre { where { < k is convex (starlike).

A function f(z) € A is said to be k-uniformly convex of order a (0 < a <
1, k = 0), denoted by k — UCV (), if and only if

7' _ a}
@

2'(2)
@

>k

Re{l +

) (zelU).

A function f(z) € A is said to be k-uniformly starlike of order a (0 < a <1,

k = 0), denoted by k — UST(«), if and only if

zf (2)
Re {m - (X} >k

zf (2)
f(2)

—1‘, (z elh).

Notice that,

f(2) €k —UCV(a) & zf'(z) € k — UST(a).
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The classes k — UCV(a) and k — UST (a«) which were studied by various
authors including (Ma and Minda,1993), (Kanas and Wisnionska, 1999,
2000), and (Rgnning,1991). In particular, for k = 0, we have 0 — UCV(a) =
K(a) and 0 — UST(a) = S*(a). If k =1, we have 1 —UCV(a) = UCV(a) and
1 — UST(a) = UST(a), the classes of uniformly convex and uniformly starlike
functions of order «a , respectively.

A function f(z) € A(p) is said to be k-uniformly p-valent starlike of order

a(-p<a<p), k=0and z €U, denoted by k — UST (p, a) if and only if

zf (2)
Re{f(z) —a}Zk

A function f(z) € A(p) is said to be k-uniformly p-valent convex of order

zf (2) ‘ (e,

f@ P

a(-p<a<p), k=0and z €U, denoted by k — UCV (p, a) if and only if

zf"(z) _a} - k‘l L4@) ‘

@ @ F (z €.

Re {1 +
We note that,
1—-UST(p,a) = UST(p,a),
and
1-UCV(p,a) =UCV(p,a).
where UST (p, @) and UCV (p, a) are the classes of uniformly p-valent starlike
and uniformly p-valent convex functions of order a (—p < a < p) which were
introduced by (AL-Kharsani and AL-Hjiry, 2006). The classes 0 — UST (p, a)
=S"(p,a) and 0—-UCV(p,a) = K(p,a) of p-valent starlike and convex
functions of order «. Furthermore, k — UST(1,a) = k — UST(a) and k —

UCV(l,a) =k —UCV(a) are the classes of k-uniformly starlike and k-

uniformly convex functions of order a.
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1.5.6 Classes of Bazilevi¢ and non- Bazilevi¢ functions
A functions f(z) € A is said to be in the class B(«a) if it satisfies the

following condition

2f (@) (f ()"
Re{ 9@)® }> 0

(z € U). (1.5.6.1)

for some a >0 where g(z) € S*. Furthermore, we denote by B;(a) the

subclass of B(a) for which g(z) = z in (1.5.6.1), for functions satisfying

(zel). (1.5.6.2)

. {zf’(z)(;(z))“-l} o
Note that B(0) = B,(0) = S*. The class B(a) is called the class of Bazilevi¢
functions of type a and was studied by (Singh, 1973).

On the other hand, the class of non-Bazilevi¢ functions was introduced
by (Obradovi¢, 1998). This class of functions is said to be non-Bazilevi¢ type

and denoted by AN(a) for0 < @ < 1. Afunction f(z) € A is said to be in the

class M(a) if and only if

Re {f’(z) (%)Ha} >0 (zeU) (1.5.6.3)

1.6 Fractional derivative operators

The study of operators plays an important role in geometric function
theory. A large number of classes of analytic univalent and p-valent functions
are defined by means of fractional derivative operators. For numerous
references on the subject, one may refer to (Srivastava and Owa, 1989) and
(Srivastava and Owa, 1992). In this section, we recall some definitions of the

fractional derivative operators which are helpful in our later investigations.
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Let us begin with the operator D&Z which was studied by (Owa, 1978),
(Owa, 1985b), (Srivastava and Owa, 1984) and (Srivastava and Owa, 1989).

The fractional derivative operator of order A is denoted by D&Z and
defined by

1 d it?)
r1—-2adzJ, (z- &€~

D}, f(2) = dé, (0<1<1). (1.6.1)

where f(z) is analytic function in a simply-connected region of the z-plane
containing the origin, and the multiplicity of (z —&)~* involved in (1.6.1) is
removed by requiring log(z — &) to be realwhen z—¢& > 0.

Next we define the generalized fractional derivative operator ]&f‘" which

was given by (Srivastava, et al. 1988) and (Srivastava and Owa, 1989) in
terms of the Gauss’s hypergeometric function ,F;(a,b,c;z), for z € U, see

(Srivastava and Karlsson, 1985)

- (@) (D) o

ZFl(al b; C, Z) = (C)n n'

n=0

where (1), is the Pochhammer symbol defined, in terms of the Gamma

function, by
F(A + Tl) 1 , n=20
Dn == —{,1(/1+1)(/1+2) (A+n—1) ,neEN (1.62)
(1)
A#0,-1,-2,..)
The generalized fractional derivative operator ]51;"" is defined by

o = (s [ oo @ (a-a1-ni-n1-))as
0z T dz\Ta - J, A \ET AT AT L))
(1.6.3)

for 0<A<1 and u, n € R where f(z) is analytic function in a simply-

connected region of the z-plane containing the origin with the order f(z) =
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0(|z|%), z - 0, where £ > max{0,u —n} — 1, and the multiplicity of (z — &)~
in (1.6.3) is removed by requiring log(z — &) to be real when z —¢& > 0.

Under the hypothesis of the definition (1.6.3), the fractional derivative

A+mu+mn+m

operator J,, of a function f(z) is defined by
A+m,u+mn+m am ALun
0z f@) =2 Joy f(@), (1.6.4)

0<1<1;m=012..).
Notice that
Jad" f(2) = D¢y f (@),  (0<A<1). (1.6.5)

By means of the above definition (1.6.3), (Raina and Nahar, 2002) obtained

Al e _ FrA+kI+k—pu+n) - (16.6)
0.z Tl+k—wWlA+k—21+1n) ’ o

where A,u,n € R suchthat A >0 and k > max(0,u —n) — 1.
For f(z) € A, the fractional derivative operator Q*f(z) is defined by

O (2)=T@2-1)z*D{,f(z), (ALER, 1#23,..), (1.6.7)

0

M+ 1)r@-2)
+Z Tyl %

We note that
°f(@)=f), Q'f(2=2zf"(2)
The operator Q*f(z) was introduced by (Owa and Srivastava, 1987) and

studied by (Owa and Shen, 1998) and (Srivastava et al., 1998).

For f(z) € A, the fractional derivative operator PO’}'Z“'" f(2) is defined by

r2-wr@-1+mn

Aun
PR £ (7 =
oz [ rC—ptm

z* I f(2), (1.6.8)

where 4 > 0, u < 2 and n > max{A, u} — 2.
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The operator PO?’Z”'" f(z) was introduced by (Raina and Nahar, 2000). Notice

that, for 1 = 1 we have Pj;""f(2) = Q*f(2).

1.7 Differential subordinations and superordinations

In the theory of differential equations of real-valued functions there are
many examples of differential inequalities that have important applications in
the general theory. In those cases bounds on a function f are often
determined from an inequality involving several of the derivatives of f. In two
articles (Miller and Mocanu, 1981) and (Miller and Mocanu, 1985), the
authors extended these ideas involving differential inequalities for real-valued
functions to complex-valued functions. In this section we present the
concepts of differential subordination and differential superordination for

analytic functions which will be helpful for our investigations in chapter 4.

Let us begin with the differential subordination for analytic functions in
the open unit disk, which was introduced by (Miller and Mocanu, 1981).
Let Y(r,s,t; z) : C3 xU - C and let h(z) be univalent in U. If p(z) is
analytic in U/ and satisfies the (second-order) differential subordination
Y(p(2),zp'(2),2° p'(2); 2) < h(2), (1.7.1)
then p(z) is said to be a solution of the differential subordination (1.7.1). The
univalent function gq(z) is called a dominant of the solutions of the differential
subordination, or more simply a dominant, if p(z) < q(z) for all p(z) satisfies
(2.7.1). A dominant G(z) that satisfies §(z) < q(z) for all dominants q(z) of
(1.7.1) is said to be the best dominant of (1.7.1).

Let Q be a subset of C and suppose (1.7.1) be replaced by
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W(p(2),2p'(2),2% p"(2); z) € Q, (z € U). (1.7.2)
the condition in (1.7.2) will also be referred as a (second-order) differential
subordination (Miller and Mocanu, 2000).

The first order linear differential subordination was defined by (Miller and
Mocanu, 1985) in the following subordination condition

A(2)zp'(2) + B(2)p(2) < h(2),
or
zp (2) + P(2)p(2) < h(2),
and the second order linear differential subordination is defined by
A(2)z*p"(2) + B(2)zp (2) + C(2)p(2) + D(2) < h(2),
where A, B, C, D and h are complex functions.

Next let us present the dual concept of differential subordination, that is,
differential superordination which was recently investigated by (Miller and
Mocanu, 2003).

Let Y(r,s,t; z): C* xU - C and let h(z) be analytic in U. If p(z) and
Y(p(2),2p'(2), z* p"(2); z) are univalent functions in U, and satisfies the
(second-order) differential superordination

h(z) < ¥(p(2),zp (2),22 p'(2); 2). (1.7.3)
then p(z) is called a solution of the differential superordination (1.7.3). The
analytic function q is called a subordinant of the differential superordination,
or more simply a subordinant if g(z) < p(z) for all p(z) satisfies (1.7.3). An
univalent subordinant G(z) that satisfies q(z) < §(z) for all subordinants q(z)
of (1.7.3) is said to be the best subordinant.

Let Q be a subset of C and suppose (1.7.3) be replaced by
Qc{Y(p(2),2p'(2),2% p'(2); 2): z € U}. (1.7.4)
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the condition in (1.7.4) will also be referred as a (second-order) differential

superordination, see (Miller and Mocanu, 2000).

1.8 Strong differential subordinations and superordinations

Some recent results in the theory of analytic functions were obtained by
using a more strong form of the differential subordination and
superordination introduced by (Antonino and Romaguera, 1994) and studied
by (Antonino and Romaguera, 2006) called strong differential subordination
and strong differential superordination, respectively, which were developed
by (G. Oros, 2007) and (G. Oros, 2009). In this section we present the
concepts of strong differential subordination and strong differential
superordination for analytic functions which will be helpful for our

investigations in chapter 5.

Let us begin with some notations of strong differential subordination of
analytic functions.

Let H(z {) analytic functions in U x U, where U = {z € C:|z| < 1} is the
closed unit disk of the complex plane. Let f(z) be analytic and univalent in .
The function H(z, {) is said to be strongly suborordinate to f(z) written

H(z,¢) << f(2),
if for ¢ € U, the function of z, H(z,{) is subordinate to f(z). (Antonino and
Romaguera, 1994) and (G. Oros, 2011). Since f(z) is analytic and univalent,
then H(0,{) = f(0) and HU X U) c f(U). If H(z,{) = H(z), then the strong

differential subordinations becomes the usual differential subordinations.
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Let: C* x U x U — C, and let h(z) be univalent in . If p(z) is analytic in
U and satisfies the following (second-order) strong differential subordination

V(p(2),2p'(2),2%p"(2);2,{) << h(z), (z€U; (€l), (1.8.1)
then p(z) is called a solution of the strong differential subordination. The
univalent function q(z) is called a domaint of the solution of the strong
differential subordination or, more simply, a dominant if p(z) < q(z) for all
p(z) satisfying (1.8.1). A dominant §(z) that satisfies §(z) < q(z) for all
dominants g(z) of (1.8.1) is said to be the best dominant.

Let Q be asetin C and suppose (1.8.1) is replaced by

V(p(2),zp'(2),2%p"(2);2,() € Q, (zeU; {el). (1.8.2)
the condition in (1.8.2) will also be referred as a (second-order) strong
differential subordination (G. Oros, 2011).

A strong differential subordination of the form (G. Oros, 2011)

A(z,0) zp'(2) + B(z,) p(2) << h(2), (z€U; €U, (1.8.3)
where A(z,{)zp (z) + B(z,)p(z) is analytic in ¢/ forall { €/ and h(z) is an
analytic and univalent function in & is called first order linear strong
differential subordination.

Now let us present the dual concept of strong differential subordination,
that is, strong differential superordination which was introduced recently by
(G. Oros, 2009).

Let f(z) be analytic in &/ and let H(z,{) be analytic functions in U x U
and univalent in Y. The function f(z) is said to be strongly subordinate to
H(z, ¢) written

f(2) << H(z,0),
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if there exists a function w(z) analytic in & with w(0) = 0 and |w(z)|<1 and
such that f(z) = Hw(z),0). If H(z,{) is univalent in I/ for all { €U, then
f(z) << H(z, Q) if f(0) =H(0,0), (€U and f(U) c HUx U).

Let 4:C3> xUxU— C, and let h(z) be univalent in U. If p(z) and
V(p(2),2p'(2),2z%p"(2);2,¢) are univalent in U for all { €Y and satisfy the
following (second-order) strong differential superordination

h(z) << ¥(p(2),2p (2),2°p (2); 2,), (zelU; Lell), (1.8.4)
then p(z) is called a solution of the strong differential superordination. The
univalent function q(z) is called a subordinant of the solution of the strong
differential superordination or, more simply a subordinant if g(z) < p(z) for all
p(z) satisfying (1.8.4). A univalent dominant G(z) that satisfies q(z) < §(2)
for all subordinants q(z) of (1.8.4) is said to be the best subordinant.

Let Q be asetin C and suppose (1.8.4) is replaced by

Qc {¢(p(z),zp'(z),zzp"(z);Z, {): Zz€EU; (€ Ijl}, (1.8.5)
the condition in (1.8.5) will also be referred as a (second-order) strong
differential superordination.

A strong differential superordination which was defined by (G. Oros,
2007) in the form

h(z) << A(z,{)zp (2) + B(z,{p(2), (zeU; ell),
where h(z) is analytic in & and A(z, {)zp (z) + B(z, ))p(z) is univalent in &/ for
all ¢ € U, is called first order linear strong differential superordination.

The next classes consist in the fact that the coefficients of the functions
in those classes are not constants but complex-valued functions. Using those
classes, a new approach in studying the strong differential subordinations

can be developed (G. Oros, 2011).
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Let H (U x U) denote the class of analytic functions in &/ x I/ and let
H'[a,n,{] ={f € HUXU):
f(z,0) =a+an(Dz" + an1 (D™ + -,z €U €U,
where a,(¢) are analytic functionsin &, k>n, n€N and a € C, and
H, W) ={f € H'[a,n,{]: f(z ) univalentin ¢/ forall { € U}.
Let

zf'(2,9)
f(z9)

S§={fEH*[a,n,C]: Re{ }>O,zEZ/{,V(EZ7},

be the class of starlike functions in U x U, and

zf'(2,9)
f@9)

KZ={f€H*[a,n,C]: Re{1+ }>O,ZEMV(EZ{},

be the class of convex functions in U X U.

Let f(z,¢) and H(z, {) analytic functions in &/ x . The function f(z,{) is

said to be strongly subordinate to H(z,{) or H(z{) is said to be strongly

superordinate to f(z{) if there exists a function w analytic in ¢ with

w(0) = 0 and |w(z)| < 1 such that f(z,¢) = H(w(z),{) forall ¢ €. Insuch

a case we write

f(z,0) << H(z,0), (zeU; el

If £(z ¢) is analytic functions in I/ X I/, and univalent in I, for all { € I/, then

£(0,0) =H(0,0), for all {eU and fFUXU) c HUXU). If H(z,{) = H(z)

and f(z,{) = f(2), then the strong subordination becomes the usual notation

of subordination.
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1.9 Motivations and outlines

The attention to the so-called coefficient estimate problems for different
subclasses of univalent and p-valent functions has been the main interest
among authors. Hence there are many new subclasses and new properties
of univalent and p-valent functions have been introduced. The study of
operators plays a vital role in mathematics. To apply the definitions of
fractional calculus operators (that are derivatives and integrals) for univalent
and p-valent functions and then study its properties, is one of the hot areas
of current ongoing research in the geometric function theory.

In this thesis, motivated by wide applications of fractional calculus
operators in the study of univalent and p-valent functions including (Altintas
et al. 1995a), (Altintas et al. 1995b), (Khairnar and More, 2009), (Irmak et al.,
2002), (Owa, 1978), (Owa, 1985b), (Owa and Shen, 1998), (Raina and Bolia,
1998), (Raina and Nahar, 2000), (Raina and Choi, 2002), (Raina and Nahar,
2002), (Raina and Srivastava, 1996), (Srivastava and Aouf, 1992),
(Srivastava and Aouf, 1995), (Srivastava and Mishra, 2000), (Srivastava et
al.,1988), (Srivastava and Owa, 1984), (Srivastava and Owa,
1987),(Srivastava and Owa, 1989), (Srivastava and Owa, 1991b),
(Srivastava and Owa, 1992) and (Srivastava et al., 1998) we present a study
based on fractional derivative operator and its applications to certain classes
of p-valent (or multivalent) functions in the open unit disk regarding various
properties of some classes of functions with negative coefficients, sufficient
conditions for starlikeness and convexity, sharp coefficient bounds,

differential subordination and superordination, and strong differential
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subordination and superordination. Our finding will provide interesting new

results and extensions of an number known results.

1.9.1 Functions with negative coefficients and related classes

Several classes of univalent functions have been extended to the case of
p-valent functions in obtaining some properties such as coefficient estimates,
distortion theorem, extreme points, inclusion properties, modified Hadamard
product and radius of convexity and starlikeness. (Aouf and Hossen, 2006)
have generalized certain classes of univalent starlike functions with negative
coefficients due to (Srivastava and Owa, 1991a) to obtain coefficient
estimates, distortion theorem and radius of convexity for certain class of p-
valent starlike functions with negative coefficients. More recently, (Aouf and
Silverman, 2007) studied certain classes of p-valent y-prestarlike functions of
order a. Subsequently, (Aouf, 2007) extended the classes of (Aouf and
Silverman, 2007) to case p-valent y-prestarlike functions of order a and type
B. Moreover, (Gurugusundaramoorthy and Themangani, 2009) introduced
class of uniformly convex functions based on certain fractional derivative
operator.

The above observations motivate us to define some new classes of p-
valent functions with negative coefficients f(z) € T(p) in the open unit disk
by using certain fractional derivative operator. This leads to the results
presented in Chapter 2. Some of the results established in this chapter
provide extensions of those given in earlier works.

An outline of chapter 2 is as follows:

e Section 2.1 is an introductory section.
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e Section 2.2 consists the definitions of the modification of fractional
derivative operator M(i’z”’” f(2) and the classes T}, ,(p,a,8,y) and
Coun(@,a,B,y) of T(p) as follows:

A function f(z) € T(p) is said to be in T; , . (p, &, B,y) if it satisfies the

following inequality

A M)
9(2)

(MM 2))
9(2)

-bp

<7, (z € U), (1.9.1.1)

+p—2p

Az0; pu<p+1;, n>max(Lu)—p—-1 peEN;
0<a<p 0P <p;, 0<y <],

for the function

9D =7 =) byun 2P (Bpn 2 0; p €N),

belonging to T*(p, @), where

Myt f(2) = ¢p (A ) 2 Jo 3 " f (2), (19.1.2)

and

M—pu+p)fFA+n—-21+p)

L FCES [T
Further, if f(2z) € T(p) satisfies the condition (1.9.1.1) for g(2) € C(p, a),

we say that f(z) € Cy ., (D, @, B, 7).
Also, We obtain coefficient inequalities, distortion properties and

convexity of functions in these classes.
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e Section 2.3 gives the definition of the classes Sfu‘n(a,c,a, pB) and

C/{"#,n(a, c,a,B) of T(p) by using the Hadamard product (or convolution)

involving the fractional derivative operator M&'Z’"” f(z) as follows:

A function f(z) € T(p) is said to be in the class Sf,u,n (a,c,a,pB) ifand

only if
z ( Q;’”’"f(z)), )
VR N
2 f(z.) <B (zeu,
z ( Qg’“’nf(z))
YRR +p—2a
0, f(2)
with

Au, Au,
QHTF(2) = gpla,c;z) » Myt f(2),

where ¢, (a, c; z) is given by
ppla,c;z) = zP + z (@) zP*,
£ (©n

and M&'Z“'"f(z) is given by (1.9.1.2), for a € R; ¢ € R\{0,-1,-2, .. };
0<a<p;0<B<L,A=20; u<p+1;n>max(4u) —p—1and
p € N. Further, a function f(z) e T(p) is said to be in the class

Crun(@c,a, B) if and only if

zf (2)

——=eSP (acalf).
p Aun

Here, we study coefficient estimates, distortion properties, extreme
points, modified Hadmard products, inclusion properties, radii of close-
to-convex, starlikeness, and convexity for functions belonging to these

classes.
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e Section 2.4 presents the definition of the classes k — UCVE;";(p, Q)

and k — TUCV;,;f’;(p, a) of k-uniformly p-valent starlike and convex

functions in the open unit disk as follows:
The function f(z) € A(p) is said to be in the class k — UCVE;ff’g(p, @) if

and only if

Aun
Re {pMOIZ f(Z) } >

Aun
M (2)
P T2 ol e ‘ (zew),
My, " f(2)

B PN
My *f @)

k=200<a<pl200<u<l+p;=200<y<1+p;
n>max(4u) —p—1; £ >max(B,y) —p—1),

where M&’Z“’”f(z) and Mg’zy’ff(z) as given in (1.9.1.2). We let

AU, AU,
k = TUCVSE (p, @) = k — UCVLH ) (p, @) N T(p)

Also, we derive some properties for these classes including coefficient
estimates, distortion theorems, extreme points, closure theorems and

radii of k-uniform starlikeness, convexity and close-to-convexity.

1.9.2 Starlikeness, convexity and coefficient bounds

The problem of sufficient conditions for starlikeness and convexity is
concerning to find conditions under which function in certain class are
starlike and convex, respectively. (Owa and Shen, 1998) and (Raina and
Nahar, 2000) introduced various sufficient conditions for starlikeness and
convexity of some classes of univalent functions associated with certain
fractional derivative operators. Also, the results of (Jack, 1971) and
(Nunokawa, 1992) which popularly known as jack’'s Lemma and

Nunokawa’'s Lemma in literature have applied to obtain many of sufficient
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conditions for starlikeness and convexity for analytic functions and were
studied by (Irmak and Cetin, 1999), (Irmak and Piejko, 2005) and (Irmak
et al., 2002).

There are now several results for Fekete and Szegd problem in
literature, each of them dealing with |a; — pa3| for various classes of
functions. The unified treatment of various subclasses of starlike and
convex functions (Ma and Minda, 1994) and the coefficient bounds for
various classes (Ali et al., 2007), (Ramachandran et al., 2007), (Rosy et
al.,, 2009) and (Shanmugam et al., 2006a) motivate one to consider
similar classes defined by subordination.

The above contributions on sufficient conditions for starlikeness and
convexity of univalent functions and sharp coefficient bounds for some
classes of univalent and p-valent functions encourage us to obtain
conditions for starlikeness and convexity to case p-valent functions
associated with certain fractional derivative operator and also, to obtain
coefficient bounds for |a,,, — paZ,,| and |a,.s| for certain classes of p-
valent analytic function associated with fractional derivative operator. This
leads to the results presented in Chapter 3. Some of our results in this
chapter generalize previously known results. This chapter contains of
three sections:

An outline of chapter 3 is as follows:

e Section 3.1 is an introductory section and contains some preliminary

results which are absolutely essential for completing the results used

in subsequent sections.
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Section 3.2 gives some sufficient conditions for starlikeness and
convexity and divided into three subsections.

Subsection 3.2.1 gives some sufficient conditions for starlikeness and
convexity by using the results of the classes S*(p, @) and K(p,a) due
to (Owa, 1985a).

subsection 3.2.2 contains some sufficient conditions for starlikeness
and convexity involving the Hadamard product (or convolution).
Subsection 3.2.3 is concerned to apply Jack’'s Lemma and
Nunokakawa’s Lemma for p-valent functions involving the operator

’””’f(z) to obtain some sufficient conditions for starlikeness and
convexity.
Section 3.3 gives coefficient bounds for p-valent functions associated
with the operator M“‘"f(z) belonging to certain classes and is
divided into three subsections.
Subsection 3.3.1 gives the definition of the classes S,;,,(¢),
Sbp.aun (@) of A(p) as follows:

A function f(2) € A(p) isintheclass S, ,,(¢P) if

1 MA+1;1+117+1f( )
1+-— -1 < ¢(2), (zeU,b e C\{0}).

b MyE"f(2)

Also, we let Slpzun(‘b) = 5;,/1,”,11 () .
Here, we obtain some coefficient bounds for functions belonging to the

classes S, ; () and Sy ;5 ,,(d).
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e Subsection 3.3.2 gives the definitions of some classes of p-valent
A, A,
Bazilevi¢ functions such as the classes R,7'z(¢) and R} ;(¢) of

A(p) as follows:

A function f(z) € A(p) is in the class Rﬁ”l’f“g‘ﬁ(cp) if

A/.Ln A+1,u+1n+1 A,un
1l (1—3)( I )) LM f(2)< pr(z)>

Myt f(2)

< ¢(2),

where
(@20 0sp<=LAz20u<p+Ln>max(Lp)—p-—1
p€EN; beC\{0}; zelU).
A, A,

Also, we let R0 5 (¢) = R 2 ().
Here, we obtain some coefficient bounds for functions belonging to the

Aum Aun
classes R%7(¢) and Ry}w o(¢).

Moerover, we define the classes M;'ng (¢) and M;} hap(®), of A(p) as

follows:

A function f(z) € A(p) isinthe class M, l’f;’ﬁ(qﬁ) if

1
1+ E{lpl,y,r/(a: .B' p) - 1} < ¢(Z)’

where
l'I'J/"L,;L,r/ ((Z, .B' p) =
M)l+1 MU+, 7]+1f( ) Aunf( ) AZZ,M+2,r]+2f(Z)
Moy "f (2) ( 2 ) R 1)Iwi““ﬂnﬂf( )
( )M(/)'{;-l,y+1,11+1f(z) .\ Mgzl,y+1,n+1f(z) )
TR\ M) |
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(@=20; =20, A=20; u<p+1;n>max(Lu) —p—1;
p €N; b € C\{0}; z € UU).
2, Au,
Also, we let M7 (¢) = M, 3 ().

We obtain some coefficient bounds for functions belonging to the

classes Mp +5(¢) and M;;fgﬁ(qb).

e Subsection 3.3.3 contains the definitions of the classes Npaﬁ(cp) and

Niﬁﬁﬁ(‘l’) of p-valent non-Bazilevi€ functions as follows:

A function f(z) € A(p) is inthe class N;lﬁ‘;’ﬁ(qb) if

+1 (1+ ) 4P a M/1+1u+17)+1f() 4P >a )
b PN ) T e M@

< ¢(2),

where
O<a<L; BeCA1=20,u<p+L,n>max(l,u)—p—1,peN
b € C\{0}; z e U).

A N
Also, we let N7, (¢) = N2 (¢).

Here, we obtain some coefficient bounds for functions belonging to the
Aun Awn
classes Ny (@) and Ny o p (@)

1.9.3 Differential subordination and superordination
By using the differential superordination, (Miller and Mocann, 2003)
obtained conditions on h(z), q(z) and ¥ for which the following implication

holds

h(z) < Y(p(2),zp (2),2%p"(2); z) = q(2) < p(2).
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With the results of (Miller and Mocann, 2003), (Bulboaca, 2002a)
investigated certain classes of first order differential superordinations as well
as superordination-preserving integral operators (Bulboaca, 2002b). (Ali, et
al., 2004) used the results obtained by (Bulboaca, 2002b) and gave the

sufficient conditions for certain normalized analytic functions to satisfy

() < fo(i)) < 0

where q,(z) and q,(z) are given univalent functions in ¢/ with ¢;(0) = 1 and
q,(0) = 1. (Shanmugam et al., 2006b) obtained sufficient conditions for

normalized analytic functions to satisfy

f(2)
zf (2)

q1(2) < < qz2(2),

and

22f (z)
(r@)°

where q,(z) and q,(z) are given univalent functions in ¢ with q;(0) =1 and

q1(2) < < qz(2),

q.(0) = 1.

Motivated by the above results, we investigate some results
concerning an application of first order differential subordination,
superordination for p-valent functions involving certain fractional
derivative operators. This leads to the results presented in Chapter 4.

An outline of Chapter 4 is as follows:

e Section 4.1 is an introductory section.

e Section 4.2 contains some new differential subordination results for

analytic functions associated with the operator M(’}'f'" f(2).
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Section 4.3 contains some new differential superordination results for
analytic functions associated with the operator M(?_'Z’"” f(2).

Section 4.4 contains some sandwich results for analytic functions
associated with the operator M&‘Z“‘"f(z) by combining the results of

sections 4.2 and 4.3.

1.9.4 Strong Differential subordination and superordination

As a motivation of some works on strong differential subordination and

superordination due to (G. Oros and Oros, 2007), (G. Oros, 2007), (G. Oros

and Oros, 2009) and (G. Oros, 2009), we study strong differential

subordination and superordination for p-valent functions involving certain

fractional derivative operator in the open unit disk. This leads to the results

presented in Chapter 5.

An outline of Chapter 5 is as follows:

Section 5.1 is introductory section.

Section 5.2 gives new results for strong differential subordination and
superordination for analytic functions involving the operator M(’}"Z"'"f(z)

by investigating appropriate classes of admissible functions.
Sandwich-type results are also obtained.

Section 5.3 discusses some results of first order linear strong
differential subordination involving the operator Mé_’z“’"f(z).
Section 5.4 discusses some results of strong differential subordination

and superordination involving the operator Mé_’z“'"f(z, {) based on the
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fact that the coefficients of the functions are not constants but

complex-valued functions.
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Chapter 2

Properties for certain classes of p-valent

functions with negative coefficients

This chapter is devoted to the study of certain classes of T (p) of p-valent
functions whose non-zero coefficients, from the second on, are negative
defined by a fractional derivative operator with an aim to obtain coefficient
conditions for functions to be in some subclasses of T(p) and distortion
theorems. Further results given extermal properties, closure theorems,
modified Hadamard product, inclusion properties, and the radii of close-to-
convexity, starlikeness, and convexity for functions belonging to those
subclasses are also considered. Moreover, relevant connections of the
results which are presented in this chapter with various known results are
also discussed. In section 2.1, we give preliminary details which are require

to prove our results. In section 2.2, we give the definition of fractional
derivative operator M&'Z"'" f(z) and introduce two new classes T, ,(p a,B,v)
and C,,(p, a,B,y) of p-valent functions by using results of (Owa, 1985a).

We obtain coefficient inequalities, distortion properties, and the radii of
convexity for functions belonging to those classes . In section 2.3, we define

the classes S?

un(@c a,B)and €7 (a,c a ) of p-valent functions by using

the Hadamard product in order to obtain coefficient estimates and distortion

properties. Results including extreme points, modified Hadamard products,
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inclusion properties, and the radii of convexity, starlikeness, and close-to-

convexity for functions belonging to those classes are also discussed.

Section 2.4 is mainly concerned with the classes k —TUCVé;ff;f(p, a) of k-

uniformly p-valent functions. The results presented include -coefficient
estimates, distortion properties, extreme points and closure theorems. The
radii of convexity, starlikenesss and close-to-convexity for functions

belonging to those classes are also determined.

The results of sections 2.2 and 2.3 are, respectively, from the published
papers in Sutra: Int. J. Math. Sci. Education. (Amsheri and V. Zharkova,
2011a) and Int. J. Contemp. Math. Sciences (Amsheri and V. Zharkova,
2011b), while the results of section 2.4 are from British Journal of
Mathematics & Computer Science (Amsheri and V. Zharkova, 2012j) and

from Int. J. Mathematics and statistics (Amsheri and V. Zharkova, 2012a).

2.1 Introduction and preliminaries

We refer to Chapter 1 for related definitions and notations used in this
chapter. First, to introduce our main results in section 2.2, we consider the
classes T*(p,a,B,y) and C(p,a,fB,y), of p-valent starlike functions with
negative coefficients in ¢/ which were introduced by (Aouf and Hossen, 2006)
and defined as follows:

A function f(z) € T(p) is said to be in the class T*(p, a, f,7) if it satisfies

the condition
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zf (z) _
9@ P
S

<y, (z € U). (2.1.1)

for g(z) e T*(p,a)(0 < a < p) defined by

9(z) = zP - Z bpsnzP*", (bpsn = 0; p €N). (2.1.2)
n=1

where 0 < g <pand 0 <y < 1. If f(2) € T(p) satisfies the condition (2.1.1)
for g(2) eC(p,a)(0<a<p),0<f<p and 0<y <1, we say that the
function f(z) is in the class C(p,a, B,v).
For these classes, results concerning coefficient estimates, distortion
theorems and the radii of convexity are obtained by authors. In fact, these
classes are extensions of the classes which introduced and studied by
(Srivastava and Owa, 1991a) and (Srivastava and Owa, 1991b) when p = 1.
Next, to introduce our main results in section 2.3, we consider the
classes S*(p,a, B) and K(p, a, B) of A(p) consisting, respectively, of functions
which are p-valent starlike functions of order a and type g and p-valent
convex of order @ and type B which were studied by (Aouf, 1988) and (Aouf,
2007). These classes are extensions of the familiar classes were studied
earlier by (Gupta and Jain, 1976) when p =1. For B =1, the classes
S*(p,a,1) =S*(p,a) and K(p,a,1) = K(p,a) were studied by (Patil and
Thakare,1983) and (Owa, 1985a), respectively. We denote by T*(p, a, ) and
C(p,a,B) the classes obtained by taking intersections, respectively, of the
classes S*(p,a,B) and K(p,a,B) with T(p). The classes T*(p,a,) and
C(p, a, B) were studied by (Aouf, 1988). In particular, for f§ = 1, we have the

classes T*(p,a,1) =T*(p,a) and C(p,a,1) = C(p, a) which were introduced
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by (Owa, 1985a) and the classes T*(1,a,1) =T*(a) and C(1,a,1) = C(a)
when p =1 and g = 1 were studied by (Silverman, 1975). Furthermore, we
define the class R¥[a,B] of T(p) which was studied by (Aouf, 2007) by
means of the Hadamard product (or convolution) as follows:

A function f(z) € T(p) is said to be in the class R}[a, 8] if it satisfies the

condition
(f xSP) (@) e T*(p, @, B), (2.1.3)
where
P zP

The class R}[a,B] is called the class of p-valent y-prestarlike functions of
order ¢ and type B where 0 <y <p, 0<a<p, 0<B<1andpeN. The

class Cf [«, B] for functions satisfy

f@ec)laple

Z ;(Z) € RP[a, ],

is also studied. (Aouf, 2007) obtained several results for functions with

negative coefficients belonging the classes RV[a, 8] and Cf[a,ﬁ] such as
coefficient estimates, distortion theorems, extreme points and radii of
starlikeness and convexity. Further results concerning the modified
Hadamard product are also established. The classes of functions R}[a, 8]
and Cy[a, 8] include, as its special cases various other classes were studied
in many earlier works, for example, (Ahuja and Silverman,1983), (Aouf and
Silverman, 2007), (Owa and Uralegaddi, 1984), (Silverman, 1975) and

(Srivastava and Aouf, 1995).
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Finally, to introduce our main results in section 2.4, we consider the
classes of uniformly convex functions and uniformly starlike functions which
were first introduced and studied by (Goodman, 1991a) and (Goodman,
1991b), and were studied subsequently by (Rénning 1991), (Rénning
1993a), (Rgnning 1993b), (Minda and Ma, 1992), (Minda and Ma, 1993) and
others. More recently, (Murugusundaramoorthy and Themangani, 2009)
introduced and studied certain class of uniformly convex functions based on
fractional calculus operator and defined as:

A function f(z) € A is said to be in the class UCV («a, B,v) if it satisfies

D7
oM

where 0<y <1, 0<a<2 0<p<2 zelU and

Re {Qaf (2) } > (2.1.5)

Frz) !

Q%f(z) =T(2 - 6)z°DIf(2).
We let TUCV (a,B,y) = UCV(a,B,y) N T. Here, the authors investigated some

results such as coefficient estimates, extreme points and distortion bounds.

In this chapter, motivated by the above discussion we introduce new
classes of p-valent functions with negative coefficients associated with
certain fractional derivative operator. These classes generalize the concepts
of starlike and convex, prestarlike, and uniformly starlike and uniformly
convex functions. We obtain coefficient estimates and distortion theorems.
Further results given extermal properties, closure theorems, modified
Hadamard product, inclusion properties, and the radii of close-to-convexity,
starlikeness, and convexity for functions belonging to those classes are also
considered. Moreover, relevant connections of the results which are

presented in this chapter with various known results are also discussed.
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Let us now give the following lemmas 2.1.1 and 2.1.2 for the classes
T*(p, @) and C(p, a) following the methodology by (Owa, 1985a) which will be
required in the investigation presented in the next section.

Lemma 2.1.1. Let the function g(z) defined by

9(z) = 2P - Z bysnzP™T, (bpsn = 0; p EN). (2.1.6)

Then g(z) isinthe class T*(p, «) if and only if

D @Hn=-aby <@-a). 2.1.7)

Lemma 2.1.2. Let the function g(z) defined by (2.1.6). Then g(2) is in the

class C(p, a) if and only if

D @ +m@+n- Dby <pp - ). (218)

2.2 Classes of p-valent starlike functions involving results of Owa

In this section we first give the definition of the modification of fractional

derivative operator Méf"’ (Amsheri and Zharkova, 2011a) for f(z) € A(p) by

MU E(2) = ¢p () 2H o8 F(2), (2.2.1)
where

T —u+pFr(1+n—-21+p)
P = O At — it ) @2.2)

forA>0; u<p+1; n>max(4,u) —p—1; p € N. By using (1.2.3), we can

write M’l H1£(2) in the form

MyEf(2) = 2P + z on (4 1,1, D) CpynzP™T, (2.2.3)

n=1
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If f(2) € T(p), we can write M“‘"f(z) in the form

METf(2) = 2P Z 80 111,D) Gy 2T 2.2.4)

where

¢p (A, 1,m) __+p)a+n—p+phn
Gpann) A—=p+p)(l+n—21+p),

(4 u,m,p) = (2.2.5)
It is easily verified from (2.2.3) that (Amsheri and Zharkova, 2011d)

2(MMTF@) = 0 —w) M @) 4 uMETF (D). (2.26)
This identity plays a critical role in obtaining the information about functions

defined by use of the fractional derivative operator. We note that

My, f(2) = f(2), My, f(2) =

zf'(z)
p

Now, let us give the following definition of the classes T;,,(p, a,B,v)

and C;,,(p,a, B,y) of p-valent starlike functions based on the fractional

derivative operator M’1 #1£(2) (Amsheri and Zharkova, 2011a).

Definition 2.2.1. The function f(z) € T(p) is said to be in the class

Tyun@ a, B,y) if

A MHTF (@)
9(2)

A(MPf(2))
9(2)

-p

<y, ((z€el), (2.2.7)

+p—2p

A=20p<p+1;n>max(p) —p—1;

0<a<p, 0<p<p; 0<y<1,peN).
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for the function g(z) defined by (2.1.6) belonging to the class T*(p,a) and
M(’}"Z”'"f(z) is given by (2.2.4). Further, if f(z) € T(p) satisfies the condition

(2.2.7) for g(z) € C(p,a), we say that f(z) € Cy .., (p,a, B, 7).

The above-defined classes T, ,(p,a,B,v) and G ,,(p,a, B,y) contain
many well-known classes of analytic functions. In particular, for A =u =0,
we have

Toon(a,B,y) =T (p,a,B,v)
and
Coon@ a,B,v)=C apB,y)
where T*(p,a,B,y) and C(p,a,B,y) are precisely the classes of p-valent
starlike functions which were studied by (Aouf and Hossen, 2006).
Furthermore, for A = u = 0 and p = 1, we obtain
Toon(La,B,y) =T (a,B,y)
and
Co,o,n(l'“'ﬁ')/) =C(a,B,v)
where T*(a,B,y) and C(a,B,y) are the classes of starlike functions which
were studied by (Srivastava and Owa, 1991a) and ( Srivastava and Owa,
1991b).

In next subsections let us obtain some properties for functions belonging

to the classes T; ., (p, @, B,y) and 3 ., (p, @, B, 7).
2.2.1 Coefficient estimates

In this subsection, we first state and prove the sufficient condition for

the functions f(z) e T(p) in the form (1.2.5) to be in the class

Ty uy(p, @, B,y) according (Amsheri and Zharkova, 2011a).
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Theorem 2.2.1.1. Let the function f(z) defined by (1.2.5). If f(z) belongs

to the class Ty, ,(p,a,B,y), then

(@ — )[p(1 —y) + 2yp]

Z(Sn(/l,u,n,p)(p +7) (1 + ) pen — — < 2y(p - ).
n=

(2.2.1.1)
where 6,,(4, u,n,p) is given by (2.2.5).

Proof. We have from (2.2.4) that

A+p)n(1+n—u+p,
Ap+n
e (l—p+p)n(l+n—21+p)y

'“”’f(z) — zP — ZPtn

Since f(2) € T;,,( a B,y), there exist a function g(z) belonging to the
class T*(p, a) such that

2(MH75 (@) - pg(2)
AMPF (D)) + (0~ 28)9(2)

<y, (zelU) (2.2.1.2)

It follows from (2.2.1.2) that

{ Zn 1[5 (/1 M;U:P)(P‘l'n) ap+n pbp+n] }<
200 — B) — 501 [07h 1, D) + Mapen + (@ — 2B)bpanlz) !

(2.2.1.3)

Choosing values of z on the real axis so that z( A”"f(z)) /g(z) is real,

and letting z — 1~ through real axis, we have

> Bk P + 1) Gy =P byn] <

n=1

y{Z(p - ,B) - Z[é\n(lﬁﬂf U,P)(P + n)ap+n + (p - Z.B)bp+n] ’

n=1

or, equivalently,
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co

D 0aQ 1 PYB + 1) L+ V) apin =[P = 1) + 278 byen} < 20 — ).

n=1

(2.2.1.4)

Note that, by using Lemma 2.1.1, g(z) € T*(p,a) implies
b i 22.15
p+n—p+n_a- ()

Making substituting (2.2.1.5) in (2.2.1.4), we complete the proof of Theorem
2.2.1.1.

Now we can obtain the following corollary from Theorem 2.2.1.1
(Amsheri and Zharkova, 2011a).

Corollary 2.2.1.2. Let the function f(z) defined by (1.2.5) be in the class

T/{M,n (p' a, B; V) Then

2yp-P)ptn—-a)+(p—-—a)[p(1—-y) + 2)//3]_

Tpm = 2.2.1.6
p+n S unp)p+n)A+Y)(p+n—a) ( )
where §,(A,u,n,p) is given by (2.2.5). The result (2.2.1.6) is sharp for a

function of the form:

e -Plptn-—a)+ @ -)pA-y)+ 2] .,

f@)=2" S PP T A T D@ -

. (2.2.1.7)

with respect to

p—«a ZPH1

e , (n = 1). (2.2.1.8)

g(z) = zP —

Remark 1. By letting p=1, A=pu=0and a =0 in Corollary 2.2.1.2, we
obtain the result which was proven by [(Gupta, 1984), Theorem 3].
In the similar manner, Lemma 2.1.2 can be used to prove the following

theorem for coefficient estimates of the class C;,,(p, «,8,y) (Amsheri and

Zharkova, 2011a).

60



Theorem 2.2.1.3. Let the function f(z) defined by (1.2.5) be in the class

Cl,u,n (p,a,B,v)- Then

p(p —a)[p(1 —y) + 2yp]
p+n)(p+n-—a)

Z 5oL uwnp)P+n) (L +y)api, — <2y(p - B).
n=1

(2.2.1.9)
where 6,,(4, u,n,p) is given by (2.2.5).
Now we can obtain the following corollary from Theorem 2.2.1.3
(Amsheri and Zharkova, 2011a).

Corollary 2.2.1.4. Let the function f(z) defined by (1.2.5) be in the class
Cl,u,n (p,a,B,v). Then

. <ZV(p—ﬁ)(p+n)(p+n—a)+p(p—a)[p(1—y)+2yﬁ]
prm = Sn(Aun,p)p+n)2(1+7y)(p+n—a) '

(2.2.1.10)

where 6,(4, u,n,p) is given by (2.2.5). The result (2.2.1.10) is sharp for a

function of the form:

¥ =B+ +n—a)+plp-a)p—y)+2yp]

= 7P p+n
fle) =z 5a oo, D)0 + WA+ P (p +n— @) 2
(2.2.1.11)
with respect to
g(z) = zP — Pl — ) zPt . (n>1). (2.2.1.12)

p+n)(p+n—a)

2.2.2 Distortion Properties
Let us investigate the modulus of the function f(z) and its derivative for

the class T;,,(p, @, B,v) (Amsheri and Zharkova, 2011a).

Theorem 2.2.2.1. Let A, u, n € R such that

p+2
AZ0, u<p+1; nZ)L(l—T>; pEN (2.2.2.1)
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Also, let f(z) defined by (1.2.5) be in the class T;,,(p,a,B,v). Then

If @) = 1zIP = Ap (P, By) |2IPHH, (2.2.2.2)

If @] < 12IP + Ay (P, B, V) |2[PH, (2.2.2.3)

If'@I = plzIP~ = (p + DAzun(p @, B, v)1zIP, (2.2.2.4)
and

If'@I < plzIP~ + (p+ DAz un(p @, B, ¥)zIP. (2.2.2.5)

for ze U, providedthat 0 <a<p, 0<f <p and 0<y <1 where

A+p-wWA+p+n—-D2y@-B) +p(p — )1 +vV)}
A+p+n—wWhrp+D*A+y)(@P+1-0a) '

A)L,u,n( paf,y) =

(2.2.2.6)
The estimates for |f(z)| and |f'(z)]| are sharp.
Proof. We observe that the function §,,(4, u,n,p) defined by (2.2.5) satisfy
the inequality
6 (A wn,p) < 6pi1(A 1M, p), (vn € N).

provided that n 2/1(1—”%2). Thereby, showing that 6,(4,u,n,p) is non-

decreasing. Thus under conditions stated in (2.2.2.1) we have forall n € N

A+p)A+p+n—pw
0< =84 u,n,p) < 8,4, 1,1, D). 2.2.2.7
A+p—pa+p+n-2 14 w1, p) < 8, (4, 1,1, p) ( )

For f(z) € T;,,(p, @ B,y), (2.2.1.4) implies

6L u,mp)p+ DA +y) Z Apn — [P(1 —7) + 2yB] Z bpin < 2y(p — B).

(2.2.2.8)
For g(z) e T*(p,a), Lemma 2.2.1 yields
i b, <P ¢ (2.2.2.9)
P =p4+1—a’
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so that (2.2.2.8) reduces to

i“ _Utp—wU+p+n=D2yp =) +p(p -1 +7))
= A+p+n-wWE+D*A+NE+1-a)

n=1
= Al,ﬂ,?’)(p) al BI V) (22210)
Consequently,
@Iz 127 = 127 @y, (2.2.2.11)
n=1
and
F@I < 12 +121P% ) apn. (2.2.2.12)
n=1

On using (2.2.2.11), (2.2.2.12) and (2.2.2.10), we easily arrive at the desired
results (2.2.2.2) and (2.2.2.3).

Furthermore, we note from (2.2.1.4) that

SALNDA+Y) Y 0+ Wapen =[P =1) + 2781 ) bpen <2/ = B),

n=1 =1
(2.2.2.13)
which in view of (2.2.2.9), becomes
N A+p—wA+p+n-D2yp—H) +pp—-a)(1+Y)}
Z b +)apsn < (1+p+ D 1
e ptn—wWE+DA+P+1-0a)
= (p + 1)A/1,[1,7]( p’ al ﬁl V) (22214)
Thus, we have
F' @] = plzlP~t = |z Z(p + 1)y, (2.2.2.15)
n=1
and
If'(2)| < plz|P~1 + |z|? Z(p + 1) apin. (2.2.2.16)
n=1
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On using (2.2.2.15), (2.2.2.16) and (2.2.2.14), we arrive at the desired results
(2.2.2.4) and (2.2.2.5).

Finally, we can prove that the estimates for [f(z)| and |f'(z)| are sharp
by taking the function

_Q+p-wA+p+n-DZy =B +prp -—a)1 +v)} .y
A+p+n—-wWhp+D*A+y)Pp+1-a)

f2) =

(2.2.2.17)

with respect to

—a
g(z) = 7P — pf—Taan . (2.2.2.18)

This completes the proof of Theorem 2.2.2.1.
Remark 2. By letting p=1, A=pu=0 and a =0 in Theorem 2.2.2.1, we
obtain the result which was proven by [(Gupta, 1984), Theorem 4].

Let us now investigate the modulus of the function f(z) and its derivative
for the class Cy ., (p, @, B,v) (Amsheri and Zharkova, 2011a).
Theorem 2.2.2.2. Under the conditions stated in (2.2.2.1), let the function

f (z) defined by (1.2.5) be in the class C;,,(p, «,B,y). Then

If (@) = |2IP — By uy(p o, B, 7)|zIPH, (2.2.2.19)
If @] < |2IP + By py (0o, B,¥)12IPH, (2.2.2.20)
If'@| = plzIP™" = (p+ DBy uy(p o, B.7)zIP, (2.2.2.21)
and
If'@I < plzIP™* + (p+ DBy (p o, B, 7)zIP, (2.2.2.22)

forz € U, providedthat 0 <a<p, 0<B<p and0 <y <1, where

(A+p—wW)(1+p+n-D{2y(p-B)(p+1)(p+1-a)+p(p—a)[p(1- y)+2yB]}
A+p+n-pw(P+13A+y)(p+1-a)

Bl,u,n( pa,pB,y)=

(2.2.2.23)
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The estimates for |f(z)| and |f'(z)| are sharp.

Proof. By using Lemma 2.1.2, we have

o

p(p —a)
z byin < GTDOTi—a) (2.2.2.24)

n=1
Since g(z) € C(p,a), the assertions (2.2.2.19), (2.2.2.20), (2.2.2.21) and
(2.2.2.22) of Theorem 2.2.2.2 follow if we apply (2.2.2.24) to (2.2.1.4). The

estimates for |f(z)| and |f'(z)| are attained by the function

f(2) = 2P — A+p= ) U+p+n-D 2y - p+DP+1-0)+p@-)p(-V)+2VBl} p+1
(L+p+n-wW(p+1)3(1+y)(p+1-a) ’

(2.2.2.25)

with respect to

p(p —a) e+
@P+D@P+1-a) '

g(z) =2zP — (2.2.2.26)

This completes the proof of Theorem 2.2.2.2.
Next let us investigate further distortion properties for the class
T;.n(0. @, B,y) involving generalized fractional derivative operator ](}}""

(Amsheri and Zharkova, 2011a).
Theorem 2.2.2.3. Let A>0; u<p+1;, n>max(4,u)—p—1 and p€eN.

Also, let the function f(z) defined by (1.2.5) be in the class T, ,(p.a,B,7)-

Then

|]$,nf(z)| S 27 {1 _2y(p-B) +plp—a)(1+y)

and

£ ()| < |z|P~# {1 LGP -p)+pp - +y) IZI}- (2.2.2.28)

~ oL uwm) 1+y)p+1-0a)

for z € U and ¢, (4, 4, 1) is given by (2.2.2).
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Proof. Consider the function M(i‘z“‘"f(z) defined by (2.2.4). With the aid of

(2.2.2.7) and (2.2.2.14), we find that
MA@ 2 12 = 8, AP (0 + W)y
n=1

2y(p—PB)+plp—a)(1+Y) 2P+,

L Y [ E

(2.2.2.29)

and

Au,
MGETF(2) | < 12l + 8, (A m, P12l Z ( + M) apin

n=1

2y(p-P)+plp-—a)A+Y), .,
|z[P*1.

==+ A1+Pp+1-0a)

(2.2.2.30)

which yields the inequalities (2.2.2.27) and (2.2.2.28) of Theorem 2.2.2.3.
In the similar manner, we can establish the distortion property for the

class C; ., (p, @, B,v) (Amsheri and Zharkova, 2011a).

Theorem 2.2.24. Let A1>0; u<p+1; n>max(4,u) —p—1 and p € N. let

the function f(z) defined by (1.2.5) be in the class C; ,,(p,a,f,y). Then

Vot f(2)] =

|z|P~# { 2@ -A+DP+1-a)+plp—a)lp(-y) +2vp] IZI}
b (4, 1,1m) 1+pA+y)(p+1—a) ’

(2.2.2.31)

and

Vot f(2)] <

|z|P~# {1 2y(p—B)p+D@+1-a)+pp—a)[p(l-y)+2yp] Izl}
b (4, 1,1m) 1+pA+y)(p+1—a) '

(2.2.2.32)

for z € U and ¢, (4, u, 1) is given by (2.2.2).
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Remark 3. By letting p =1, u =4 and using the relationship (1.6.5) in

Theorem 2.2.2.3, Theorem 2.2.2.4, we obtain the results, which were proven

by [(Srivastava and Owa, 1991b), Theorem 5 and Theorem 6, respectively].

2.2.3 Radii of Convexity

Let us solve the radius of convexity problem that is to determine the

largest disk |z| <r (0 <r < 1) such that each function f(z) in the class

Ty un(@ @ B,y) is p-valent convexin |z| <r (Amsheri and Zharkova, 2011a).

Theorem 2.2.3.1. Let the function f(z) defined by (1.2.5) be in the class

Ty un(@® @ B,y)- Then f(z) is p-valent convexin the disk |z| < ry, where

. i
= inf '
™ INlheN {(p + 1)(p + Tl,) A/’L’H,n (p; a, ﬁl y)}

and Ay ,,(p, a, pB,y) isgiven by (2.2.2.6).

Proof. It suffices to prove

zf"(2) ‘
1+———-p|=p, |z| < 7).
| @ p|<P ( 1)
Indeed we have
‘1 N zf"(z) | _ — Y= (p + n)ay 2"
f'(2) P—2na(@+ n)ap+nzn

Z?LO=1 Tl(p + Tl) ap+n|Z|n

TP = Zana @+ M apialzl™

Hence (2.2.3.2) is true if

o)

D n+ ) apnlzl <2 = ) pp+ Wapinlal”,
n=1

n=1

that is, if
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(2.2.3.2)

(2.2.3.3)

(2.2.3.4)



Z(p +n)? apiqlz|™ < p?. (2.2.3.5)
n=1

with the aid of (2.2.2.14), (2.2.3.5) is true if

pZ

(@ +m)z|" < CES RO ROk (2.2.3.6)
Solving (2.2.3.6) for |z|, we get
p2 n
|z] < {(p DO Ao, a,ﬁ,)/)} , (n=>1). (2.2.3.7)

This completes the proof of Theorem 2.2.3.1.

In the similar manner, we can find the radius of convexity for functions in
the class C; ., a,B,7).
Theorem 2.2.3.2. Let the function f(z) defined by (1.2.5) be in the class

Crun(®@ @, B,v). Then f(z) is p-valent convex in the disk |z| < 7, , where

. n
. ' 2.2.3.8
T2 inen {(p + D@ +n) Biuy @, “'3"’)} ( |

and B;,,(p,a,B,y) is given by (2.2.2.23).

2.3 Classes of p-valent starlike and convex functions involving the
Hadamard product
In this section we introduce new certain classes of p-valent starlike and

convex functions with negative coefficients by using the Hadamard product
(or convolution) involving the fractional derivative operator Mé_’z’”’ f(z) given

by (2.2.4) and investigate some properties for functions belonging to these
classes. Let us begin with the following definition according to (Amsheri and

V. Zharkova, 2011b).

68



Definition 2.3.1. A function f(z) eT(p) is said to be in the class

Sy un(@c a B) ifand only if

(9" f(2))

0,""f (2)

z ( Qg’”’nf(z))l
Q" (@)

!

p

<B, (z € U). (2.3.1)

+p—2a

A=20u<p+L,n>max(l,uy)—p—1, peN
0<a<p;0<B<1 aceR\{0,-1,-2,..}.

with
G (2) = gpla,c;2) Mgt f(2), (2.3.2)

where
a
ppla,c;z) =2zP + z (@ zP ™,
4 (0)n

and M&f’"f(z) is given by (2.2.4). Further, a function f(z) € T(p) is said to

be in the class C?

un(@c a B) if and only if

2f p(z) € Sy un(acapB). (2.3.3)

We note that, by specifying the parameters a,c, a, 8,4, u and p for those
generalized classes, we obtain the most of the subclasses which were
studied by various authors:

1. Fora=c and 1 =pu =0, we get S(I)j,o,n(a' a,a,B) =T*(p,a, B), that is

the class of p-valent starlike functions of order a and type g, which

was studied by (Aouf, 1988).
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. Fora=c¢, Az=p=0and p=1, we have S5,,(a,a,a,B)=S"(a,p),
that is the class of starlike functions of order a and type £, which was
studied by (Gupta and Jain, 1976).

. Fora=c A=u=0and g =1, we obtain the class Sé"o‘n(a, aal)=
T*(p, @), which was introduced by (Owa, 1985a).

. Fora=c¢, A=p=0,p=1 and B=1, we have Sj,,(a,aa1) =
T*(a), which was studied by (Silverman, 1975).

. For a=2p—-y)(0<y<p),c=1 and A=pu=0, we obtain
Soonm@—=v). 1, p) = Rj[a Bl, that is the class of p-valent y-
prestarlike functions of order a« and type g, which was studied by
(Aouf, 2007).

. Fora=2p—-y)(0<y<p),c=11=u=0 and B =1, we have
So0n (20 —7),1,a,1) = RP[y,a], that is the class of p-valent y-
prestarlike functions of order «, which was studied by (Aouf and
Silverman, 2007).

. Fora=c, A=p=1and p =1, we have the class C};,(a,a,a,p) =
C*(a, B), which was studied by (Gupta and Jain, 1976).

. For a=c and A=u=1, we have the class Cf_l_n(a, aa,f)=
C(p, a,B), that is the class of p-valent convex functions of order a and
type [, which was studied by (Aouf, 1988).

. Fora=c, A=pu=1and g =1, we have the class Cf,m(a» aal)=

C(p, a), which was studied by (Owa, 1985a).

10. For a=c¢, A=u=1,p=1 and B =1, we obtain the class

Ci1,(a,a,a,1) = C(a), which was studied by (Silverman, 1975).
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11. For a=2(p—-y)(0<y<p), c=1 and 1 =u=1, we obtain the
class ¢}, —v),1,a8) = C/[a, B], which was studied by (Aouf,
2007).

12.For a=2(p—y)(0<y<p), c=1, A=u=1 and =1, we have
Cf,l,n(z(p—y),l, a,1) = CP[y,a], which was studied by (Aouf and
Silverman, 2007).

Thus, the generalization classes Sf’u’n(a, c,a, ) and C/{"u'n(a, c,a,3) defined
in this section is proven to account for most available classes discussed in
the previous papers and generalize the concept of prestarlike functions.

In the next subsections let us obtain some properties for functions

belonging to the classes S}, (a,c,a,f) and ;. (a,¢,a, ).
2.3.1 Coefficient estimates
In this subsection we state and prove the necessary and sufficient

conditions for functions to be in the classes S?

(@ C a Baccording to

(Amsheri and V. Zharkova, 2011b).
Theorem 2.3.1.1. Let the function f(z) to be defined by (1.2.5). Then f(2)
belongs to the class Sﬁﬂ’n (a,c,a, B) if and only if

DI+ B+ 2w - 200 (@, A0 Mayn S 28— a),  (23.11)

n=1

where

(@Wn(1+p)n(1+1—p+p)y
On(1—p+p)(I+n—21+Dp),

AP (a,c, A, u,n) = (2.3.1.2)
Proof. We have from (2.3.2) that

(@n(1+p)p(1+n—p+py
(1= p+p)a(l+n=2A+phn

Qg,#,nf(z) = 4P _ ApsnzP*". (2.3.1.3)
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Let the function f(2) be in the class S}, (a,c, @ ). Then in view of (2.3.1),

we have

2( ()

0,""f (2)

A ( Qg’”'nf(z))l
i)

-p

+p—2a

© nAP(a,c, A un)a,., z"
‘ Zn—l n( u 77) p+n < [)) (2.3.1.4)

2(p - a) - 2?:1(‘”' + Zp - Za)Afl(a' ¢, /L U, T])ap+n z"

Since |Re(2)| < |z| forall z we have

© nAP(a,c,Aun)a,., z"
Re{ Zn=1 14 (@ €, 4y 1) }<,8. (2.3.1.5)

Z(p - (X) - Z;?:l(n + Zp - Za)Aﬁ(a, ¢4, U, n)ap+n z"
Choosing values of z on the real axis so that z ( Qﬁ'“"’f(z)) /Qz’}'“"’f(z) is

real, and letting z —» 1~ through real axis, we get

o)

Z nAb(a, ¢, L, ) ay, <

n=1

B {2(19 —a)— Z(n +2p — 2a)A%(a, ¢, A, 14, 1) Apyn -
n=1

which implies that the assertion (2.3.1.1).

Conversely, let the inequality (2.3.1.1) holds true, then

l2( )" @) - 03" @] - B |z (@) + @ - 200 Q" 2)| <

Z [n+ B(n+2p — 2a)] AL (a, ¢, A, i, m)apin — 2B(p —a) < 0. (2.3.1.6)

n=1

by the assumption. This implies that f(z) € S/{’,u,n (a,c,a, B).

Now we can obtain the following corollary from Theorem 2.3.1.1

according (Amsheri and Zharkova, 2011b).
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Corollary 2.3.1.2. If the function f(z) is in the class S/{’,#,n(a, c,a, ), then

o 2B(p — @)
P In+ B(n+ 2p — 2a)]A7 (a, ¢, A, 1, m)

(p,n € N). (2.3.1.7)

where AP (a,c, 4, u,1) is given by (2.3.1.2). The result (2.3.1.7) is sharp for the

function f(z) of the form

2p(p —a) pn
[n+ B(n+2p — 2a)]AP (a,c, A, 1, 1)

f(z) =zP - , (pneN). (2.3.1.8)

In the similar manner, we can establish the necessary and sufficient

conditions for functions to be in the classes C?

,1'#'1’ (al Cqa, B) aCCOI’dII’]g

(Amsheri and V. Zharkova, 2011b).

Theorem 2.3.1.3. The function f(z) belongs to the class C/fu’n(a, c,apf) if

and only if

(o]

(@ +n)n+pBm+2p—2a)]A(a, ¢, 4, 1, M) apsn < 2Bp(p — @). (2.3.1.9)

n=1
where AP(a,c,A,u,1m) is given by (2.3.1.2).
Now we can obtain the following corollary from Theorem 2.3.1.3
(Amsheri and V. Zharkova, 2011Db).

Corollary 2.3.1.4. If the function f(z) is in the class C}fluln(a, c,a,f3), then

0. < 2Bp(p — a)
prm = (@+n)[n+Bn+2p—2a)Ab(a,c, 4, pu,1)

(p,neN). (2.3.1.10)

where AP(a,c,A,u,m) is given by (2.3.1.2). The result (2.3.1.10) is sharp for

the function f(z) of the form

2pp(p — a)
(@+n)[n+pn+2p—2a)AE(a,c, 4, 1,1)

f(z) =2P — zP*", (p,n € N).

(2.3.1.11)
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2.3.2 Distortion Properties

Let us find the modulus of f(z) and its derivative for the class

Sy un(@ ¢ a,B) according to (Amsheri and V. Zharkova, 2011b).

Theorem 2.3.2.1. Let A, u, n € R such that a,c e R\{0,—-1,-2,..}; 1 =
G u<p+1; nS/l(l—pﬂi);OSa<p; 0<B <1. If f(z) belongs to the
class S/{"#‘n (a,c,a, B), then

2Bc(p—a)(A+p—w(d+p+n—4A) 2P+
[1+p0+2p-20)](1+p)(A+p+n—p) ’

HOIENEES

(2.3.2.1)

2Bc(p—a)(+p—w(d+p+n—4A) 2P+

If@)| < zIP + all+ (1 +2p—20)]1+p)(A+p+1n—p

(2.3.2.2)

2cp—a)(A+p—w(@+p+n—24)
|z|?

PNz P o B + 2o —2a) A+ p =

)

(2.3.2.3)

and

2pcp—a)(A+p—w(A+p+n—2) 2P
all+p(A+2p—-20)]1+p+n—p

If'@D] < plzP~ +

(2.3.2.4)
for z € Y and p € N. The estimates for |f(z)| and |f'(z)| are sharp.
Proof. Under the hypothesis of the theorem, we observe that the function
AP (a, c, A, u,m)is a decreasing function for n > 1, that is
0<AP (ac,un) <Ab(acdun),
foralln € N, thus

0<Al (ac,un) <AV(acApmn)
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al+p)A+n—u+p)

= . 2.3.2.5
CA-ntpA+7-2+p) (2323)
Therefore from (2.3.1.1) we have
i 2B(p — @)
Ap+n < P
L [1+ 41+ 2p —2a)]A (a,c, 4 p1,1)
__ 2Bcp-a)A+p-—w(d+p+n—4) (232.6)
all1+B(1+2p-2a0)](A+p)(A+p+n—p)’
since
FD)] = |2IP — |z|v+1z Ly, (2.3.2.7)
n=1
and
IF(2) < |zIP + Izlp“Z Ly, (2.3.2.8)
n=1

On using (2.3.2.6) to (2.3.2.7) and (2.3.2.8), we easily arrive at the desired

results (2.3.2.1) and (2.3.2.2). Furthermore, we observe that

[ee)

/@D 2 pleP™ = @+ DIzl Y apin, (23.2.9)
n=1
and
If'(2)| < plzlP~ 1+ (p + 1)|z|P Z Apn - (2.3.2.10)
n=1

On using (2.3.2.6) to (2.3.2.9) and (2.3.2.10), we easily arrive at the desired
results (2.3.2.3) and (2.3.2.4).
Finally, we can see that the estimates for |f(z)| and |f'(z)| are sharp for

the function

2pc(p—a)(l+p—w)(A+p+n—-2) ey

f(Z)=Zp_a[1+ﬁ(1+2p—2a)](1+p)(1+p+n—#)

(2.3.2.11)

The proof is complete.
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In the similar manner, we can establish the following distortion properties

for functions in the class C/{’,ﬂ,n (a,c,a,B) (Amsheri and Zharkova, 2011b).

Theorem 2.3.2.2. Let 4, u, n € R such that a,c € R\{0,—-1,-2,..}; 1=

0;y<p+1;nS/’l(1—p#ﬁ);OSa<p;0<ﬁ’31. If f(z) belongs to the

class c?

yNTR]] (ar ¢ a, ,8), then

2Ppc(p—a)(1+p—w(A+p+n—-2)

|z|P*1,
[1+B8(1+2p—2a0)](1+p)2(A+p+n—w

HOIRNEES

(2.3.2.12)

2ppc(p—a)(1+p—w(A+p+n—-2)

|z|P*1,
[1+B8(1+2p—-2a0)](1+p)2(A+p+n—w

@I < 12 +—

(2.3.2.13)

2ppc(p—a)1+p—w(A+p+n—2)
[1+p(1+2p-2)]A1+p)A+p+1n—w

|z

)

'@ = plzlPt - —

(2.3.2.14)

and

2ppc(p—a)(1+p—w(A+p+n—-2)
[1+p(1+2p-2)]A+p)A+p+1n—w

If' @ < plzlP™ +~ |z|P.

(2.3.2.15)
forz e U and p € N. The estimates for |f(z)| and |f'(z)| are sharp.

In the similar manner, we can establish further distortion properties for

the class S?

l’M(a, c,a, ) involving the operator Qé’“’" defined by (2.3.2)

(Amsheri and Zharkova, 2011b).
Theorem 2.3.23. Let A>0; u<p+Ln>maxflul—p—1,0< a <p;
0<B <1 aceR\{0,—1,-2,..} and p € N. Also, let the function f(z) be in

the class S?

/‘Lu.n(a’ c,a, ). Then
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2B(p— ) 2|+

Au,
| 057 @) 2 121P - 1+ B+ 2p - 2a)]

2p(p—a) 1
|z[PT,
[1+B(1+2p—2a)]

26(p—a)(1 +p)
[1+B(1+2p—2a)]

| 23" (2)| < 1zlP +

(05 @) | = plaip~ - 217,

and

28— +p) |,
[14+B8(1+2p—2a)]

(23" f@) | < plziP +

for z € U and Q)*"f(z) is defined by (2.3.2).

Also, we can establish further distortion properties for the class
Cyun(a c,a, B) involving the operator Q,’}’”’" defined by (2.3.2) (Amsheri and
Zharkova, 2011b)

Theorem 2.3.2.4. LetA=>20; u<p+1;np>maxflul—p—1,0<a<p;
0<pB<1;aceR\{0,—-1,-2,..}and p € N. Also, let the function f(z) be in

the class c?

A (a,c,a,B). Then

2pp(p — a) 2|+
1+p)[1+B1+2p—2a)] ’

| 25 ()| = 12IP -

2pp(p — a) 2P+
1+p)[1+B1+2p—2a)] ’

| Q5 ()| < lalP +

2pp(p — a)
|z|P
[14B(1+2p —2a)]

)

(2" f@) | = plzir -

and

2Bp(p —a) 2P

(@) | < plal ™ + ey 2 =27

for z€ U and Q)*"f(z) is defined by (2.3.2).
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2.3.3 Extreme points
Let us investigate the extreme points which are functions belonging to
the class S}, , (a, ¢, @, ) following (Amsheri and Zharkova, 2011b).
Theorem 2.3.3.1. Let
fo(2) = 2P, (p €N), (2.3.3.1)
and

2(p —a) pn
[n+ B(n+ 2p —2a)]AE(a,c, A, u, 1)

fp+n(z) =zP — ’ (p'n € N)

(2.3.3.2)

Then f(z) € S/{" un (a,c,a,p) if and only if it can be expressed in the form

o)

) =) epen fpan(@, (233.3)
n=0
where
Epin = 0, Z Epin =1. (2.3.3.4)
n=0
Proof. Let

F@ = tpun fyan(®

n=0

.\ 28(p — @) .
- Z [n+ B(n +2p — 2a)]A% (a, ¢, A, 1, ) Epnz” " (2:3.35)

n=1

Then, in view of (2.3.3.4), it follows that

i [n+B(n+2p — 2a)]A%(a, c,/’l,u,n){ 28(p — @) . }
pryunr | Zﬁ(p - (X) [Tl + ﬁ(n + Zp - Za)]A‘rpl(a: (o8 A, K, 77) pm
_ Z Epn=1—g,<1. (2.3.3.6)

So, by Theorem 2.3.1.1, f(2) belongs to the class S/’{f#‘n (a,c,a, B).
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Conversely, let the function f(z) belongs to the class S/{’,#,n(a, c,apf).

Then
28(p — a)
< , ,n €N), 2.3.3.7
Win S L Bt 2p — 2@ Ay P e (@337
Setting
[n+ B(n+ 2p — 2a)]A5(a, ¢, A, 1, )
Ep+n = 28(p — a)n Ap+n » (pneN). (2.3.3.8)
and
g=1- Z Epsn- (2.3.3.9)
n=1

we see that f(z) can be expressed in the form (2.3.3.3). This completes the
proof of the Theorem 2.3.3.1.

Now we can obtain the following corollary from Theorem 2.3.3.1
according to (Amsheri and Zharkova, 2011b).
Corollary 2.3.3.2. The extreme points of the class Sfu’n(a, c,a,f) are the
functions f,(z) and f,.,(2), given by (2.3.3.1) and (2.3.3.2), respectively.

In the similar manner, we can obtain the extreme points for the class
Chun(ac.apB).
Theorem 2.3.3.3. Let

fo(2) = 2P, (peN). (2.3.3.10)

and

B 2pp(p — a)
(p+n)[n+B(n+2p—2a)Ab(a,c, A, u,1)

fp+n(z) = zP zP* (p,n € N).

(2.3.3.11)

Then f(z) € Cfu‘n (a,c,a,B) if and only if it can be expressed in the form
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o

F@ = pun fyan(@), (233.12)

where

Epin =0, Z Epin = 1. (2.3.3.13)

Now we can obtain the following corollary from Theorem 2.3.3.3
according to (Amsheri and Zharkova, 2011b).

Corollary 2.3.3.4. The extreme points of the class C/{"u'n(a, c,a, ) are the

functions f,(z) and f,,,(2z) given by (2.3.3.10) and (2.3.3.11), respectively.

2.3.4 Modified Hadmard Products
Let us obtain the Hadamard product of any two functions in the class

Mn(a c, a, ) following (Amsheri and Zharkova, 2011b).

Theorem 2.3.4.1. Let the functions f;(z) (i = 1, 2) defined by

fi(z) = 2P — Z pan; 27 ( € N). (2.3.4.1)

n=1

be in the class Sﬁ”u'n (a,c,a,B). Then (f, * f,)(2) € Sf’ﬂ’n (a,c,6,B), where

255(1+ﬁ)(p—a)2(1+19—ﬂ)(1+19+77—1) (2 3.4 2)

0=p-— a(1+p)A+p+n—w[1+p(1+2p-2a)]12-4p2c(p-a)2(1+p—p)(A+p+n—-21)

Proof. To prove the theorem, we need to find the largest § such that

co

[n+ B(n+ 2p — 28)1A%(a, ¢, A, 1, 1)
Z — Apyn1Qpinz < 1. (2.3.4.3)
] 26(p — 9)
since
- [n+ B(n+ 2p — 2a)]AE (a,c, A, 1, )
Z — Apin1 < 1, (2.3.4.4)
] 26(p —a)
and
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[+ B(n+2p —2a)]AP(a,c, A, 1, 1) <1
2, 26(p — ) fpmz = 5

n=1

we have

n=1

Thus, it is sufficient to show that

[n+ B(n+2p —28)]Ab (a,c, A, 1,1m)

(p _ 5) ap+n,1ap+n,2 <
[n+ B(n+2p — 2a)]A7 (a, ¢, 4, 1, 1)
vV Ap+n,19p+n,2 »

(p—a)

That is, that

[n+ B+ 2p —2a)](p — &)

Vitpsnatome = Ly gt 2p - 20)](p — @)

Note that

2B(p — @)

S [n+ B+ 2p — 20)]AP(a, ¢, A, 1, )
z 28(p — ) Jinipinz < 1.

(2.3.4.5)

(2.3.4.6)

(2.3.4.7)

(2.3.4.8)

Ja a < , n € N). (2.3.4.9
p1Tp+n2 [n+ B(n+ 2p — 2a)]AE (a,c, 4, u, 1) ( )- ( )

Consequently, we need only to prove that

26(p — ) _[n+B(+2p— 200 - 6)

[n+B(n+2p —2a0)]00(a, ¢, Apwn) ~ [n+ B+ 2p —28)](p — )

or, equivalently that

28(1+ P)n(p — a)?
[n+ B(n+2p — 2a)]2A% (a,c, A, u,m) — 4B2%(p — a)?

6<p-—

Let

2B(1 + Bynp — a)?

(2.3.4.10)

(2.3.4.11)

A(n) =p -

Letting n =1 in (2.3.4.12), we obtain
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_ 2Bc(1+B)(P=a)* (A +p-p) (L +p+n—2) (2.3.4.13)
a(1+p)(1+p+n-w)[1+B(1+2p—2a)]?-4B%c(p-a)?(1+p—-w)(1+p+n-2) o

d=p
which completes the proof of Theorem 2.3.4.1.
In the similar manner, we can obtain the Hadamard product of any two

functions in the class c?

Mm(a, ¢, a,B) according to (Amsheri and Zharkova,

2011b).
Theorem 2.3.4.2. Let the functions f;(z) (i = 1,2) defined by (2.3.4.1) be in
the class Cfu,n(a, c,a,B). Then (f, * f,)(2) € Cﬁu.n (a,c,0,B), where

_ 2Bpc(1+B)(p—a)*(1+p—pw)(1+p+n-24)
a(1+p)2(1+p+n-w[1+B(1+2p-2a)12-4B2pc(p-a)?(1+p-pw)(1+p+n-2) ’

g=p

2.3.5 Inclusion properties

In this subsection let us investigate inclusion property for any two
functions in the classes Sﬁﬂ’n (a,c,a, B) according to (Amsheri and Zharkova,
2011b).
Theorem 2.3.5.1 Let the functions f;(z) (i = 1,2) defined by (2.3.4.1) be in

the class S?

wun(@ ¢ @, B). Then the function

h(z) = zP - Z(a,";m1 + aynz) 2P (2.3.5.1)
n=1

belongs to the class S/{TM (a,c,8,B), where

B 4Bc(1+B8)(p—a)?(1+p—p)(1+p+n-2) (2.3.5.2)
a(1+p)A+p+n—-p)[1+B(1+2p—2a)]12-8B2c(p-a)?(1+p—u)(1+p+1-21)" o

6=p

Proof. By virtue of Theorem 2.3.1.1, we obtain
2
2

p+n,1 <

i {[n +B(n+ 2p —2a)]Ab (a,c, A, u, n)}
2B(p — @)

n=1
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o0 _ D 2
{Z [n+ B(n+ 2p — 2a)]Ay(a,c, A, 1, m) ap+n’1} <1, (2.3.5.3)

L 2B(p — @)
and
2
2

Aptnz =

i {[n +B(n+2p = 2a)]A7 (g, ¢, 4, 1, n)}
2B(p — @)

n=1

<1 (2.3.5.4)

[+ B(n + 2p — 2a)]A%(a, ¢, A, ) ’
2. 28(p — @) o

n=1

It follows from (2.3.5.3) and (2.3.5.4) that

i 1 {[n 4 B(n+2p — 20)147 (a, ¢, A, 1)
2

2
az,,,+a? <1. (2355
2,3(p _ CZ) } ( p+n,1 p+n,2) ( )

n=1

Therefore we need to find the largest § such that

[n+ B +2p - 28)]A0(a,c, A i) _

28(p—6) B
1([n+ B+ 2p —2a)]Ab (a,c, A, 1, 1) 2
E{ o } , (2.3.5.6)
that is
4B(1 + Bin(p — a)?
A e P e B R i e
Let
B 4B(1+ BIn(p — a)?
B0 =P bt 20 20PN @ hu ) — 8w D)
Letting n =1 in (2.3.5.8), we obtain
5=p 4Bc(1+B) (p—a)*(1+p—p)(1+p+n—2) (2.3.5.9)

T a(+p) (-4 B+ 2p-20)12-8B2c(p—a)2 (1+p— W) (L +p+n-2)
which completes the proof of this theorem.

In the similar manner, we can establish the inclusion property for the

class C} un(@c aB).
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Theorem 2.3.5.2. Let the functions f;(z) (i = 1,2) defined by (2.3.4.1) be in
the class C/{"#‘n(a, ¢, a, ). Then the function h(z) defined by (2.3.5.1) belongs
to the class C} un(@c,a,B8), where

4Bpc(1+B)(p—a)?(1+p—pu)(A1+p+n—-21)
a(1+p)2(1+p+n-wW[1+B(A+2p—2a)12-8B2pc(p-a)2(1+p—pw)(1+p+n—2)

o=p-—
Next let us investigate further inclusion property for functions in the class

83 un(@ ¢ @, B) according to (Amsheri and Zharkova, 2011b).
Theorem 2.3.5.3. Let the functions f;(z) (i =1,2,..m) be in the class

Sy un(@c,a ). Then the function

co m
1
h(z) = zP — Ez Z Apini ZPTT. (2.3.5.10)

belongs to the class S}, (a,c,a, B).

Proof. Since f;(z) € Sftu’n(a, c,a,f3), by Theorem 2.3.1.1, we have

[00]

Z [n+ B(n+2p —2a)]Ab (a,c, A, u,7m)
2B(p —a)

Aping <1, (i =12,..m).

n=1

SO

o [+ B+ 2p — 20)]A8 (a, ¢, A, i) (1 X ~
Z 28(p — @) Ez Gpini | =

n=1 i=1

o)

2 Z [n+ B(n+2p—2a)|AE(a,c,A,u,n) <1
Zﬁ(p — a) p+ni = +-

n=1
which shows that f(z) € S/{’,u,n (a,c,a,p).
In the similar manner, we can establish further inclusion property for

functions in the class c?

Mn(a, c,a, ) according to (Amsheri and Zharkova,

2011b).
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Theorem 2.3.5.4. Let the functions f;(z) (i =1,2,..,m) be in the class

C/{"#‘n(a, c,a, ). Then the function h(z) defined by (2.3.5.10) belongs to the

class C} un(@ ¢, B).

2.3.6 Radii of close-to-convexity, starlikeness, and convexity

Let us obtain the largest disk for functions in the class Sﬁm (a,c,a,p) to

be p-valent close-to-convex according to (Amsheri and Zharkova, 2011b).

Theorem 2.3.6.1. Let the function f(z) be in the class S/{”H’n(a, c,a, ). Then

f(z) is p-valent close-to-convex of order § (0 < § <p) in |z| < ry, where

Y
(p—&[n+pn+2p-2a0)]Ah(a,c, L, um) ™
26(p—a)(p+n) } (2.3.6.1)

= infneN{

and AP (a,c,A,u,1m) is given by (2.3.1.2). The result is sharp with the extremal
function f(z) given by (2.3.1.8).

Proof. It suffices to show that

f'(2)
o1 p=sp—6  (zZl<m) (2.3.6.2)
Indeed, we have
f'(2) C
-1 P|S 2(19 +n)apn |2 (2.3.6.3)
n=1

Hence (2.3.6.3) is true if

Y @+mapladt<p-5
n=1

or

- +n
Z wrm <1 (2.3.6.4)
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By Theorem 2.3.1.1, (2.3.6.4) is true if

(p +n)lz|® - [n+ B(n+ 2p — 2a)]A%(a, ¢, 4, u,7)
-6 - 2(p — a)

Solving (2.3.6.5) for |z|, we get the desired result (2.3.6.1).

(n>1) (23.6.5)

In the similar manner, we can obtain the radii of starlikeness for
functions in the class S}{’,M,n(a, ¢, a, ) according to (Amsheri and Zharkova,
2011b).

Theorem 2.3.6.2. Let the function f(z) be in the class S/{’,ﬂ,n(a, c,a,B). Then

f(z) is p-valently starlike of order § (0 < 6 <p) in |z| <r,, where

(p — &)[n+ B(n+2p — 20)]A%(a, ¢, A, s, n)}l/ n

r, = inanN{ 2B(p—a)(n+p —9)

and AP(a,c, A, u,m) is given by (2.3.1.2). The result is sharp with the extremal
function f(z) given by (2.3.1.8).

Also, we can obtain the radii of convexity for functions in the class
S){”u’n(a, ¢, a, ) according to (Amsheri and Zharkova, 2011b).

Theorem 2.3.6.3. Let the function f(z) be in the class Sf’ﬂ’n(a, c,a, ). Then

f(z) is p-valently convex of order § (0 < § < p) in |z| <ry, where

p(p — &)n+ B(n+2p — 2a)]A%(a, ¢, A, n)}l/”

13 =infneN{ 2p—a)(p+n)(n+p—9)

and AP(a,c, A, u,1n) is given by (2.3.1.2). The result is sharp with the extremal

function f(z) given by (2.3.1.8).
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2.4 Classes of k-uniformly p-valent starlike and convex functions
In this section we introduce new certain classes of k-uniformly p-valent
starlike and convex functions defined by the fractional derivative operator
’“”’f(z) given by (2.2.1) and investigate some properties for functions
belonging to these classes. Let us begin with the following definition
according to (Amsheri and Zharkova, 2012j).

Definition 2.4.1. The function f(z) € A(p) is said to be in the class k —

UCv,t (p,) if and only if

/‘lun
Mo,zy f(Z)

(k=20,0<a<p; 420,05 u<l+p; 20,05y <1+p;

pMyE f(2)

— i P u). 2.4.1
ijzyff(z) (zel) (2.4.1)

-p

for

n>max(4p) —p—1; §>max(B,y) —p—1).

where Moz“"f(z) and Mﬁ”ff(z) are given by (2.2.1). We let
k= TUCV, 0 (p, @) = k — UCV, 4 (p, @) N T(p). (2.4.2)

The above-defined class k — UCV’“‘"(p, a) contain subclass k — UCV’“‘((a)

of k-uniformly starlike and convex functions when p =1 for f(z) € A which

satisfies the condition (Amsheri and Zharkova, 2012a)
lun
Z
Re {Wﬂ) “} =k
P()’Z f(Z)

where P;*"f(z) is defined by (1.6.8). We let

P £ (2)
PEYEf(2)

1‘ . (zeUW), (2.4.3)

k—TUCV, "¢ (@) = k — UCV, ' (a) N T. (2.4.4)

Also,for u=A, y=p, k=1and p =1, we have
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1— UCV%’Q(L a) = UCV(A, B, ),

and

1— Tucvgﬁ'gm, a) = TUCV(A, B, ).

where UCV(A,B,a) and TUCV(A,B,a) are precisely the subclasses of
uniformly convex functions which were studied by (Gurugusundaramoorthy
and Themangani, 2009). Furthermore, by specifying the parameters
A u, B, v, k, a and p, we obtain the most of subclasses which were studied

by various other authors:

1. Foru=2A1=1, B=y=0and k =1, the class k — UCV;ﬂé"(p, @) can

be reduced to UST(p,a), the class of uniformly p-valent starlike
functions of order «a, see (Al-Kharsani and AL-Hajiry, 2006).

2. For uy=A=1, B=y=0,p=1 and k =1, we obtain UST(a), the
class of uniformly starlike functions of order a, see (Owa, 1998) and
(Rgnning, 1991).

3. Foru=42=1,=y=0,p=1, a=0and k =1, we obtain UST, the
class of uniformly starlike functions, see (Goodman, 1991b).

4. Foru=A=1, B =y =0andk = 0, we obtain S*(p, @), the class of all
p-valent starlike functions of order a, see (Partil and Thakare, 1983).

5. Foru=42=1, =y=0,p=1and k =0, we have S*(a), the class
of starlike functions of order a, see (Duren, 1983), (Jack, 1971),
(Robertson, 1936), (Pinchuk, 1968) and (Schild, 1965).

6. Foru=1=1,=y=0,p=1, a=0 and k=0, we have S*, the

class of starlike functions , see (Duren, 1983).
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Thus, the generalization class k — UCV[;;}"(p, a) defined in this section is
proven to account for most available subclasses discussed in the previous
papers and generalize the concept of uniformy starlike and uniformly convex
functions.

In the next subsections let us obtain some properties of functions

belonging to the classes k — UCVé;f;ﬁ (p,a) and k — TUCVE;}" (p, ).

2.4.1 Coefficient estimates

In this subsection we start with the coefficient estimates for the class
k — UCV;;f}"(p, a) following (Amsheri and Zharkova, 2012j).
Theorem 2.4.1.1. The function f(z) defined by (1.2.3) is in the class
k—UCV (p, a) if

D U+ 08 Rwmp) = @k + 8B, E D apnl <P - @4LD

n=1

where
_ $pApn)  (A+pa(l+n—p+p)n
M) = G T A—rapadn Aty D
and
5, (B.y. &) = $p(B,v,$)  (A+p)a(1+&—y+p) (2.41.3)

¢p+n(ﬁ:% E) a (1 -y + p)n(l + f - ﬁ + p)n.
with ¢, (4, u,m) and ¢,(5,y,¢) are given by (2.2.2).

Proof. We have from (2.2.3) that

Au,
MA@ =27+ ) Su D) Gyens?™,
n=1

and
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Mg"zy'ff(Z) =zP + Z 6n(B,v, &, p) ap+an+n.
n=1

Since f(z) € k — UCV** (p, a), it suffices to show that

Bvé
pMy 1" f (2) Mot @) )
e T e
Notice that
Mn Aun Aun
f@) f(2) My, f(2)
——————p| — Re{—F+—— <(A+k) |-
Mf,! *f(2) ‘ e{Mf,fo(z) p} =T My (2) ‘

<(1+k)

Z?lo=1 p[dn (A; lul T], p) - 671 (ﬁ' V; fl p)]ap+n Zp+n‘
zP + Z?f:l 6n(ﬁ; Y, f' p) ap+an+n

LA+ X P, p) = 8n(B 1.6 P)] |ap+n|
1- 2 6 (ﬁ V'fp)lap+n|

The last inequality above is bounded by (p — @) if

D 0+ 008,00 1,1, 1) = (P + @80 (B, 7,60 |apn| <P =

n=1

This completes the proof.

Now by letting p =1 in Theorem 2.4.1.1 we obtain the coefficient
estimates for the class k — UCV“‘"(a) following (Amsheri and Zharkova,
2012a).

Theorem 2.4.1.2. The function f(z) defined by (1.2.2) is in the class

k—UCV,2E (a) if

DA+ 08,0 um - (k+ 086Gyl < 1-a,  (2414)
n=2

where

(Dn-1C+n =W

0, (A, u, = )
Tl WY S |

(2.4.1.5)
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and

(Z)n—l(z + f - V)n—l

6n(B,7,8) = RN E T (2.4.1.6)
Proof. We have from (1.6.8) that
PAF(2) = 2 + Z 80 (2,1, 1) nz™,
and
RIS f@ =2+ ) 80B.7.8) an".
n=2
Since f(z) € k — UCVElf‘g’ (a), it suffices to show that
Mn Mn
f(2) f(2)
Byf 1—Re{ By E —1;<1-a
Ry f(2) Py, f(2)
Notice that
lun Aun /1#17
—ﬁ gf(Z) 1‘ —Re{—ﬁ Ef( 2) I}S 1+k) —B ff( 2) 1‘
B f(2) B f(2) B f(2)

Z:=2[6‘n(lr W, 7]) - 61’1(,8' Y, E)]an z"
+ Z::Z 6n(ﬁ' y' f) anzn

Q4B Xnal8n(h ) — 8a(B, %E)]Ianl
B 1-30=26.(8,v.) lan |

<(1+k)

The last inequality above is bounded by (1 — «) if

D 1A+ 108, m) = e+ @8a (8,7, Ollan] < 1 a
n=2

This completes the proof.

Next, let us obtain the necessary and sufficient conditions for f(z) to be

in the classes k — TUCV’“‘"(p, a) following (Amsheri and Zharkova, 2012)).
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Theorem 2.4.1.3. The function f(z) defined by (1.2.5) is in the class

k—TUCV;# (p, ) if and only if

D U+ 811D — Bk + 8BV, ED]apin Sp - (2417)

n=1

where 6,(4,u,n,p) and 6,(B,y,& p) are given by (2.4.1.2) and (2.4.1.3)
respectively.

Proof. In view of Theorem 2.4.1.1, we need to prove the sufficient part. Let

f(z) ek — TUCV;’Y‘}"(p, a) and z be real, then by the inequality (2.4.1)

Aun
Re {pMO,z f(Z) } >

ALu,
pMyy " f(2)
By A= '
MO,Z f(Z)

-p
My f (@)

or

p - szlp 67’1(2-;#) n: p) ap+n Zn —a S
1 _Z;?Zl(sn(ﬁl]/ﬁf:p)ap+nzn -

k 21(?1():1 p[é\n(ll :ul 77: p) - 61’1 (ﬁl )/I f' p)]ap+n Zn
1- ;.10=1 Sn(ﬁ, Y, fl p)ap+1’l zPin

Letting z —» 1 along the real axis, we obtain

@ —a) = Xa=1lp(1 + k)6, (4, 1,1, p) — (Pk + a)6,(B,7, €, D)]ap4n

© > 0.
1- n=1 Sn(ﬁ' Y, E' p)ap+n

This is only possible if (2.4.1.7) holds. Therefore we obtain the desired result
and the proof is complete.

Next, let us obtain the necessary and sufficient condition for f(z) to be in
the classes k — TUCV[f")f}" (o), following (Amsheri and Zharkova, 2012a).
Theorem 4.2.1.4. The function f(z) defined by (1.2.4) is in the class

k — TUCV; () if and only if
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Z[u 16, (A n) — (k + )8, 1, O]la, <1 —a. (2.4.1.8)

n=2
where &6,(4, u,n)and 6,(B,v,¢§) are given by (2.4.1.5) and (2.4.1.6)
respectively.

Proof. In view of Theorem 2.4.1.2, we need to prove the sufficient part. Let

f(z) ek — TUCVé;ff?(a) and z be real, then by the inequality (2.4.3)

Aum
Re {Po,z f(2) } >

A,
PO,ZH nf(Z)
By.& A= 1
PO’Z f(Z)

Ry f @)

or

1- Z;:Z 671(A! W, r]) ap+n Zn_l > k

—a Z;=2[6n(/1' U, 77) - Sn(ﬁr Y, f)]an ZTl—l
1-35-26(By, Oayz"? = .

1- Z::Z Sn(ﬁ' Y, ’f)an Zn_l

Letting z —» 1 along the real axis, we obtain

(- @) = Yna[@ + K)8: (A ) — (k + )8, (B, v, lan )
1- :’:=2 Sn(ﬁ'y' E)an -

This is only possible if (2.4.1.8) holds. Therefore we obtain the desired
results and he proof is complete.

Now we can obtain the following corollary from Theorem 2.4.1.3
according to (Amsheri and Zharkova, 2012j).

Corollary 2.4.1.5. Let the function f(z) defined by (1.2.5) be in the class
k= TUCV; ) (p, @), then

pP—Qa
[p(1 + k)6, (A 1,1, p) — (Pk + @)6,(B, 7, ¢, D))

Apin < (p,n €N).

with equality for the function f(z) given by

p—a
[p(l + k)é\n(li wn, p) - (pk + a)sn(ﬁ’ Y, f’ p)

f(z) =2zP — ]zp+”, (p,n € N).

(2.4.1.9)
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Also we can obtain the following corollary from Theorem 2.4.1.4
according to (Amsheri and Zharkova, 2012a).

Corollary 2.4.1.6. Let the function f(z) defined by (1.2.4) be in the class

k — TUCV S (@), then

By.$
< 1—«a (n>2)
a, < , (n=2).
" [(1 + k)dn(/l; ,Ll, 77) - (k + a)6n(ﬁ' V; E)]
with equality for the function f(z) given by
11—«
f(z)=z—- ", (n=2). (24.1.10)

[+ 106, — (e + @5, By, DI "7

2.4.2 Distortion properties

Next let us obtain the modulus for functions f(z) belonging to the class

k — TUCV[?’;f}77 (p, ) according to (Amsheri and Zharkova, 2012j).

Theorem 2.4.2.1. Let the function f(z) defined by (1.2.5) be in the class

k—TUCV, 4 (p,a) such that k>0, 0Sa<p, 120, 0<u<1+p, 20,

0<y<l+p y<u n21(1—2%) and 525(1—2%). Then

2P — Agh T (0, @)|zIP* < |f (2)] < 127 + Agh T (p, @)|zIP*, (2.4.2.1)

where

Aun — [
A D = AT 08B p) — Pk + 06 GrEm]

(2.4.2.2)

The estimates for |f(z)| are sharp.
Proof. We observe that the functions 6,,(1, u,n,p) and §,(B,v,¢,p) defined
by (2.4.1.2) and (2.4.1.3), respectively, satisfy the inequalities &,,(1, u,n,p) <

5n+1(/1; wn, p) and 6n (ﬁ' Y, fi p) < 6n+1(ﬁ' Y, fi p)' vneN prOVided that
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2+p

n = A(l —2%) and ¢ = p (1 ——). So 6,(4,u,n,p) and 6,(B,y,¢& p) are
non-decreasing functions for alln € N

1+p)(A+n—u+p)
AI-u+p(A+n—-21+p)

=64 un,p) < 8,4, un,p), (2.4.2.3)

and

1+pA+E&—y+p)
A-y+p)A+E-B+Dp)

= 61(ﬁ' Y, E! p) < 671([;! Y, S;' p) (2424)

since f(2) € k — TUCV; ! (p, ), then

[P(1+ 108, (A 11, 0) = ok + D8, B 1, E,0)] ) Gpen <

n=1

D b+ 08, 1,p) = Pk + 8B, 7, &P apan Sp - (2425)

n=

=

So that (2.4.2.5) reduces to

Z 4 P2 A7 (p, ).
) S HA+05G AP -Gk + 05 Gr.opl  breP
(2.4.2.6)
From (1.2.5), we obtain
@I <12 +121PH ) e, 2.4.2.7)
n=1
and
F@N 2 127 = 12771 (24.2.8)
n=1

on using (2.4.2.6) to (2.4.2.7) and (2.4.2.8), we arrive at the desired result
(2.4.2.1).
Finally, we can see that the estimates for |f(z)| are sharp by taking the

function
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_ . p—a +1
[@ =2 - LA e Ganp — ekt osGram’ - &9

This completes the proof of Theorem 2.4.2.1.

Now by letting p = 1 in Theorem 2.4.2.1, we can obtain the modulus for
functions f(z) belonging to the class k — TUCV[f]f‘g’ (a) according to (Amsheri

and Zharkova, 2012a).

Theorem 2.4.2.2. Let the function f(z) defined by (1.2.4) be in the class

k—TUCV,%$(a) such that k200<a<1,A20,0<u<2 20, 0<

y<2 v<u nzl("f) and fz;}(VT*).Then

f(2)] < |zl + Aghl (a)|z]?, (2.4.2.10)
and
f@) = 12| - Azl (@)]z]?. (2.4.2.11)
where
R _ l-a
Avs D = (A s,aun - k+ro5Gn ol D

The estimates for |f(z)| are sharp.

Proof. We observe that the functions 6,,(4, u,n) and 6,(8,y,¢) defined by
(2.4.1.5) and (2.4.1.6), respectively, satisfy the inequalities 6,(1,u,n) <
Spr1(Lw,m) and  6,(B,v,¢) < 6,41(B,v,€), Yn =2 provided that n >

A(#T_g) and 525(]/7_3)- So 8,(4,u1,m) and 8,(8,y,§) are non-decreasing

functions for all n > 2

22+n—pw)
0< - tn-7 6,4, u,m) < 6,4, u,m), (2.4.2.13)

and
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2(2+s‘ V) B

Since f(z) € k — TUCV’l”"(a) then

[+ K08, () = G+ (8,7, D] ) ay <
n=2

DI +08, A wm) = (k + 8,8y Dlan < 1—a.
n=2

So that (2.4.2.15) reduces to

- 1—«a o Aun
2, = TR G T G 1~ @

n=2

From (1.2.4), we obtain

0

@I <12l + 121 ) an,

n=2

and

0

If ()| = |z| - |z|zz a, .

n=2

(2.4.2.14)

(2.4.2.15)

(2.4.2.16)

(2.4.2.17)

(2.4.2.18)

On using (2.4.2.16) to (2.4.2.17) and (2.4.2.18), we arrive at the desired

results (2.4.2.10) and (2.4.2.11). Finally, we can prove that the estimate for

|f (z)| are sharp by taking the function

l1-«a 2
f(Z) =Z— [(1 + k)dz(luu’n) — (k + 0)52(,3,]/, f)]z .

This completes the proof of Theorem 2.4.2.2.

2.4.3 Extreme points

(2.4.2.19)

Let us obtain the extreme points for the class k—TUCV“‘”(p,a)

following (Amsheri and Zharkova, 2012)).
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Theorem 2.4.3.1. Let f,(z) =2zP (p € N)and

p—a

fp+n(Z) =z" — [p(l + k)é‘n(l’u’ n, p) — (pk + a)5n(,3,)/: E'p)] z

. (p,n €N).
(2.4.3.1)

Then f(z) € k — TUCVBA)f‘E" (p,a) if and only if it can be expressed in the form

F@ = bpin fpin(. (243.2)
n=0

where 6,,, 20 and X7 (0,:n = 1.

Proof. Let f(z) be expressible in the form

F@ =) i fyan(®.
n=0

Then

p—a

f(z) =2 nz:: p(1+ k)6,(4, u,m,p) — (Pk + @)8,(B,v,¢,p)] Op+n 287"

Now

i <[p(1 + k)8, (A 11,0, 0) — (Pk + @)8,(B,7,&,p)]
p—a

n=1

{ (»— a)9p+n })
P+ 105, Ch 17, ) — Pk + 0,1, £ )] ™™

n=1

Therefore, f(z) € k — TUCV”"(p, a).

Conversely, suppose that f(z) € k — TUCV’”‘"(p, a). Thus

p—a
ap+n—[ (1+ k)&, ()L‘un p)—(pk+a)5 B,v, ¢, p)]

(p,n € N).

Setting
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[p(]- + k)é‘n(ﬂv wn, p) - (pk + a)gn(ﬁ' 14 S;' p)]

Hp +n = Ap+n

p—a

and

0y =1- pn
n=1

we see that f(z) can be expressed in the form (2.4.3.2).The proof is
complete.

Now by letting p =1 in Theorem 2.4.3.1, we can obtain the extreme

points for the class k—TUCVl;';ﬁ";(”(a), following (Amsheri and Zharkova,

2012a).
Theorem 2.4.3.2. Let f;(z) =z and

l1-a
RO = A Rs G - G sG] D (245

Then f(z) € k — TUCVé;f}" (a) if and only if it can be expressed in the form

f(2) = Z 0, £.(2). (2.43.4)
n=1

where 6, > 0and },_,6, = 1.

Proof. Let f(z) be expressible in the form

F) =) 0nfol2).

Then

0

B l-a 0. z"
f(Z) =z Z [(1 + k)é‘n(l"u’ n) - (k + a)5n(ﬂ, Y, f)] nt

n=2

Now

1—«a

i ([(1 + k)5, (A u,n) — (k+ a)5,(B,y,é)]

n=2
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{ 1-a)6, p })
[(1+ k)8, (A 1,m) — (k + a)8,(8,7, )] "

NgE

9n=1—91S1

n=2

Therefore, f(z) € k — TUCV,# (a).

Conversely, suppose that f(z) € k — TUCV/i;f?(a). Thus

1—«a

S TAT R0 hmm -kt Do,y 0]”  ED
Setting
_[A+08,@ ) = (4 5.8y, O1
" -« n
and

we see that f(z) can be expressed in the form (2.4.3.4). The proof is
complete.

Now from Theorem 2.4.3.1 we have the following corollary for functions

in the class k — TUCV[Q;}” (p, @), following (Amsheri and Zharkova, 2012)).

Corollary 2.4.3.3. The extreme points of the class k — TUCVﬁ’ll;fg’ (p, @) are

fo(2) = 2P,
and

p—«
[p(l + k)Sn(/lf un, p) - (pk + a)6n(ﬁﬂ Y, E' p)]

fp+n(z) =zP — Zp+n) (p'n € N)

Also from Theorem 2.4.3.2 we have the following corollary for functions

in the class k — TUCVé;f}" (a), following (Amsheri and Zharkova, 2012a).
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Corollary 2.4.3.4. The extreme points of the class k — TUCVﬁA‘;f;f(a) are

f1(Z) =2z,
and

1—-«
W@ = 2 e G — G e, Br L 2

2.4.4 Closure properties
Let the function f(z) € T(p) defined by (1.2.5) and the function g(z) be in
the class T'(p) defined by (2.1.6), the class T(p) is said to be convex if
pf(z)+ (1 —plg(z) eT(p)

where 0 <p < 1.

Now let us prove that the class k — TUCV[f;ff'g’ (p, @) is convex according

to (Amsheri an Zharkova, 2012j).

Theorem 2.4.4.1. The class k — TUCV[;;}" (p, @) is convex.

Proof. Let f(z) defined by (1.2.5) and g(z) defined by (2.1.6) be in the class

k — TUCV; ' (p, ), then

pf(2) + (1 —p)g(z) = zF — Z[papm + (1= p) bpyn]zP*™

n=1

Applying Theorem 2.4.1.2 for the functions f(z) and g(z), we get

Z[p(l +k)8,(A, w1, p) — (Pk + ) 6,(B,7, &, )1[papsn + (1 — p) byyn] <

n=1
pp—a)+(1—-p)p—a)=(p—a).
This completes the proof of the Theorem 2.4.4.1.

Next by letting p =1 in Theorem 2.4.4.1 we can prove that the class

k — TUCVI;T%" (a) is convex according to (Amsheri and (Zharkova, 2012a).
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Theorem 2.4.4.2. The class k — TUCV[Q;}" (a) is convex.

Proof. Let f(z) defined by (1.2.4) and g(z) defined by
9(z)=z— ) byz", (2.4.4.1)

be in the class k — TUCV[;;}" (a), then

0

P+ (1= p)g(®) = 2= ) [pan+ (1= p) bylz"

n=2

Applying Theorem 2.4.1.4 for the functions f(z) and g(z), we get

D [+ 108, 1) = U+ @8u(B,7, [pan + (1= p) by] <

n=2
pl—-a)+A1-pA—-a)=1-a.
This completes the proof of the Theorem 2.4.4.2.

Let us now prove further theorem for functions f;(z) in the class k —
TUCVﬁf};}"(p,ai) following (Amsheri and Zharkova, 2012j), where f;(z) €

T(p)(i = 1,2,...,m) defined by

fi(z) = zP — Z A psnzP ™, (ai,pm =>0;pe€ N). (2.4.4.2)
n=1

Theorem 2.4.4.3. Let the function f;(z) defined by (2.4.4.2) be in the class

k — TUCV[iﬁé"(p, a;) for each (i = 1,2,...,m). Then the function h(z) defined

by

[ee] m
1
h(z) = zP — Ez (Z ai_p+n> zPtm (2.4.4.3)
n=1

i=1
is in the class k — TUCVéj}" (p, @) where a@ = min; i< {a;} With 0 < a; < p.

Proof. Since
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fi@ €k —TUCV;* (p, ), (i=1,2,..,m).

By applying Theorem 2.4.1.2, we observe that

Z[p(l + k)6, (4, u,m,p) — (Pk + a)0, (B, 7., P)] Aipin <P — ;.

n

Juy

Hence

(o] 1 m
D U+ K8 i1, ) = ok + @) (8,7, ,9)] (az al-,m)

n=1 i=1

=)

<Z [p(l + k)Sn(/lﬂ wn, p) - (pk + ai)é‘n(ﬁ' Y, E' p)]ai,p+n)
i=1

n=1
m
<1z <
Sy 1(p a;) <p-—a.
1=

which in view of Theorem 2.4.1.2, again implies that
Au,
h(z) € k — TUCV; " (p, ).

The proof is complete.

Next by letting p = 1 in Theorem 2.4.4.3 we can prove further theorem
for functions f;(z) in the class k—TUCV[f,;}"(ai) following (Amsheri and

Zharkova, 2012a), where f;(z) € T, (i = 1,2, ...,m) defined by

fi(z) =z — Z a;nz", (ai_n > 0). (2.4.4.4)

Theorem 2.4.4.4. Let the function f;(z) defined by (2.4.4.4) be in the class
k — TUCV, 7 (@) for each (i = 1,2,...,m). Then the function h(z) defined by
1 [ee] m
h(z) =z — —Z (Z ai_n> z". (2.4.4.5)
mn=2 i=1

is in the class k — TUCVIQ';}" (a) where a = min <j<m{a;} with 0 < a; < 1.
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Proof. Since f;(z) € k — TUCVé;f,‘g’(ai) (i=12,..,m), by applying Theorem
2.4.1.4, we observe that

D I+ K08, (i) = Kk +@)8u(B,7, ] i < 1=t

n=2

Hence

o 1 m
z [(1 + k)an(/L u, 77) - (k + ai)Sn(ﬁ' Y, E)] <az ai,n) =

IRQTAN
;Z (Z[(l + 108, tm) = (k + @S, (B, f)]ai,n) <

n=2
m
LN (1—ay <1
m-l( a) <1-a.
1=

which in view of Theorem 2.4.1.4, again implies that

h(z) € k — TUCV[Q;}" ().

The proof is complete.

2.4.5 Radii of starlikeness, convexity, and close-to-convexity

Let us obtain the radii of starlikeness for functions in the class k —

TUCV[i;f;("(p, a) according to (Amsheri and Zharkova, 2012j).

Theorem 2.4.5.1. Let the function f(z) defined by (1.2.5) be in the class

k — TUCV[iﬁé"(p, a). Then f(z) is p-valent starlike of order ¢ (0 <o <p) in

the disk |z| < ry, where

(@ —o)[p(1 + k)6, (4, w1, p) — (Pk + @), (8,7, ¢, 10)]}ﬁ

= i“f“@“{ @-n+tp-0)
(2.4.5.1)

The result is sharp with the extremal function given by (2.4.1.9).
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Proof. It suffices to show that

zf'(2)
2 - p‘ <p-o, (lz| < 7ry). (2.4.5.2)

Indeed we have

Zf’(Z) _ _Z%o=1nap+nzn
@) ‘le

[ee]
- Zn:l ap+n Zn

> .na z|™
< Z"‘loo pin 12| - (2.4.5.3)
1- Zn=1 ap+n |Z|

Hence (2.4.5.3) is true if

o)

D napnlz S G -0) = )@= Dy 2™

n=1 n=1
That is, if
Ymtp-0) gl <p-o
n=1
or
4 n+p—o
Z ( P )ap+n Iz < 1, (2.4.5.4)
n=1

By Theorem 2.4.1.2, (2.4.5.3) is true if

n+p—o

2] < [p(1+k)8,(4, 1,m,p) — (Pk + )6,(B,v,§,p)]
p—0

o . (2.4.5.5)

Solving (2.4.5.5) for |z|, we get

(0 — D) + k)8, (A 1,7, p) — (Pk + )5, (8,7, &, p)])"
2| < = - ,
-a)(n+p—o)

or

_ie (2= pA + )6, pn.p) — Pk + @), (B,v.¢,p)] n
T e (- +p-0) '

(2.4.5.6)
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The proof is complete.

Now by letting p =1 in Theorem 2.4.5.1 we can obtain the radii of

starlikeness for functions in the class k — TUCVE‘;}" (a) according to (Amsheri

and Zharkova, 2012a).

Theorem 2.4.5.2. Let the function f(z) defined by (1.2.4) be in the class

k—TUCVéﬁ%"(a). Then f(z) is starlike of order § (0 <6 < 1) in the disk

|z| < r, where

1
—_ - /n_

r, = infys, { l1-a)(n+1-9)

The result is sharp with the extremal function given by (2.4.1.10).

Proof. It suffices to prove

2@ oy s 5
116 -1{<1-9, (lz| < 1y). (2.4.5.8)
Indeed we have
Zf’(Z) 4] = — Ym=gnay z" ! Ym=z N ay |z|"! (2.45.9)
f(2) 1-Yn—p anz™ |~ 1-37_, a,|z|"? S
Hence (2.4.5.9) is true if
Z na, |zt < (1-6) - Z (1 = &)a, |z,
n=2 n=2
That is, if
Z(n+ 1-6)a,lz"t<1-86,
n=2
or
- n+1-4§6
z (ﬁ) a,lz"t < 1. (2.4.5.10)

n=2

By Theorem 2.4.1.4, (2.4.5.9) is true if
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n+1—6I n1 < [(A+ k)6, (A, ) — (k + a)8n(B,7, )]
1-5 (1-a) '

(2.4.5.11)

Solving (2.4.5.11) for |z|, we get

Iz| < A-OH[A+k)d6,(A4Lun) —(k+a)d,(B,v, )] 1/(n-1)
0= 1-a)(n+1-96) )

or

(1-8[A+k)s6, (A un) — (k+ a)s,(B,v, E)]}l/(n—l)

Ty = infnzz{ d-—m+1-0) . (24.5.12)

The proof is complete.

In the similar manner, we can obtain the radii of convexity for the class
k — TUCV’“‘”(p, a) following (Amsheri and Zharkova, 2012j).
Theorem 2.4.5.3. Let the function f(z) defined by (1.2.5) be in the class
k — TUCV’“‘”(p, a). Then f(z) is p-valent convex of order ¢ (0 < o < p) in

the disk |z| < r3, where

p(p —a)p(1 +k)6,(A,u,n,p) — (Pk + a)5,(B,7.¢, p)]}

3 =infn€N{ (p+n)(p—a)(n+p_0')

The result is sharp with the extremal function given by (2.4.1.9).

By letting p = 1 in Theorem 2.4.5.3 we can obtain the radii of convexity
for the class k — TUCV’“‘"(a) following (Amsheri and Zharkova, 2012a).
Theorem 2.4.5.4. Let the function f(z) defined by (1.2.4) be in the class
k — TUCV’““’(a) Then f(z) is convex of order § (0 <8 < 1) in the disk

|z| < r, where

(1 - 6) [(1 + k)é‘n(/l, ‘Ll,T]) - (k + a)6n(ﬁ' ¥, f)]}l/(n—l)

Ty :infnZZ{ 1+n(A-a)(n+1-15)

The result is sharp with the extremal function given by (2.4.1.10).
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Also, we can obtain the radii of close-to-convexity for the class k —
TUCV[;;f}"(p, a) following (Amsheri and Zharkova, 2012)).
Theorem 2.4.5.5. Let the function f(z) defined by (1.2.5) be in the class
k — TUCVL:%](p, a). Then f(z) is p-valent close-to-convex of order ¢ (0 <

o <p) inthedisk |z| < rs, where

(p - O-)[p(]- + k)é‘n(/l) wn, p) - (pk + a)an(ﬁ' Y, ’S' p)]}ﬁ

s = Nfhen { @+ —a)

The result is sharp with the extremal function given by (2.4.1.9).
By letting p = 1 in Theorem 2.4.5.5 we can obtain the radii of close-to-
convexity for the class k — TUCV[;;ffé”(a) following (Amsheri and Zharkova,

2012a).

Theorem 2.4.5.6. Let the function f(z) defined by (1.2.4) be in the class
k — TUCV[Q;}” (a). Then f(z) is close-to-convex of order § (0 < 6 < 1) in the

disk |z| < rs where

(1 - 5) [(1 + k)é\n(l, U, r]) — (k + a)dn(ﬁ, v, f)]}l/(n—l)

Te = infps; { 1+n)(1-a)

The result is sharp with the extremal function given by (2.4.1.10).
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Chapter 3

Properties of certain classes and inequalities

involving p-valent functions

This chapter is composed of two types of problems. The first type is
concerned with the sufficient conditions for starlikeness and convexity of p-
valent functions associated with fractional derivative operator, while the
second type is concerned with the coefficient bounds for some classes of p-
valent functions by making use of certain fractional derivative operator. This
chapter is organized as follows: Section 3.1 is introductory in nature and
contains some lemmas those are require to prove our results. In section 3.2,
we present some sufficient conditions for starlikeness and convexity by using
the results of (Owa, 1985a). Further results involving the Hadamard product
(or convolution) are obtained. Sufficient conditions for starlikeness and
convexity by using Jack’s Lemma and Nunokakawa’'s Lemma are also
studied. In section 3.3 we obtain the coefficient bound for the functional
|ap+2 — 6aj.,| and bounds for the coefficient a5 of the function belonging to
some classes of p-valent functions in the open unit disk involving certain
fractional derivative operator. We obtain the coefficient bounds for the

function f(z) belonging to the classes S, ,,(®), Sypauy(P) of starlike

functions. In addition, we study the similar problem to the classes RS}’;‘,’Z(@,

/1#:7] /lrl'l'rn /1’#’77 1 1 H
Ry p (), M, s (¢) and M,y s (¢) of Bazilevi€ functions and to the classes
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sz(fg (¢) and N;,ﬁ’:,ﬁ (¢) of non-Bazilevi¢ functions. Relevant connections of

some results obtained in this chapter with those in earlier works are

considered.

The results of section 3.2 are published in Far East J. Math. Sci. (FIMS),
(Amsheri and V. Zharkova, 2010) and accepted by Global Journal of pure
and applied mathematics (GJPAM), (Amsheri and V. Zharkova, 2013b). The
results of section 3.3 are published in International journal of Mathematical
Analysis (Amsheri and V. Zharkova, 2012b), Int. J. Mathematics and
statistics (IJIMS), (Amsheri and V. Zharkova, 2013a), Far East J. Math. Sci.
(FIMS) (Amsheri and V. Zharkova, 2012c) and Pioneer Journal of
Mathematics and Mathematical Sciences, (Amsheri and V. Zharkova,

2012d).

3.1 Introduction and Preliminaries

We refer to Chapter 1 for related definitions and notations used in this
chapter. First, to obtain the coefficient conditions for starlikeness and
convexity in subsections 3.2.1 and 3.2.2 by using the results of (Owa, 1985a)
and the Hadamard product, we consider the fractional derivative operator
PO’}'Z”'"f(z) defined by (1.6.8), which was studied by (Raina and Nahar, 2000)
in order to obtain many of sufficient conditions for starlikenesss and
convexity, that are extensions of the results by (Owa and Shen, 1998) when
u = A. Moreover, to introduce our main results in the subsection 3.2.3, we
consider Jack’'s Lemma (Jack, 1971) or (Miller and Mocanue, 2000) and

Nunokakawa’s Lemma (Nunokakawa, 1992) which have been applied in
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obtaining various sufficient conditions of starlikeness and convexity by many
authors, including (Imark and Cetin, 1999), (Imark and Piejko, 2005) and
(Imark, et al., 2002).

In addition, to investigate our main results in section 2.3 concerning the

coefficient bounds for some classes of p-valent functions in the open unit
disk defined by the fractional derivative M&‘Z“‘"f (z) given as in (2.2.1), we

consider the class P which defined in Chapter 1, section 1.4, for all analytic

functions with positive real part in the open unit disk ¢/ defined by

p(z) =1+ Z cpz"
n=1

with p(0) =1 and Rep(z) >0 (|z] < 1). It is well known (C. Pommerenke,
1975) that |c,| < 2 (n = 1,2,...). (Livingston, 1969) proved that |cZ — c,| < 2
and (Ma and Minda, 1993) obtained that |c2 —%cf| <2 —§|C1|2- (Ma and
Minda, 1994) introduced the classes S*(¢) and C(¢) of the analytic function
¢ with positive real part in the unit disk ¢/, such that ¢(0) =1, ¢'(0) > 0,
where ¢ maps U/ onto a region starlike with respect to 1 and symmetric with
respect to the real axis. They also determined bounds for the associated

Fekete-Szeg6 functional. (Ali et al., 2007) defined and studied the class

Sp,p (@) of functions f(z) € A(p) for which

1+

AfElon

55705 1)<¢(z), (z€U;b € C\{0)).

and the class Cj,,,(¢) of functions for which

1 1

1-g (142

f'2)

b p ><¢(z), (zeU;beC\{0}).
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Also, (Ali et al., 2007) defined and studied the class R, ,(¢) to be the class

of all functions f(z) € A(p) for which

1+b<£Z() 1><qb(z), (zeU;beC\{0}).

Note that, S;,(¢) = S*(¢) and C;,(¢) = C(¢). The familiar class S*(a) of
starlike functions of order a and the class C(a) of convex functions of order
a, (0 < a <1) are the special case of S7,(¢) and C, ;(¢), respectively, when

1+(1-2a)z
1—z '

¢(2) =

To present our main results in the subsection 3.3.2 concerning the

coefficient bounds for some classes of Bazilevi¢ functions, we consider the

class of BazileviC functions H,(4,B,a, ) which was introduced by (Owa,
2000) for all functions f(z) € A(p) satisfying

f(z) zf (2) (f(2)\* 1+Az
(1_ﬁ)< > +ﬁpf(z)(zp> <1+Bz'

where zel, -1<B<A<1 0<pB<1 a=0. Following the classes
H,(A,B,a, ) and Ry, (¢) which were studied, respectively, by (Owa, 2000)
and (Ali et al., 2007), (Ramachandran et al., 2007) obtained the coefficient
bounds for the class R, , , s (¢), defined by

FO\ 2@ (FEN"
{(1—ﬁ)< ) 6oz () —1}<¢<z).

where 0<f <1, a >0.

Moreover, (Guo and Liu, 2007) introduced and studied the class of

>0

Bazilevi€ functions M(«, §, p) for all functions f(z) € S satisfying

e {Zf @ (r)",

'@ @ (@
@ ta < 1)

th l” @ 1@ T\ T
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where a > 0; B = 0;0 < p < 1. Following the class M(«, 3, p), (Rosy et al.,

2009) obtained coefficient bounds for the class M, z(¢), defined by

{zf (2) f(z) Bl zf (z) _zf (z)+ <Zf() )
f(2) f@ @ f(2)

<o

where a > 0; = 0.

On the other hand, to present our main results in the subsection 3.3.3
concerning the coefficient bounds for some classes of non-Bazilevi¢
functions, we consider the class of non-Bazilevi¢ functions which was

introduced by (Obradovi¢, 1998) for all functions f(z) € S such that

Re{f @) (f( ))a}>o.

where 0 < @ <1 and z € U . (Tuneski and Darus, 2002) obtained the Fekete-
Szeg06 inequality for this non-Bazilevi¢ class of functions. Using this non-
Bazilevi¢ class, (Wang et al., 2005) studied many subordination results for
the class N(a, 8, 4, B) of functions f(z) € S such that

(1+ﬁ)<f( )) —bf (2 )(f(z)>1+a = 1:912

for —-1<B<A<1, BeC(C 0<ac<1. Following this class, (Shanmugam et

al., 2006a) obtained the Fekete-Szegd inequality for the class Ny g(¢),

defined by

1+ () ~b () <o

f(2)

where BeC, 0<a <.

Now, in order to prove our results in the subsection 3.2.1 for starlikeness

and convexity, we need the following coefficient conditions that are sufficient
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for the functions to be in the classes S*(p, @) and K(p, a) according to (Owa,
1985a).

Lemma 3.1.1 Let the function f(z) € A(p). If f(2) satisfies

Z(p +n—a)|apn| < (@ - a).
n=1

Then f(2) isin the class S*(p, a).

Lemma 3.1.2 Let the function f(z) € A(p). If f(z) satisfies

Z(p +n)(p+n—a)|apin| <plp—a).

Then f(z) is in the class K(p, a).

Next, in order to prove our results in the subsection 3.2.2 for starlikeness
and convexity by using the Hadamard product, we need the following result
due to (Ruscheweyh and Sheil-Small, 1973 ).

Lemma 3.1.3. Let ¢(z) and g(z) be analytic in |z| <1 and satisfy ¢(0) =
g(0) =0, ¢'(0) # 0,g'(0) # 0. Suppose also that

1+ abz
1-— bz

o)+ 9@ }#0,  O<lz<D.

for a and b on the unit circle. Then, for a function F(z) analytic in |z] <1
such that

Re {F(z)} >0,
satisfies the inequality:

Re{ (¢ *Fg)(2)

<¢*m@>}>“ S

Next to prove our results in the subsection 3.2.3 for starlikeness and
convexity by using Jack’s Lemma and Nunokawa’'s Lemma, we need to the

following results of Jack and Nunokawa (Lemma 3.1.4 and Lemma 3.1.5)
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which are popularly known as Jack’s Lemma (Jack, 1971) or (Miller and
Mocaun, 2000) and Nunokawa’s Lemma (Nunokawa, 1992), respectively.
Lemma 3.1.4. Let w(z) be non-constant and analytic function in U with
w(0) = 0. If |[w(z)| attains its maximum value on the circle |z| =7, (0 <r <
1) at the point z,, then z,w'(z,) = cw(z,), where ¢ > 1.
Lemma 3.1.5. Let p(z) be an analytic function in U with p(0) = 1. If there
exists a point z, € U such that

Refp(2)} >0 (Iz] <lzl), Re{p(z0)} =0, p(z,) # 0.

then

=1 a+—).
p(2o) 2

a

pla) =ia, 2O 'C( 1)

wherea #0and c > 1.

Now, to prove our main results in section 3.3, we mention to the following
lemma 3.1.6 for functions p(z) in the class P according to (Ma and Minda,
1994) to obtain the sharp bound on coefficient functional |c, — vcZ|.

Lemma 3.1.6. Let p(z) € P. Then
—4v+2 if v<0
lc, —vc?]| <42 if 0<sv<1,
4v —2 if v>1

when v < 0 or v > 1, the equality holds if and only if

1+z
1-7

p(z) =
or one of its rotations. If 0 < v < 1, then equality holds if and only if

14+ 272
1—2z?%

p(z) =

or one of its rotations. Inequality becomes equality when v = 0 if and only if
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2 2

1 1 142z 1 1 1—2z
( ) O<i<)

p(z):(§+il>1—z+ 142z’
or one of its rotations, while for v = 1, the equality holds if and only if p(z) is
the reciprocal of one of the functions such that equality in the case of v = 0.
Although the above upper bound is sharp, it can be improved as follows

when 0 <v <1:
lc, —veZ| + vl |? <2, (0<v<—),
and

2 2 1
c; —vei|+ (1 —v)|ey | <2, ESv<1.

Also, to prove our main results in section 3.3, we need to the following
lemmas regarding the coefficients of analytic functions of the form w(z) =
wiZ + wyz? + wyz3 + -+ in the class Q in the open unit disk U/ satisfying
lw(z)| < 1. Lemma 3.1.7 is formulated according to (Ali et al., 2007) which is
a reformulation of the corresponding result Lemma 3.1.6 for functions with
positive real part.

Lemma3.1.7. If w € Q, then

—-t, t< -1
lw, —twi| <41, -1<t<1,
t, t>1

when t < —1 or t > 1, the equality holds if and only if w(z) =z or one of its
rotations. If —1 < t < 1, then equality holds if and only if w(z) = z2 or one of
its rotations. Equality holds for t = —1 if and only if

A+z
1+ 1Az’

w(z) =z (0<21<1),

or one of its rotations, while for t = 1, the equality holds if and only if
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A+z

— <1<1
Zl+AZ' O=a=<1),

w(z) = —

or one of its rotations. Although the above upper bound is sharp, it can be
improved as follows when —1 <t < 1:
lw, —tw?| + (t+ Dwy? <1, (-1<t<0),
and
lwy, —tw?|+ (1 —)|wyl? <1, (0<t<1).

Also, for functions in the class (2, we need to the following result to prove
our main results in section 3.3, which is according to [(Keogh and Merkes,
1969), Inequality 7, p.10].

Lemma 3.1.8. If w € Q, then for any complex number ¢,
lw, — tw?| < max(1, [t])
The result is sharp for the functions w(z) = z or w(z) = z2.

We also need to the following result which is due to (Prokhorov and
Szynal, 1981), see also (Ali et al., 2007)

Lemma 3.1.9. If w € Q, then for any real numbers g, and g,, the following
sharp estimate holds

lws + quwywy + quwi| < H(qy, q2),

where
H(q1,92)

(1 for (q1,q2) € D1 U Dy,
lq,| for (q1,q2) €Vj—3 Dy,

/

2 lg:| +1 z
=(| |+1)< for (q4,q,) € Dg U D,
3TV B0al+ 1+ a) el = T

1
2 2 /2
g ( 91 — 4 qi — 4
- fi , € DoUD +2,1},
3 <q% — 4q2> <3(q2 — 1)> or (4q1,92) 10 11 \ {£2,1}

lq.] — 1
3(lg1l = 1—q3)

2 /2
L§(|511| - 1)( ) for (q1,92) € Dis.
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The sets Dy, k = 1,2,...,12, are defined as follows:
1
D, = {(Ch» q2): g1l < 5 lg2| < 1 };
1 4 5
~{@varslal <2 (al+ D* - (ol + D < <1}
1
D; = {(ql'QZ): lg:| < E»qz <-1 }»

1
D, = {((h'%): lq:| = 2»‘12 <-z (|CI1| + 1)}
Ds ={(q1,q2):1q:11 < 2,q, 21},
1 2
Do ={(@a)2 < lal<4a =@ +8),
Dy ={(q1,42): a1l 2 4,02 2 2 (lax| - D)},

1 2 4
Dg = {(QLCIZ):E < gl 2:‘5 (g1l +1) <q, < ﬁ(mﬂ +1)% — (lg1| + 1) },

2 2]q, (g, + 1)
D = ) . 221__ +1 S S ’
9 {(q1 q2): g4l 3 (al+D<q, q? +2|q;| + 4

2|q11(lqq| + 1) 1
D, = g,):2 < <4, <qg, < —(q*+8)¢
10 {(ql q2) lq, | + 20q,] + 4 A2 < 15 (qi +8)

2|lq,|(Iqq] + 1) 2|lq;1(qq1] = 1)
Dy; =3(q1,q2): 1| = ! : < < ! :

<q, < )
q%+2|q1|+4 27 q2 = 2lqy] + 4

{ 2|q1|(lqs| — 1)

2
, > 4, Sq <3 -Dr.
(91, 92):lq1| = Z—2q+4 =<3 (lga )}

3.2 Sufficient conditions for starlikeness and convexity of p-valent

functions

In this section we mainly concentrate in obtaining the sufficient
conditions for starlikeness and convexity of p-valent functions defined by

fractional derivative operator.
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3.2.1 Sufficient conditions involving results of Owa
Let us first obtain the sufficient conditions for starlikeness of M”"f(z)

as given in (2.2.1) by using Lemmas 3.1.1 following the results by (Amsheri
and Zharkova, 2010).

Theorem 3.2.1.1. Let A4, u, n € R such that
p+2
A0 u<p+1;, max(Lu)—p—1<n S/l(l—T>; peN. (3.2.1.1)

Also, let the function f(z) € A(p) satisfies

z(p+n p+n|S(1+p—u)(1+p+n—/1)_ (3.2.1.2)

1+p)A+p+n—w

for 0 < a <p. Then M"f(2) € S*(p, ).

Proof. We have from (2.2.3)

MU F(2) = 2P + Z 8n(A, 1,1, D) ApynzP™™,
=1

where 6,(1,u,n,p) is given by (2.2.5). We observe that the function
6, (4, u,n, p) satisfies the inequality

61’l+1(ll U, 77; p) S Sn(ﬂ‘l U, nl p)l ( Vn € N)

provided that n </1(1——) Thereby, showing that 6,(1,u,n,p) is non-

increasing. Thus under conditions stated in (3.2.1.1), we have

A+p)A+p+n—w

0<6,4Lunp <6:4unp) = . 3.2.1.3
Therefore, (3.2.1.2) and (3.2.1.3) yield
- p+n—a)
—571(/1,,[1, n, p)lap+n| <
~— (p-a)
. (p+n-—
81(A, 1,1, p) ﬁl Apin | < 1. (3.2.1.4)
n=1
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Hence, by Lemma 3.1.1, we conclude that
Mé’zﬂ’"f(z) € S*(p, ).
and the proof is complete.
Remark 1. The equality in (3.2.1.2) is attained for the function f(z) defined
by

(p—a)(l+p—u)(1+p+77—/1)zp+1
P+1-a)1+p)A+p+n—w '

f(z)=2P + (3.2.1.5)

In the similar manner, we can prove with the help of Lemma 3.1.2 the

sufficient conditions for convexity of Méf"’ f(2) according to (Amsheri and

Zharkova, 2010).
Theorem 3.2.1.2. Under the conditions stated in (3.2.1.1), let the function

f(2) € A(p) satisfies

(3.2.1.6)

icp+n><p+n—a)|a <At mtpin—d
L pp-a) LT A+ Q4ptn -

for0 < a <p. Then Méf'nf(z) € K(p, ).
Remark 2. The equality in (3.2.1.6) is attained for the function f(z) defined
by

19(10—06)(1+1D—u)(1+10+77—/1)21[,+1

f(Z)=Zp+(p+1)2(p+1—a)(1+p+n—ﬂ)

(3.2.1.7)

3.2.2 Sufficient conditions involving the Hadamard product
Let us obtain the sufficient conditions for starlikeness of M&'Z"'"f(z) as

given in (2.2.1) by using Lemmas 3.1.3 following the results by (Amsheri and

Zharkova, 2010).
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Theorem 3.2.2.1. Let the conditions stated in (3.2.1.1) hold true, and let the
function f(z) € A(p) be in the class S*(p, @), and satisfies:

1+ abz

»(2) * { f(z)} 0, (zeU — o). (3.2.2.1)

for a and b on the unit circle, where

A+p)n(l+n—pu+phn o

e = Zl =i+ D)l +7 =2+ D) (222)
then M&'Z“'"f(z) € S*(p,a).
Proof. Using (2.2.3) and (3.2.2.2), we have
Aun (1+p)n(1+77_.u+p)n +n
fe=a +Z Gt a0+ — A4, P
=@ * f)(2). (3.2.2.3)

By setting ¢(z) = y(2), g(z) = f(z) and F(z) = %(Z))— a, in Lemma 3.1.3,

we find with the help of (3.2.2.3) that

(p*Fg)(2)
Re{ @ 9@ }>0
W * 2f)(2)
zRe{m}—a>0
2 * )'(2)
= Re { W H@ } “>0
RO
= Re /1#11 —a>0
f(2)

= MyE"f(2) € $*(p, @).

and the proof is complete.
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Next let us obtain the sufficient conditions for convexity of M”"f(z) as
given in (2.2.1) by using Lemmas 3.1.3 following the results by (Amsheri and
Zharkova, 2010).

Theorem 3.2.2.2. Let the conditions stated in (3.2.1.1) hold true, and let the

function f(z) € A(p) be in the class K(p, «), and satisfies:

1+

»(2) * { zf (Z)};tO (z € U—{0}). (3.2.2.4)
for a and b on the unit circle, where ¥(z) is given by (3.2.2.2). Then

Ml "f(z) is also in the class K (p,a).

Proof. Using (2.2.3) and Theorem 3.2.2.1, we observe that

ﬂ@exwﬂw=”f”ev@ﬂ)

- g (L2 €500

Zf'
= (l/J *7> (z) €S*(p,a)

o1 N@

= Y+ f)(2) €eK(p,a)

§'(p, @)

= MIf(2) € K(p, @)

which completes the proof of Theorem 3.2.2.2.

Remark 3. The results in subsections 3.2.1 and 3.2.2 can be reduced to the
well known results, which were proven by (Raina and Nahar, 2000) when
p = 1, and to the results which were proven by (Owa and Shen, 1998) when

p=1andu= A
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3.2.3 Sufficient conditions involving Jack’s and Nunokawa’s Lemmas
Let us obtain the sufficient conditions for starlikeness of M”"f(z) as

given in (2.2.1) by using Jack’s lemma 3.1.4 and Nunokawa’s lemma 3.1.5
following the results by (Amsheri and Zharkova, 2013b).

Theorem 3.2.3.1. Let zelU; A=>20; u<p+1; n>max(4,u)—p—-1 and

f(2) € A(p).
1. If
Mél;rz,u+2,n+2f(z) Mg;l'uﬂ’nﬂf(z) —B+a)
Re{(p—u—l)MMMl,,ﬂf( )—(p—u) W) e}
(3.2.3.1)
then
M)l+1u+1n+1f( ) 1+ a
Re{ M"f(z) } > 0<a<1). (3.2.3.2)
2. If
A+2,u+2,n+2 /1+1 u+1n+1
z f(2) M, f(2)
Re{(p —u—1) Miﬂﬂﬂnﬂf( ) —-(p-w ) > -1
(3.2.3.3)
then
MA+1 U+1, 17+1f( )
Re{ /wnf(z) } >a, (0<a<). (3.2.3.4)
Proof. First, we prove (1). Since
A+1 MU+1n+1
Mo, f()—1+dlz+d222+---. (z el

Moy "f (2)

Define the function w(z) by
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M,1+1 A, "+1f(z) 1+ aw(z)
l#"f(z) 14 w(2)

(zeU; 0<a<). (3.2.3.5)

It is clear that w(z) is analytic in ¢ with w(0) = 0. Also, we can find from

(3.2.3.5) that

z (M/Hl ot n+1f(Z)) Z( Aﬂnf(z)) azw'(z) zw'(z)

— = — : 3.2.3.6
M“l HELITL e () Aﬂ"f(z) T 1+taw(z) 1+w(2) ( )
by using (2.2.6) to (3.2.3.6), we have
A+2,u+2, 17+2f( ) M/1+1H+1n+1f( )
(p_'u_l)M)H'lli"‘lTl"‘lf( ) (p_ﬂ) M”’f(z)
_ azw'(z) B zw'(2) B (32.3.7)
1+aw(z) 1+w(2) o
If there exists a point z, € U such that
max, lw(2)| = |w(z)| = 1.
then by Lemma 3.1.4, we have
Zow (2p) = c w(zy), (c =1).
Therefore, since w(z,) = e, we obtain
A+2 [.L+2 T]+2f(ZO) Mg+1,[l,+1,7]+1f(20)

—_ OZ —_ —
{(p K )M/1+1y+117+1f( 0) (p ,LL) Aunf( 0)

_ azow'(zp) zow'(2o)
= Re {1 + aw(zy) 1+ w(zp) B 1}

ace® ce'? -B+a)
e — — ——1 < —.
1+ae® 1+ei® 21+ )

which is a contradiction to the condition (3.2.3.1). Therefore, |w(z)| <1 for

all e 4 . Hence (3.2.3.5) yields

124



M7L+1 1, n+1f( )
Myr"f (2)
M/1+1 A+, n+1f( )
Myt f(2)

=|lw)| <1l O<a<l;zel).

which implies the inequality (3.2.3.2). This completes the proof of (1) in the
Theorem 3.2.3.1.

For the proof of (2), we define a new function p(z) by

M/'L+1 u+1, n+1f( )
Moy f ()

—a+(1-)p(z), O<a<1i;zel) (3.2.3.8)

where p(z) is analytic in & with p(0) = 1. Then we find from (3.2.3.8) that

2 (M/’L+1 A+, n+1f( )) Z( A'“'nf(z))’ ~ (1- a)Zp'(Z)

M/'L+1 M+, 77+1f( ) lunf(z) T a4+ (1- a)p(z) . (3.2.3.9)
by using (2.2.6) to (3.2.3.9), we have
A+2,u+2,n4+2 A+1Lu+1n+1
z f(2) My, f(@
p-u—1 M‘}H“Hnﬂf( . (p — ) — G +1
(1= @zp (2) (3.2.3.10)

Ta+(-ap@
If there exists a point z, € U such that
Re{p(2)} > 0 (Iz] <|zl); Re{p(z0)} =0; p(z)) #0; z€ U

Then by using Lemma 3.1.5, we have

, zop'(20) .C( 1)
Zy) =1la, =i—la+— a#0,c=>1
p( 0) p(ZO) 2 a ( )
Thus from (2.2.6) and (3.2.3.10), we have
A+2,u+2,mn+2 A+1,u+1,m+1
0,z f(zo) MOZ f(zo)
Re{(p_”_ Drmin g~ P TR Tt T T

r (A= D20'(2) _ p(@) _—cal-a)(+ad) _
U p)  a+A-apG)) 2[a®+a(-a)2a?]
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which contradicts the condition (3.2.3.3). Hence, Re{p(2)} > 0 for all ze U
and the equality (3.2.3.8) implies the condition (3.2.3.4). Therefore, the proof
of the Theorem 3.2.3.1 is complete.

Now, to obtain the sufficient conditions for convexity of M(’},’Z"’" f(z) as
given in (2.2.1) we put zf (z)/p instead of f(z) in the Theorem 3.2.3.1, then
we have the following theorem according to (Amsheri and Zharkova, 2013b).

Theorem 3.23.2. Let zelUU; A=>20; u<p+1; n>max(4,u)—p—1 and

f(2) € A(p).
1. If
M&:z,u+2,n+2 (Zfz;(z)> Mél;—l,/,t+1,n+1 <Zle)(2)>
Red{(p—p—1) —— (- ,
MA+1,;4+1,17+1 zf (z) Ml,u,n zf (z)
0,z p 0,z p
—G+a) 3.23.11
2(1+a)’ (32.3.11)
then
LI (Zf'(Z)>
0,z p 1+«
Re : > , 0<a<1). (3.2.3.12)
YRRy (Zf (Z)) 2
0,z p
2. If
/1+2 2,1 +2 (Zf (Z) M1+1'M+1ﬂ1+1 (Zf,(z)>
0,z p
Re{(p—pu—1 - ;
eq@—u—-1 /1+1u+1n+1 (Zf Z)) (p—uw o (Zf (Z)>
p oz " p
> —1, (3.2.3.13)
then
AL+ (Zf(Z))
0,z p
Re >a, 0<a<). (3.2.3.14)

M (Zf (2)

126



Now by setting A =pu =0 in Theorem 3.2.3.1, we obtain the sufficient
conditions for starlikeness of p-valent functions in i/ following (Amsheri and

Zharkova, 2013b).

Corollary 3.2.3.3. Letf(z) e A(p), zeU, 0 < a < 1.

1. If
Re {Zf "(2) _zf '(Z)} S -(3+a)
f@ f@ 2(1+a)’
then
zf (2) 1+a
Re{pf(z)}> L 0<a<1).
2. If
zf'(2) zf'(2)
Re{ @ 1@ } b
then
zf (2)
Re{pf(z)}>a, 0<a<).

Remark 4. By setting p = 1 in Corollary 3.2.3.3, we get the corresponding
result obtained by (Irmak and Piejko, 2005, Corollary 2.3).

Corollary 3.2.3.4. Letf(z2) €A, zeU, 0 <a < 1.

1. If
e {Zf"(Z) _ Zf'(Z)} LG+
f@ f@ 2(1+a)’
then
zf (z2)) 1+a
Re{f(z)}> > 0<a<).
2. If
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'@ @D
R%f@) ﬂ@}> L

then

2f @)
“{ﬂ@

} > a, 0<a<).

Next by setting 4 =u =0 in Theorem 3.2.3.2, we obtain the sufficient
conditions for convexity of p-valent functions in ¢ following (Amsheri and
Zharkova, 2013b).

Corollary 3.2.35. Letf(z) e A(p), zeU, 0 < a < 1.

1. |If
Re {zz f'@+22f(2) zf"(z)} o -1
zf'(2) + f'(2) f'(@) 21+ a)
then
1 zf ' (2) l1+a
Re{5<1+ 170 >}> > 0<a<1).
2. If
2 f"(2) + 22 (2) zf (2)
Re{ TD+@ @ } >0
then

1 zf '(2)
Re{;<1+ 70 )}>a, 0<a<1).

Remark 5. By setting p = 1 in Corollary 3.2.3.5, we get the corresponding
result obtained by (Irmak and Piejko, 2005, Corollary 2.4).
Corollary 3.2.3.6. Letf(z) e A, zelU, 0<a < 1.

1. 1If
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Re {sz"'(z) +2zf'(2) B Zf"(Z)} S 9= 1

zf'(2) + f (2) f'(2) 2(1+a)
then
zf'(2)) 1+a
Re{1+f'(z)}> > 0<a<).
2. If
22f"(2) + 2zf " (z) zf'(2)
Re{ D@ @ } >0
then

zf '(2)
Re{1+ f'(z)}>a' 0<ax<).

3.3 Coefficient bounds for some classes of generalized starlike and

related functions

In this section we introduce various new classes of complex order of p-

valent functions associated with the fractional derivative Mé_’z“’" f(z) as given
in (2.2.1), in order to obtain the coefficient bounds of |a,,, —6a%,,| and

bounds for the coefficient a,,; of the function belonging to those classes.

Relevant connections of the results obtained in this section with those in
earlier works are also considered. We set §,,(4, u,n,p) = 6, which defined as

in (2.2.5).
3.3.1 Coefficient bounds for classes of p-valent starlike functions

Motivated by the class S, (¢) which was studied by (Ali et al., 2007), we

now define a more general class of complex order S, ,,; ,,(¢) of p-valent
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starlike functions associated with fractional derivative operator following the
results by (Amsheri and Zharkova, 2012b).

Definition 3.3.1.1. Let ¢p(z) be an univalent starlike function with respect to 1
which maps the open unit disk ¢/ onto a region in the right half-plane and
symmetric with respect to the real axis, ¢(0) =1 and ¢'(0) > 0. A function

f(z) € A(p) isintheclass S, ; ,,(®) if

1 M +1u+1n+1f( )
1 +E lﬂnf( ) < ¢(2), (z eU,b e C\{0}).

Also, we let S5 () = Sy ,m(®) .

The above class Sy, ;,.,(¢) contains many well-known subclasses of
analytic functions. In particular, for A = u = 0, we have
Sb.0,005(@) = Spp(¢)
where S, ,(¢) is precisely the class which was studied by (Ali et al., 2007).
Furthermore, by specifying the parameters b,p,1 and u we obtain the most
of subclasses which were studied by other authors:
1. Forb=1,p=1and 1=pu=0, we get the class 57 1,,(®) =5"($)
which studied by (Ma and Minda, 1994).
2. Forp=1and i =pu =0, we have the class S; ;0,(¢) = S,(¢) which
studied by (Ravichandran et al., 2005).
3. For b=1and A=y =0, we have the class S;, ,(¢) = S;(¢) which

studied by (Ali et al., 2007).
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Thus, the generalization class S, ;,,(¢) defined in this subsection is
proven to account for most available classes discussed in the previous
papers and generalize the concept of starlike functions.

Now, to obtain the coefficient bounds of functions belonging to the class
Sipaun(P), we use lemmas 3.1.7- 3.1.9 following (Amsheri and Zharkova,
2012b).

Theorem 3.3.1.2. Let0<6 <1, A1>20; u<p+1; n >max(4,u) —p—1and
p € N. Further, let ¢(z) = 1+ B,z + B,z* + B3z3 + -+ where B, are real with
B; >0, B, >0, and

(B, — 31)512 + (- ﬂ)512312

= 3.1.1
7 265,00~ WB; G510
B, + B))67 + (p — W87 BY
o, = (B, 1)61 + (p 2.“) 1% (3.3.1.2)
268,(p — WB;
B,87 + (p — w)67 Bf
gy = 201 +(p— 1) 21 1 (3.3.1.3)
265(p — 1)B;
If f(z) € A(p) belongs to Sy, ; .n (@), then
|ap+2 - 9“;2:+1| =
( (p—w) (p —1)(26,6 — 87) _,
-~ — <
26, <Bz 512 BT ), 0 < o0y,
—WwAh
4 %, 0, <0 <0y, (3.3.1.4)
2
(p— 1) (p — w)(26,6 — 87) _,
— — > .
\ 26, B, 52 BT |, 6 =0,

Further, if o, < 6 < a3, then

61 B,  (p—1)(25,6 — 67) 2
|ap+2 - 9“;2)+1| + - { o - B, |ap+1|

28,(p — )b, - B, &7

< (p — 1By '

T (3.3.1.5)

131



If 03 <6 < o0,,then

67 B, (p—w(268,0 —67)
e =003, + gt 14 72 - EEOER =g g,

26,(p — B, B, 6%

< (» — B,y .

ST (3.3.1.6)

For any complex number 6,

|aysz — 6aZ, ]| P —mB max {1 (p_“)(2629_612)3 _Bf|
p+2 p+1| = 262 ] (Sf 1 Bl
(3.3.1.7)
Further,
(p —wB
|apss| < 55— H(q1,92). (3.3.1.8)
3
where H(q4,q,) is as defined in Lemma 3.1.9,
4B, + 3(p — n)B;*
4 =— 2(2 BB (3.3.1.9)
1
and
2B; + 3(p — W)B1B, + (p — 1)2B,°
dy = 3 (»—uw 21B 2+ (@ —wB, . (3.3.1.10)
1
Proof. If f(z) € Si,1,.,(®), then there is a Schwarz function
w(z) = wyz + wyz? + - € Q,
such that
A+1u+1n+1
My, f(2)
WGy = p(w(2). (3.3.1.11)
since
/'l+1 u+1,m+1
My, f(z) 5 1 Y N
MIETE(2) =T ezt (28,042 — 6fap,1)2* +

p_u (363ap+3 36162ap+1ap+2 + 6fag+1)z3 + e
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we have from (3.3.1.11),

Apr = @_6—’me1, (3.3.1.12)
Apiz = %{Blwz + (B, + (p — W)BH)w?}, (3.3.1.13)
and
Ap+3 = —(p ;;)Bl{ 3 i Bl 32(2 — M)Blz wiw, +
3 1
2B; +3(p — .U)§1BBZ + (- W?B,° Wf}_ (33.1.14)
1
Therefore, we have
Apiz — 005, = (p;—;z)Bl{wz — vw#}, (3.3.1.15)

where

v (p — B, (26,6 — 67) _ &
' 52 B,

(3.3.1.16)
Making use of (3.3.1.12)-(3.3.1.16), the results (3.3.1.4) - (3.3.1.7) are
established by an application of Lemma 3.1.7, inequality (3.3.1.7) by Lemma
3.1.8, and (3.3.1.8) follows from Lemma 3.1.9. To show that the bounds in
(3.3.1.4) - (3.3.1.7) are sharp, we define the functions Ky, (n = 2,3,...) by
M(i;l,ﬂi'l,r]'l'le)n (Z)

Au,
Mo,z# anm(Z)

=p"™),  (Kgn(0) = (Kpn) (0) = 1=0).

and the functions F,, G, (0 <r < 1) defined by

Moy " () (e

(E-(0) =E'(0) — 1 =0).
M&f’"l?r(z) 1+rz " "

and
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M&;l'ﬂﬂ'nﬂ(;r(z) B (_ 2z +7)
ym =
MO,ZMGr(Z) 1+7rz

) GO =6'-1=0)
respectively. It is clear that the functions Ky,, F. and G, belong to the class
Sipaun(@). If 6 < oy 0r 6 > o, then the equality holds if and only if f is Ky,
or one of its rotations. When g, < 6 < a,, the equality holds if and only if f
is Kg3 orone of its rotations. If 6 = oy, then the equality holds if and only if
f is FE. orone of its rotations. If 6 = a,, then the equality holds if and only if
f is G, orone of its rotations. The proof is complete.

In the similar manner, we can obtain the coefficient bound for |a,,, —
6agq| of functions in the class S, ;,,(¢) according to (Amsheri and
Zharkova, 2012b).

Theorem 3.3.1.3. Let0 <0 <1; 1=20; u<p+1;n>max(/,u) —p—1;b €
C\{0} and p € N. Further, let ¢(z) = 1 + B,z + B,z* + B;z3 + --- where B,, are

real with B; >0 and B, = 0. If f(z) € A(p) belongs to S, ; ., (¢), then for

any complex number 6, we have

|ap+2 - 9a12)+1| =

(p —wWIb|B, e (p—u)b(2529—612)3 B,
25, ’ 52 B

(3.3.1.17)

3.3.2 Coefficient bounds for classes of p-valent Bazilevi€ functions
Motivated by the class Ry, ,(¢) which was studied by (Ali et al., 2007) and
the class Ry, qp3(¢) of p-valent Bazilevi€ functions which was studied by

(Ramachandran et al., 2007), we define a new general class of complex

order R;"{,"’Z’ P (¢) of p-valent Bazilevi¢ functions associated with the fractional
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derivative operator M’“”’f(z) as given in (2.2.1) following the results by
(Amsheri and Zharkova, 2012c).

Definition 3.3.2.1. Let ¢(2) be an univalent starlike function with respect to
1 which maps the open unit disk ¢/ onto a region in the right half-plane and

symmetric with respect to the real axis, ¢(0) =1 and ¢'(0) > 0. A function

f(2) € A(p) isinthe class R)} (¢) if

Aun A41+Lu+Ln+1 Aun
1+_ (1_ﬁ)< f( )) 4 Moz mf(z)f@)( pr(z)) 1l <o

(3.3.2.1)
where a > 0; 0<pB<L 120, u<p+L,n>max(,u)—p—1,peEN; b€

Au, Au,
C\{0} and z € U. Also, we let RYY7 o($) = Ry ().

A}H'TI 1
The above class R}, ;(¢) contains many well-known subclasses of

analytic functions. In particular; for A = u = 0, we have

RT3 () = Ry bap ()

where R, , o s (¢) is precisely the class which was studied by (Ramachandran

1+Az

et al., 2007). Furthermore, when b =1, A=u =0 and ¢(z) = e ,—1<B<

A <1, we have
Ry1 ($) = Hy(A,B,a, B)
where H,(4, B,a, ) is the class which introduced by (Owa, 2000).
Now, to obtain the coefficient bounds of functions belonging to the class
;lfgp(‘f’) we use lemmas 3.1.7- 3.1.9 according (Amsheri and Zharkova,

2012¢).
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Theorem 3.3.2.2. Let0<0<1; A=20; u<p+1; n>max(4,u) —p—1and
p € N. Further, let ¢(z) = 1+ B,z + B,z* + B3z3 + -+ where B, are real with
B; >0, B, =20, and

__ Rlap - +pP
1T 28,B2(p — wlalp — ) + 2]

{2(32 - By)

B -w(a—Dlalp -+ ZB]}

[a(p — ) + B]? (3.322)

o §¢[a(p —w) + B1?
27 28,B2(p —wlalp — u) + 28]

{2(32 + B;)

B -w(a—Dlalp -+ 2[?]}

la(p —w) + BJ? (5:323)

b 8¢ la(p — ) + BI? {23
3T 28,B2(p —wlap—w +2p] |77

B -—w(a—Dlalp—w + 2/)’]}

[a(p — ) + B]? (33.24)

and

[a(p — 1) + 2B][(a — 1)67 + 266,]

Aun (D@, B,0) = 26%[a(p — u) + BI?

(3.3.2.5)

If f(z) € A(p) belongs to R**" ,(¢), then

pla,p

|ap+2 - 9“;2:+1| =

( »—w
Srla(p —w) + 28
(p —w)B;
S,la(p — ) + 28]

B (-
\ Splalp —w) +2B

] (B, — (p — B4, (P, @, B,0)),  6<oay,

0, <0 <0, (3.3.2.6)

] (BZ - (p - .u)Ble/LH,T] (p’ a, ﬁi 9))1 6 > 0.

Further, if o; < 6 < a3, then

87

lap+2 = 05|+ 35 G 08,
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x {z (1-22) &0 WP, ) 1o - 162 + 2962]} 2pea”

By/ [a(p — u) + 2p]
(p — u)B;
= 5lat -0 + 261 G327
If 03 <6 < o0,,then
67
12 = 0%+ 35,6 — 0B,
By [a(p — ) + BI? ) 2
x {z (1 + B_l) e TR LA CREL 2952]} |apsd]
(p — u)B;
= S,latp— 1) + 28] (3:3.2:8)
For any complex number 6,
|ap+2 - 9“;2)+1| =
(p —wB, B,
5t = + 261 max{l, |(p — B Ay un(a, B,0) — B_1 } (3.3.2.9)
Further,
(p —u)B;
|ap+3| = 63 [a(p _ ‘Ll) + 3ﬁ] H(‘h: qZ) (33210)
where H(q4,q,) is as defined in Lemma 3.1.9,
_ 2B, _ (p — By (a — Dlalp — p) + 3]
U T e - @ + Bllalp —w) + 281 (33211
and
_ B p—w’Bi(a—1)(2a - Dialp - +3p]
7B 6[a(p — 1) + BI°
_ (p—wBy(a—Dlalp — ) + 3] (332.12)

[a(p — 1) + Bllalp — ) + 2]

Proof. If f(z) € Rﬁ:mﬁ (¢), then there is a Schwarz function

w(z) = wyz + wyz? + -+ € Q.
such that
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- m( “”’f(z)) N Mé?’”“’"“f()( My "f (@)

o (2) 2"

) =p(w(2).

(3.3.2.13)

since

/1!“7 A+1,u+1,n+1 /1;117
(1—ﬁ)< f(Z)) +,8M°Z f()< f(Z))

Moy "f (2) 2

[a(p — ) + 2p]
(r—uw

o lalp—w) +B]
=1+ ) 61ap412Z + (

820p+42

(e —Dlalp—w) +2B] , , 5 <[a(p — W) + 3p]
M R “"“> T - e

(a — Dlalp —p) + 3p]
+
r—w

816205 +10p+2

(a — D (a—2)[alp —w) + 3p]
6(p— 1)

Si“agﬂ) z3+ . (3.3.2.14)

we have from (3.3.2.13),

a _ (p — WBw,y
PR Sila(p — ) + BT

or = (p — By w
PR Solap —w) + 2817

(p —wB(a—Dlalp — ) + 28] B,
- ( e~ 1 1 Bl> WZ}. (3.3.2.16)

(3.3.2.15)

and

— (p —wB;
P Ssla(p — w) + 361

{ws + gwyw, + qwi}. (3.3.2.17)

where g, and g, as defined (3.3.2.11) and (3.3.2.12), respectively. Therefore,

we have

e — 0., = (p — B,
Pz TP T Sola(p — W) + 2]

{w, —vwi}, (3.3.2.18)
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where

B
vi=(p—WBiAyu, (. a,B,0) - B—Z. (3.3.2.19)
1

By making use of (3.3.2.15)-(33.2.19), the results (3.3.2.6) - (3.3.2.9) are
established by an application of Lemma 3.1.7, inequality (3.3.2.9) by Lemma
3.1.8, and (3.3.2.10) follows from Lemma 3.1.9. To show that the bounds in
(3.3.2.6) - (3.3.2.9) are sharp, we define the functions Ky, (n = 2,3,...) by

A, A+1, , AU, a

MOZ‘“’ ¢n<z) Mo, T K (2) (Mo K (2) .

A-p| 22— + T . = ¢z,
M Kgbn(z) z

Kgn(0) = (Kgn) (0) — 1 = 0.

and the functions E., G, (0 <r < 1) defined by

M E(2) MR () (MR (2) 2(z +71)
(1—,3)<—p> +p OM)L""F(Z) ( D > _¢<1+rz>'

E(0)=FE'(0)-1=0.

and

MG (2) Mg_;l'““"’ﬂc (2) (MJE"6,(2)
(S e

z(z+71)
=¢<_ 1+7rz >'

G.(0) =G, (0)—1=0.

respectively. It is clear that the functions Ky,, F. and G, belong to the class

lun

plaﬁ(‘l’) If & < 0, Or 8 > 03, then the equality holds if and only if f is Ky,

or one of its rotations. When o; < 8 < g,, the equality holds if and only if f is

K3 or one of its rotations. If 6 = g4, then the equality holds if and only if f
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is F. or one of its rotations. If 8 = g,, then the equality holds if and only if f is
G, or one of its rotations. The proof is complete.

Remark 1. By specifying the parameters p,«, 5,1 and u in Theorem 3.3.2.2,
we have the most the coefficient bound results which were obtained by other

authors:

=

Lettingp=1,a=0,=1,B; =%,Bz =% and u = A, we get the

corresponding result due to (Srivastava and Mishra, 2000).

2. Letting p=1, a=0, =1 and u=41=0, we obtain the
corresponding result due to (Ma and Minda, 1994) for the class
S*(¢).

3. Letting a =0, =1 and u=A1=0, we obtain the result which
was proven by (Ali et al., 2007) for the class S;(¢).

4. Lettingp=1,=1and u=A1=0, we obtain the result which was
proven by (Ravichandran et al., 2004) for the class B*(¢).

5. Letting u=1=0, we obtain the result which was proven by

(Ramachandran et al., 2007) for the class Ry, 1 4,5(¢).

Thus, the generalization of classes R;,’f’gﬁ(gb) defined in this subsection is

proven to account for most available classes discussed in the previous
papers generalize the concept of starlike and Bazilevi€ functions.

In the similar manner, we can obtain the coefficient bound for the

functional |a,., —6a3,,| of functions belonging to the class R;,’ZL,’Z,/;(‘P)

according to (Amsheri and Zharkova, 2012c).
Theorem 3.32.3. Let 0<0<1;A=20; u<p+1;n>max(,u)—p-—1

and p € N. Further, let ¢(z) =1+ Byz + B,z? + B3z® + --- where B, are real
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with B; >0, B, > 0. If f(z) € A(p) belongs to R;:l’j“g‘ﬁ(cp), then for any

complex number 6,

(p —wIb|By

B
—_ 2 < —_ __2
|ap+2 9ap+1| - 62 [(l(p _ ,Ll) + Zﬁ] max{l, |(p .u)bBlA/L,u,,n(p' a, ﬁf 0)

By

}

(3.3.2.20)
where 4, ,,(p,a,B,0) is given by (3.3.2.5).
Remark 2. By specifying the parameters p,a, 5,4 and ¢ in Theorem 3.3.2.3,
we the most coefficient bound results which were obtained by other authors.
1. Letting p=1, a=0 =1 and u=A1=0, we obtain the
corresponding result due to (Ravichandran et al., 2005) for the class

Sp(9).

1+Az
1+Bz’

2. Lettingp=1,a=1 =1 u=1=0and ¢(2) = —-1<B<AZ
1, we obtain the results which were proven by (Dixit and Pal., 1995)
for the class R?(4, B).

3. Lettinga=1, f=1and u=A4=0, we obtain the result which was

proven by (Ali et al., 2007) for the class R}, ,(¢).

Thus, the generalization of classes R;,'zlj,g,ﬁ(‘f’) defined in this subsection is

proven to account for most available classes discussed in the previous
papers.

Next, motivated by the class M, g(¢) which introduced by (Rosy et al.,

2009), we introduce a more general class of complex order M;”,ﬁ‘,’;’ﬁ((p) of

Bazilevi¢ functions by using the fractional derivative operator M(’},’Z”’” f(2) as

given in (2.2.1) following the results by (Amsheri and Zharkova, 2013a).
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Definition 3.3.2.4. Let ¢(z) be an univalent starlike function with respect to
1 which maps the open unit disk ¢/ onto a region in the right half-plane and

symmetric with respect to the real axis, ¢(0) =1 and ¢'(0) > 0. A function

f(2) € A(p) isinthe class My7 (¢) if

1
1+ E{‘P,LM (a,B,0)f(2) — 1} < ¢(2), (3.3.2.21)
where

lpxl,u,n ((X, ﬁ’ p)f(z) =

A4l+1u+1n+1f(z)< Aunf( )>
+B

2@ 2"

A+2,u+2n+2
0,z : 7 f(Z)

MA+1 H+1 T]+1f( )

1+(@—-n-1

(3.3.2.22)

Mg:l,ll+1,n+1f(z) Mg:l,[l‘l'l,n'l'lf(z)
—(p—w) +a -1

Moy "f () Myt (2)
where a =>0; =20; 120, u<p+1L,n>max(Lbuw)—p—1,peEN; b€

A A,
C\{0} and z € U. Also, we let M1 o(¢) = Myt ().

A'#J) 1
The above class M)’ ;(¢) contains many well-known subclasses of

analytic functions. In particular; for p =1, b =1and A = u = 0, we have
My1m 5(®) = Mp()
where M, z(¢) is precisely the class which was studied by (Rosy et al.,
2009).
Now, to obtain the coefficient bounds of functions belonging to the class
M;}"fgﬁ(@, we use lemmas 3.1.7- 3.1.9 following (Amsheri and Zharkova,

2013a).
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Theorem 3.3.25. Let0<0<1;,a=>0; =20, A=20;, u<p+1;,n>

max(A,u) —p — 1 and p € N. Further, let ¢(z) = 1 + Byz + B,z* + B3z3 + -

where B,, are real with B, > 0, B, = 0, and

52 72 (p —y)B}
= 2(B,— B;) ———¢,
. 262<p—u)fo{ (Ba =B ="
52 72 (p —y)B}
= 2(B,+B,) - ——2*%
%2 262<p—u>éBf{ Bat B ="

57 72 (p —y)B?
03 = 2128~ ——=—
26,(p — u)éB; T

t=14+a(p—w)+pLA+a),

§=2+alp—p+2p(a+2),

p=(@-Dp-wlalp—-w+2],

Y =2B[1+ (p —w(a+2)],

€, =3+ alp—u) +36(a+3),

€= (@—-Dp-wlalp - +3],

€3 =3B[2+ (- W(a+3)],

€2 = 6B[1+ (p — W (a +3)],
and

82(p —y) +2068,(p — w)é
26272 '

AA,u,n (P, a, ﬁ; 0) =

If f(z) € A(p) belongs to Mi‘fgﬁ (¢), then

|ap+2 - 9“;27+1| =

(b=
625 (BZ - A/l,y,n(p; a, ﬁl 9)312)1 9 < 0-1,
(»p —wB,
<{X /1 <0<
- 626 4 0-1 > 6 > 0-2,
-

k 626 (BZ - A/l,u,n(p’ al )Bl G)Blz), 0 > 0-2.
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(3.3.2.31)
(3.3.2.32)

(3.3.2.33)

(3.3.2.34)

(3.3.2.35)



Further, if o; < 0 < a3, then
6% 12
8,(p — By

< (- M)B1.
828

-0 2 _ E 9 2
|apsz — 04| + 1 B, + Ajpn (0, B, 0)B: { |apia |

(3.3.2.36)

If 03 <6 < o0,,then
5% 12
8,(p — u)éBy

< (»- #)31.
828

B
|ap+2 - 9“;29+1| + {1 + B_i —Ajun » B, 9)31} |ap+1|2

(3.3.2.37)

For any complex number 6,

(p —wB, B,
|ap+2—-9ap+1|_-——3;?——qna {L Alﬂﬂ(p,a,ﬁ,B)Bl——Ez}. (3.3.2.38)
Further,
(p—w)B
|ap+3| = 63—611H(Q1: q2)- (3.3.2.39)

where H(qq,q,) is as defined in Lemma 3.1.9,

2B2 (62 - 63)B1
=272 , 3.3.2.40
a1 B, € ( )

_ % _ (€2 — 63)32 (3(e; —€3)(p — V)& — T [(p — ) (@ — 2)€; + €,])Bf
42 = B, e 673&3 '

(3.3.2.41)

Proof. If f(z) € Mi’f,'(zﬁ (¢), then there is a Schwarz function

w(z) = wyz + wyz? + - € Q.

such that
M)l+1 u+1, n+1f( ) Aunf( ) Mg;-z,u+2,n+2f( )
Moy (2) ( 2 ) B
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MA-Zrl,u+1,n+1f( ) M)L-Zrl,u+1,n+1f( )
(p = 1) =2 Mnf(z) + a( 0 wnf( ) — 1)] = p(w(z)). (3.3.2.42)
since
M)l+1 U+1, n+1f( ) Aunf(z) Mg:z JU+2, n+2f( )
Moy " (2) ( 2 ) e RS

=1+

A+1,u+1,m+1 A+1Lu+1,n+1
M (@) (M (2)
(p—1—= ! +a< > 2

MY f (2) MY f (2)

20py2 —

[1+a(p—u)+B(a+1)] ; ([2+0£(P—H)+23(01+2)]
(r—w Sl (r— W

A-a)(p—-—wlalp—w +2]+26[1+ (p — w(a+ 2)]
2(p — w*

5a p+1> z°+

([3+a(p—u)+3[>’(a+3)] +{(a—1)[a(p—u)+3]_
(»—w TP (»— 1

3612+ (p— i) (a + 3)] (@ — 1)@ — 2)[a(p — ) + 3]
@ — 12 }5152“”“‘“’*2 * { 6 — 1) *
BIL+ (- w(a+3)]
(I; '[;)3 }61 ap+1>z + -

we have from (3.3.2.42),

(p — WBw,
Apy1 = T (3.3.2.43)
» —whB, (p—v)By B,
Apy2 = 5,8 Wy — 572 — B_1 W12 ) (3.3.2.44)
(p — B
p+3 — 53—61{W3 + qwywy + CIZWiQ’}, (3.3.2.45)
1

where ¢q; and g, as defined in (3.3.2.40) and (3.3.2.41), respectively.

Therefore, we have

B
Aprz — 005, = {w, —vw?}, (3.3.2.46)
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where

B,
vi=Ayun(@a,B,0)B — B (3.3.2.47)
1

By making use of (3.3.2.43)-(3.3.2.47), the results (3.3.2.35)-(3.3.2.38) are
established by an application of Lemma 3.1.7, inequality (3.3.2.38) by
Lemma 3.1.8, and (3.3.2.39) follows from Lemma 3.1.9. To show that the

bounds in (3.3.2.35)-(3.3.2.38) are sharp, we define the functions Ky, (n =

2,3,...) by
M(;L,Zl'ﬂ+1'n+1K n(2) (M(if'anm(Z))a
A,
M “an)n(Z) A4
A+2,u+2,n+2
Kyn(2)
0,z pn
Bll+(p—pu—-1D—
M(i;l,[l‘l'l,n'l'll(d)n(z)
M&:l,ﬂ‘l'l,f]‘l'lK (Z) Mg.,;l,[,l‘l'l,?']‘l'lK n(Z) -
(p_ﬂ) /‘L#TI t+a llin -1 =¢(Z )r
M K¢n(2) M K¢n(Z)

Kyn(0) = (Kgn) (0) — 1 = 0.

and the functions F,, G, (0 <r < 1) defined by

A+1,u+1, l A+2,u+2,
MM REG) (METE@N L Mt R
l[,l.T]F (Z) Zb p u M(i:l,u+1,ﬂ+1a(z)

oM E@ (Mé,l NON 1)] _p (D)

M}E, (2) M}*"E,(2) 1+rz

E(0)=F'(0)-1=0.

and
M(?.Zl,ﬂ+1,1’]+16 (Z) /1 H. T]G ( ) 1 1 M(/},ZZ,H."'Z,T]'FZ Gr (Z)
AﬂnG (Z) Zp +ﬁ + (p A )Mé,-zl-l”u-'-l,n-l-lGr(Z) -
Mg:l,#-f-lﬂ]-l'lG (Z) Mg;l,ﬂ-Fl,T)‘l'lG (Z) Z(Z + T')
(p—w +al— -1)[=¢ (— )
ﬂ.[i‘f]G ( ) Ml”nG (Z) 1+TZ
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G.(0) =G,'(0)—1 = 0.

respectively. It is clear that the functions Ky, F. and G, belong to the class

M7 (9). If 8 < 0y or 6 > 0y, then the equality holds if and only if f is Ky,

or one of its rotations. When g, < 6 < 0g,, the equality holds if and only if f is
K3 or one of its rotations. If 8 = g, then the equality holds if and only if f is
E. or one of its rotations. If 8 = g,, then the equality holds if and only if f is G,
or one of its rotations. The proof is complete.

Remark 3. By specifying the parameters p,a, 5,1 and u in Theorem 3.3.2.5,
we have the most the coefficient bound results which were obtained by other

authors:
1. By letting p=1,a=0,=0,B; = %,Bz =% and u =1, we get the
corresponding result due to (Srivastava and Mishra, 2000).
2. By lettng p=1,a=0=0 and u=1=0, we obtain the
corresponding result due to (Ma and Minda, 1994) for the class S*(¢).
3. By letting a = 0 and g = 0, we obtain the result which was proven by

(Amsheri and Zahrkova, 2012b) for the class S, ; ,, , (¢).

4. By letting a =0, § =0 and u = 1 = 0, we obtain the result which was
provenby (Ali et al., 2007) for the class S, (¢).

5. By letting p=1,a=0, =1 and u=1=0, we obtain the result
according to (Ma and Minda, 1994) for the class C(¢).

6. By letting p=1,=0 and u=A1=0, we obtain the corresponding
result due to (Ravichandran et al., 2004) for the class B*(¢).

7. By lettingp =1and p = A = 0, we obtain the corresponding result due

to (Rosy et al., 2009) for the class M, z(¢).
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Thus, the generalization of classes Mi’f_gﬁ(cp) defined in this subsection is

proven to account for most available classes discussed in the previous

papers and generalize the concept of starlike and Bazilevi€ functions.

In the similar manner, we can obtain the coefficient bound for the

functional |a,,, —6aZ,,| of functions belonging to the class M;,'{f,’gﬁ(dﬂ

following (Amsheri and Zharkova, 2013a).
Theorem 3.3.26. Let0<0 <1, a=0; =20, 120; u<p+1 n>
max(A,u) —p — 1; b € C\ {0} and p € N. Further, let ¢$(z) = 1 + B,z + B,z* +

B3z3 + .- where B, are real with B; > 0 and B, > 0. If f(z) € A(p) belongs

to M,i’ﬁ’lf,;(d)), then for any complex number 6, we have

B
max {1, |A/1,un7 (p,a,B,0)bB; — B—2 }
1

= wibls:

|ap+2 - 9a12)+1| < 625

(3.3.2.48)
where ¢ and A4,,,( a B,6) are given by (3.3.2.27) and (3.3.2.34)
respectively.

Remark 4. By specializing the parameters p,a,8,4 and u in Theorem
3.3.2.6, we have the most the coefficient bound results which were obtained
by other authors:

1. Lettingp=1,a =0, =0andu =1 =0, we obtain the corresponding

result due to (Ravichandran et al., 2005) for the class S, (¢).

1+Az
1+Bz’

2. Letting p=1, a=1,=0, A=u=0and ¢(z) =

—1<B<AZ<

1, we obtain the results which were proven by (Dixit and Pal, 1995) for

the class R?(4, B).
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3. Letting a =1, =0 and u =1 =0, we obtain the result which was
proven by (Ali et al. 2007) for the class Ry, (¢).
4. Letting «a =0 and S = 0, we obtain the corresponding result due to

(Amsheri and Zaharkova, 2012b) for the class S, , ; .., (#).

Thus, the generalization of classes M;l’j;’ﬁ((p) defined in this subsection is
proven to account for most available classes discussed in the previous

papers.

3.3.3 Coefficient bounds for classes of p-valent non-Bazilevi¢
functions

Motivated by the class N, z(¢) which was introduced by (Shanmugam et
al., 2006a), we introduce a more general class of complex order N. l’,‘gﬁ(cp)
of p-valent non-Bazilevi€ functions by using the fractional derivative operator

M f(z) as given in (2.2.1) following the results by (Amsheri and Zharkova,

2012d).
Definition 3.3.3.1. Let ¢(z) be an univalent starlike function with respect to
1 which maps the open unit disk ¢/ onto a region in the right half-plane and

symmetric with respect to the real axis, ¢(0) =1 and ¢’(0) > 0. A function

f(2) € A(p) isinthe class N3 (¢) fif

L 1 (1 . ) 4P a MA+1 u+111+1f( ) 4P a ) ( )
Z S —1} < .
b)) M@ i

(3.3.3.1)

where 0<a<1; BEC A=20; u<p+L,n>max(l,u)—p—1, peEN; b e

C\{0} and z € U. Also, we let N1 (¢) = N)&7 ().
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The above class N#7

pbaﬁ(¢) contains many well-known classes of

analytic functions. In particular; forA=u =0, p=1,and b =1 we have
Nyvas(@®) = Nep(@)
where N, ;z(¢) is precisely the class which was studied by (Shanmugam et
al., 2006a).
Now, to obtain the coefficient bounds of functions belonging to the class

Nzifﬁﬁ(d’)’ we use lemmas 3.1.7- 3.1.9 following (Amsheri and Zharkova,

2012d).
Theorem 3.3.3.2. Let0<6<1;A=20; u<p+1;,n>max(L,u) —p—10<
a < 1,8 € C and p € N. Further, let ¢(z) = 1+ Byz + B,z% + B3z + 