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Abstract: This paper explores the development of the most suitable machine learning models for 9 

predicting the bending capacity of steel and FRP (Fiber Reinforced Ploymer) bars hybrid reinforced 10 

ECC (Engineered Cementitious Composites)-concrete composite beams. Five different machine 11 

learning models, namely Support Vector Regression (SVR), Extreme Gradient Boosting (XGBoost), 12 

Multilayer Perceptron (MLP), Random Forest (RF), and Extremely Randomized Trees (ERT), were 13 

employed. To train and evaluate these predictive models, the study utilized a database comprising 14 

150 experimental data points from the literature on steel and FRP bars hybrid reinforced ECC-15 

concrete composite beams. Additionally, Shapley Additive Explanations (SHAP) analysis was 16 

employed to assess the impact of input features on the prediction outcomes. Furthermore, based on 17 

the optimal model identified in the research, a graphical user interface (GUI) was designed to 18 

facilitate the analysis of the bending capacity of hybrid reinforced ECC-concrete composite beams 19 

in practical applications. The results indicate that the XGBoost algorithm exhibits high accuracy in 20 

predicting bending capacity, demonstrating the lowest root mean square error, mean absolute error, 21 

and mean absolute percentage error, as well as the highest coefficient of determination on the 22 

testing dataset among all models. SHAP analysis indicates that the equivalent reinforcement ratio, 23 

design strength of FRP bars, and height of beam cross-section are significant feature parameters, 24 

while the influence of the compressive strength of concrete is minimal. The predictive models and 25 

graphical user interface (GUI) developed can offer engineers and researchers with a reliable 26 

predictive method for the bending capacity of steel and FRP bars hybrid reinforced ECC-concrete 27 

composite beams. 28 
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1.Introduction 31 

With the continuous advancement of construction engineering, there has been an increasing 32 

demand for the structural performance, challenging the traditional reinforced concrete (RC) 33 

structures to meet the requirements of bearing capacity, durability, and ductility [1]. Consequently, 34 

innovative materials and structural systems are being explored to enhance the performance and 35 

longevity of these structures. 36 

Concrete, as the most widely used building material in modern times, holds particular 37 

significance in the construction industry worldwide [2]. However, with advancements in modern 38 



structural engineering, traditional RC structures are required to not only meet high-performance 39 

criteria such as compressive and tensile strength but also exhibit qualities like durability and 40 

ductility. Thus, there is a necessity to seek a construction material with high ductility and durability. 41 

In recent years, Engineered Cementitious Composites (ECC), proposed by Victor C Li of the 42 

University of Michigan, USA, have offered an effective solution to address the issues of excessive 43 

brittleness and wide cracks in RC structures [3]. ECC does not contain coarse aggregates like 44 

gravel, instead, it incorporates a suitable amount of short fibers as reinforcement material, 45 

constituting a composite material comprising an ultra-high ductile cementitious matrix and fibers 46 

[4]. Compared with concrete, ECC exhibits greater ductility and has the ability to deform and 47 

control crack widths effectively, demonstrating characteristics of multiple micro-cracking and strain 48 

hardening. 49 

Fiber Reinforced Polymer (FRP) rebar is a composite material composed of continuous and 50 

binding fibers, offering advantages such as lightweight, high corrosion resistance, durability, and 51 

high tensile strength. It finds wide application in fields like bridge engineering and marine 52 

engineering [5-6]. However, the inherent drawbacks of FRP material include low elastic modulus, 53 

linear stress-strain relationship without yielding stage, and brittle failure mode, resulting in large 54 

deflections and crack widths in FRP RC structures during service, significantly affecting their 55 

normal functionality. This also limits the widespread application of FRP RC structures in civil 56 

engineering [7]. Qu et al. proposed combining fiber-reinforced polymer and steel reinforcement in 57 

reinforced concrete beams, concluding that this system provides higher strength, with FRP 58 

enhancing durability, while steel improving ductility [8-9]. Placing FRP rebar at corners and steel 59 

reinforcement internally, while using Engineered Cementitious Composites (ECC) to replace 60 

concrete in the tension zone of beams, improves the cracking, yielding, bearing capacity, and 61 

stiffness of flexural beams [10]. 62 

In recent years, the application of machine learning-based predictive models in civil 63 

engineering has garnered significant attention [11-12]. Particularly, establishing intelligent models 64 

to predict the mechanical and durability properties of construction materials is one of the most 65 

important innovative approaches in this field. This method offers the possibility of more detailed 66 

studies on structural behavior. Through predictive modeling, researchers can better correlate 67 



structural performance with various parameters and gain a better understanding of their future 68 

performance. 69 

Ahmet et al. [13] conducted machine learning predictions of the load capacity of 217 ECC 70 

reinforced concrete beams. The research findings indicate that the model developed using the 71 

Extreme Gradient Boosting (XGBoost) algorithm achieved an accuracy of over 80%. The most 72 

influential parameters include the compressive strength of the concrete substrate, beam height, 73 

longitudinal reinforcement ratio, and ECC thickness. Wakjira et al. [14] performed machine 74 

learning predictions of the load capacity of 132 FRP bars RC beams. They utilized six parameter 75 

indices and four machine learning algorithms. The results demonstrated that ensemble models based 76 

on boosting and tree-based methods (AdaBoost, GBDT, and XGBoost) exhibited higher prediction 77 

accuracy. Additionally, the predictive model's accuracy surpassed the load capacity calculation 78 

formulas provided in the US and Canadian standards for FRP bars RC structures. Xiong et al. [15] 79 

employed machine learning-based methods to predict the flexural capacity of a novel prefabricated 80 

MVFT steel-concrete composite girder. The impact of input parameters such as the distance 81 

between steel girder's Tensile Centroid (TC) and slab's Compressive Centroid (CC), the distance 82 

between steel girder's TC and its CC, the compressive area of steel girder was analyzed. Two 83 

machine learning models, BP neural network and Squares Support Vector (SVR) were used. The 84 

results showed that the ultimate strength predictions of 30 meters MVFT girder by BP model have 85 

the best accuracy. 86 

Steel and FRP bars hybrid reinforced ECC-concrete composite beams represent a novel 87 

composite system, characterized by high bearing capacity, ductility, good resistance to deformation 88 

and cracks. However, there is no research on machine learning predictions for these steel and FRP 89 

bars hybrid reinforced ECC-concrete composite beams. Therefore, this study aims to investigate the 90 

prediction of bending capacity through machine learning using data extracted from relevant 91 

literature on 150 steel and FRP bars hybrid reinforced ECC-concrete composite beams. Eight 92 

parameter indices are selected as input variables for the prediction. Five different machine learning 93 

models are chosen to evaluate the bending capacity prediction and their capabilities are compared. 94 

A major significance of this study is the development of a Graphical User Interface (GUI) module 95 

for the model with the optimal prediction accuracy and performance, which facilitates the solution 96 



of complex problems and expanding the interfaces for human interaction. 97 

2. Data acquisition 98 

After reviewing relevant articles [16-23] on steel and FRP bars hybrid reinforced ECC-99 

concrete composite beams and conducting screening, 150 experimental data were obtained. Due to 100 

their better tensile strength, ECC replaced concrete from the bottom to the top, locating the ECC 101 

layer at the bottom of all beams. All beams were subjected to two-point bending test. The loading 102 

diagram and reinforcement details are shown in Fig. 1. The beams exhibited different parameters in 103 

terms of section dimensions, strength of concrete and ECC, strength of steel and FRP 104 

reinforcements, reinforcement ratio, and height ratio of ECC, with specific parameters as shown in 105 

Table 1.  106 

 

 
Fig.1. Loading diagram and reinforcement details 

Table 1 The cross-section dimensions and material properties for beams 107 

Category Designation Details Unit 

Beam 

b Width of beam cross section mm 

h Height of beam cross section mm 

h0 Effective height of beam cross section mm 

l Length of beam mm 

Concrete 
fc Compressive strength of concrete MPa 

hc Concrete layer height of beam Mm 

ECC 

fec Compressive strength of ECC MPa 

fet Tensile strength of ECC MPa 

he ECC layer height of beam  mm 

r ECC height ratio of beam height -- 

Reinforcement 

fy Yield strength of steel bars MPa 

As Area of tensile reinforcing steel bars mm2 

ffd Design strength of FRP bars MPa 

Af Area of tensile reinforcing FRP bars mm2 

ρ Equivalent ratio of reinforcements -- 

The equivalent reinforcement ratio of steel and FRP bars in Table 1, denoted by ρ [24], is 108 
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calculated by formula (1). The ECC height ratio of beam height in Table 1, denoted by r, is 109 

calculated by formula (2). 110 

𝜌 =
𝐴s

𝑏ℎ0
+

𝑓fd

𝑓y
⋅

𝐴f

𝑏ℎ0
 (1) 

𝑟 =
ℎe

ℎ
 (2) 

Based on many research papers about machine learning prediction for flexural capacity of 111 

concrete beams [25-33], a total of 8 input parameters are selected to develop the prediction model. 112 

These parameters are the width of beam cross section (b), effective height of beam cross section 113 

(h0), compressive strength of concrete (fc), compressive strength of ECC (fec), tensile strength of 114 

ECC (fet), ECC height ratio of beam height (r), yield strength of steel bars (fy), design strength of 115 

FRP bars (ffd), and equivalent ratio of reinforcements (ρ). The statistical information and 116 

distribution of input and output features in the established database are shown in Table 2 and Fig. 2, 117 

respectively. Kernel density curves were used to demonstrate the trend of data changes as shown in 118 

Fig. 2. 119 

In Table 2, when fc is 0, fec and fet is non-zero, it indicates that the beam is fully cast from ECC 120 

without any concrete layer. Conversely, when fec and fet are 0, fc is non-zero, it indicates that the 121 

beam is entirely cast from concrete, without an ECC layer. When fc, fec and fet are non-zero, it 122 

indicates that the beam is an ECC-concrete composite beam. And when fy is 0 and ffd is non-zero, it 123 

indicates that the beam is FRP bars RC beam. When ffd is 0 and fy is non-zero, it indicates that the 124 

beam is steel RC beam. When both fy and ffd are non-zero, it indicates that the beam is steel and FRP 125 

bars hybrid RC beam. Vmin and Vmax represent the minimum and maximum values, respectively, Avg 126 

represents the average value, σ represents the standard deviation, Cv represents the coefficient of 127 

variation. Detailed data are provided in the Appendix. 128 

Table 2 The statistical information of parameters in the database 

Feature Type Vmin Vmax Avg σ Cv 

b (mm) Input 100 150 139.2 21.3 0.15 

h0 (mm) Input 116 264 172.3 42.1 0.24 

fc (MPa) Input 0 80 37.1 19.2 0.51 

fec (MPa) Input 0 45.2 33.3 15.5 0.46 

fet (MPa) Input 0 4 2.4 1.3 0.54 

fy (MPa) Input 0 503 321.3 187.7 0.58 

ffd (MPa) Input 0 2437 853 740 0.86 

ρ (%) Input 0.105 9.45 1.4 1.78 1.27 



r (%) Input 0 100 50 35 0.7 

Mu (kN·m) Output 4.42 133.1 29.12 28.48 0.98 

  
(a) b (mm) (b) h0 (mm) 

  
(c) fc (MPa) (d) fec (MPa) 

  
(e) fet (MPa) (f) fy (MPa) 



  
(g) ffd (MPa) (h) ρ (%) 

  
(i) r (%) (j) Mu (kN·m) 

Fig.2. Statistical Distribution of Machine Learning Parameters 

From Fig.2 , the input parameter b for beam width varies between 100 and 150 mm, while the 129 

input parameter h0 varies between 120 and 260 mm, centered around 160 to 180 mm. The input 130 

parameter fc is distributed between 0 and 80 MPa, the input parameter fec is distributed between 0 131 

and 45 MPa and the input parameter fet is distributed between 0 and 5 MPa. The input parameter fy 132 

is centered around 350 to 500 MPa, while the input parameter ffd is centered around 900 to 2000 133 

MPa. The input parameter ρ ranges from 0.5% to 7%, with the majority distributed between 0.5% 134 

and 2%. The input parameter r is uniformly distributed between 0% and 100%. It can be observed 135 

that the input parameters exhibit a wide range of variation, indicating that the machine learning 136 

prediction model established based on this database has broad applicability and versatility. 137 

3. Prediction Algorithms and Evaluation Metrics 138 

3.1 Overview of Machine Learning Algorithms 139 

3.1.1 Support Vector Regression 140 



Support Vector Regression (SVR) [34-37] is a supervised learning algorithm model for binary 141 

classification. Its basic idea is to find a hyperplane in the feature space that separates samples of 142 

different classes, such that the samples of each class are farthest from the hyperplane, thus 143 

achieving the optimal solution. It demonstrates excellent performance for both linear and non-linear 144 

problems. This paper analyzes the influence of feature parameters such as width of beams, effective 145 

height, strength of concrete and ECC, strength of steel and FRP bars, which exhibit a non-linear 146 

distribution. In SVR, the original model is transformed into a dual equation, where the objective 147 

function involves only the inner product between instances, replaced by a kernel function. The final 148 

decision function is represented as Equation (3), where x is the input feature vector, K(x，xi) is the 149 

kernel function replacing the inner product, αi is the Lagrange multiplier, and a penalty factor C is 150 

introduced, where 0≤αi≤C, and b is the distance parameter. 151 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼i𝑦i𝐾(𝑥, 𝑥i)

𝑁

i=1

+ 𝑏) (3) 

3.1.2 Extreme Gradient Boosting 152 

Extreme Gradient Boosting (XGBoost) [38-40] is a supervised learning algorithm used for 153 

analyzing classification and regression problems. It is an improved version of the Gradient Boosting 154 

Decision Tree (GBDT) algorithm, both of which are regression decision tree models. XGBoost 155 

introduces parallelization into the boosting process, allowing for faster computation by training on 156 

serial data. Additionally, XGBoost introduces second-order partial derivatives of the loss function, 157 

resulting in better learning performance. To prevent overfitting, XGBoost adds a regularization term 158 

to its objective function, as shown in Equation (4). Here, yi represents the true output of the ith data 159 

point, 𝑦
^

i
(𝑘−1)

 denotes the ensemble output of the first k−1 learners for the ith data point, fk(·) is the 160 

kth learner being trained, and Ω(f ) is the regularization term introduced. 161 

𝑚𝑖𝑛
𝑓k(𝑥),Ω(𝑓j)

(∑ 𝑙(𝑦i, 𝑦
^

i
(𝑘−1)

+ 𝑓k(𝑥i))

𝑛

i=1

+ ∑ Ω(𝑓j))

𝑘

j=1

 (4) 

3.1.3 Multilayer Perceptron 162 

Multilayer Perceptron (MLP) [41-43], also known as Artificial Neural Network (ANN), is a 163 

three-layer perceptron. Between the layers of the multi-layer perceptron, there are fully connected 164 

connections. The lowest layer is the input layer, followed by one or more hidden layers, and the top 165 

layer is the output layer. In the working environment of MLP, information is transmitted through the 166 

neurons in each layer, and the connection between the hidden layer and the output layer represents a 167 



multi-class logistic regression. All parameters of MLP include the connection weights and 168 

configurations between each layer, involving loss functions, regularization terms, and more. 169 

3.1.4 Random Forest 170 

Random Forest (RF) [44-46] is an ensemble learning method capable of effectively handling 171 

classification and regression problems. It is also a type of decision tree model. The decision-making 172 

process of a decision tree moves from the top node to the leaf nodes. By combining multiple 173 

decision trees together, each time selecting the dataset randomly with replacement, and then 174 

randomly selecting a subset of features as input, the Random Forest algorithm is formed. In the RF 175 

framework model, a regression function is constructed to predict the output value Y. This function 176 

requires training on input variables similar to decision trees, and then prediction is made using the 177 

applicable equation. The regression function is represented as Equation (5), where hK is the Kth 178 

decision tree, and x is the input value. 179 

𝑌 =
1

K
∑ ℎK(𝑥)

K

k=1

 (5) 

3.1.5 ExtRa Trees 180 

ExtRa Trees (ERT) is a variant of the Random Forest algorithm [47]. Unlike RF, which uses 181 

random sampling with replacement (bootstrap) to select sampling datasets for training each decision 182 

tree, ERT does not use random sampling. Instead, each decision tree in ERT utilizes the original 183 

training dataset. After selecting the input features for partitioning, the decision trees in RF choose 184 

the optimal feature values for partitioning based on criteria such as coefficients and variances. 185 

However, ERT randomly selects a feature value for partitioning decision trees. Therefore, 186 

sometimes ERT exhibits better generalization performance than RF. 187 

3.2 Evaluation Metrics 188 

In statistical measurement methods, to evaluate the effectiveness of a machine learning 189 

algorithm, commonly used metrics include Root Mean Square Error (RMSE), Mean Absolute Error 190 

(MAE), Coefficient of Determination (R2), and Mean Absolute Percentage Error (MAPE). These 191 

evaluation metrics objectively assess the degree of proximity between the model's predictions and 192 

the actual values. In a well-performing model, lower values of RMSE, MAE, and MAPE indicate 193 

better performance, while R2 values closer to 1.00 indicate better fit [48]. The evaluation formulas 194 

are shown as Equation (6)~(9). Where y、𝑦
^
、𝑦, and n represent the actual values, predicted values, 195 

mean value, and number of data points, respectively. 196 
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1

𝑛
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𝑛

i=1

2 (6) 
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4. Model development and discussion 197 

This section presents the development process of interpretable machine learning models (SVR, 198 

XGBoost, MLP, RF, and ERT) and discusses the related model performance. The overall structure 199 

of the developed models is illustrated in Fig. 3. The methodology for constructing the prediction 200 

models includes database establishment, data preprocessing, model training, optimal 201 

hyperparameter tuning, model validation, and model interpretation. 202 

 
Fig.3 Overall structure of the developed ML models 

Firstly, experimental research data on the flexural capacity of ECC-concrete composite beams 203 

hybrid reinforced with steel and FRP bars were extracted from the literature and compiled into a 204 

database table. Eight parameters were selected as input features, while the flexural capacity served 205 

as the output feature. This database was used to train machine learning models, and all machine 206 



learning algorithm models were built using the sklearn module in Python. The 150 experimental 207 

data points in the database were divided, with 80% of the data used for training the machine 208 

learning algorithm models and the remaining 20% used as a test dataset to evaluate the performance 209 

of each algorithm's model. The performance of each model algorithm's predictive ability was 210 

evaluated using RMSE, MAE, R2, and MAPE. Finally, for the best-performing model, the Shapely 211 

weighted explanation (SHAP) value analysis method was employed to visualize and interpret the 212 

predictive model, providing a better understanding of the importance of the relationship between 213 

bending capacity and input variables. 214 

4.1 Optimization of the model parameters 215 

To optimize the performance of each machine learning algorithm, a 6-fold cross-validation 216 

grid search technique was employed to optimize the parameters of the five machine learning 217 

algorithms. The grid search technique performs CV iterations for each parameter combination in the 218 

parameter grid list and selects the combination with the highest average score as the optimal choice.  219 

The GridSearchCV function in the sklearn module was  utilized to perform 6-fold cross-validation 220 

grid search learning and extracted the optimal combination values of the parameters. The main 221 

parameter selections for the five machine learning algorithms are shown in Table 3. Other 222 

parameters of the models are set by default using the sklearn module. The parameter selections for 223 

each model are presented in Table 3. 224 

Table 3. Optimal parameter values for ML models 

ML Models Parameters Values Best values 

SVR 

kernel linear, poly, rbf, sigmoid rbf 

C 1000, 2000, 3000 2000 

gamma 0.1, 0.2, 0.3 0.2 

XGBoost 

learning_rate 0.03, 0.3, 3 0.03 

n_estimators 300, 400, 500, 600 400 

max_depth 2, 3, 4 3 

MLP 

activation logistic, tanh, relu relu 

max_iter 6000, 8000, 10000 8000 

learning_rate 0.001, 0.01, 0.1 0.01 

RF 
n_estimators 800, 1000, 1200 1000 

max_depth 5, 10, 15 10 

ERT 
n_estimators 800, 1000, 1200 1000 

max_depth 5, 10, 15 10 

4.2 Analysis of ML model performance 225 



Once the optimal parameters for each machine learning algorithm are determined, these 226 

parameters are input into each algorithm. Utilizing the training dataset from the database, five 227 

different machine learning models are constructed. The performance of these models is evaluated 228 

by comparing the predicted results with the experimental values. The comparison between the 229 

results obtained from the SVR, XGBoost, MLP, RF, and ERT machine learning models and the 230 

experimental moment capacity is illustrated in Fig. 4. 231 

  

(a) SVR (b) XGBoost 

  
(c) MLP (d) RF 



 
(e) ERT 

Fig.4. Comparison of experimental and predicted values of ML models 

Fig.4 shows that all the five machine learning algorithms demonstrate good predictive 232 

capabilities for the bending capacity of steel and FRP bars hybrid reinforced ECC-concrete 233 

composite beams. Among them, the conformity of XGBoost, MLP, and ERT algorithm models is 234 

significantly higher than those of the other two algorithms. Furthermore, to accurately assess the 235 

predictive performance of each algorithm and better understand the comparison between predicted 236 

and experimental values, linear fitting plots of the predicted and experimental moment capacities 237 

for the five algorithm models are shown in Fig.5. In this figure, the experimental values are plotted 238 

on the x-axis, and the predicted values are plotted on the y-axis. The diagonal line (y=x) indicates 239 

equivalence between predicted and experimental values, with more points accumulating along this 240 

line suggesting more accurate model predictions. Additionally, the training and testing datasets were 241 

marked on the plot to provide clearer insight into the response of both datasets. Moreover, dashed 242 

lines representing -10% (y=0.9x) and +10% (y=1.1x) error ranges are plotted above and below the 243 

diagonal line (y=x), considering data points within this error range as reasonably accurate. 244 

  



(a) SVR (b) XGBoost 

  
(c) MLP (d) RF 

 
(e) ERT 

Fig.5 The linear fitting plot between the experimental capacity and the predicted capacity of ML 

models 

From Fig.5, it is evident that the five different ML algorithm models exhibit their learning and 245 

predictive capabilities on both training and testing values. Among them, the performance of 246 

XGBoost model is significantly better than other models. The MLP and ERT models show instances 247 

where data points lie outside the permissible error range. Therefore, XGBoost demonstrates 248 

superior performance in predicting the moment capacity of steel and FRP hybrid reinforced ECC-249 

concrete composite beams. 250 

Additionally, the performance metrics, including RMSE, MAE, MAPE, and MAE, for the 251 

training and testing datasets under the five models was summarized, as shown in Table 4. 252 

Furthermore, the radar charts for the performance indicators of the training and testing datasets for 253 

each model were plotted as shown in Fig.6, aiming to compare the machine learning models used in 254 

this study. 255 



Table 4 Performance metrics of ML model 

ML model Dataset RMSE MAE R2 MAPE 

SVR 
Training 1.463 0.612 0.965 0.031 

Test 5.541 2.923 0.956 0.166 

XGBoost 
Training 1.402 1.082 0.984 0.046 

Test 2.481 1.536 0.965 0.071 

MLP 
Training 1.697 0.834 0.978 0.030 

Test 4.792 3.205 0.934 0.239 

RF 
Training 2.253 1.116 0.944 0.169 

Test 4.654 2.849 0.925 0.215 

ERT 
Training 1.196 1.299 0.973 0.027 

Test 3.901 2.675 0.958 0.103 

  

(a) RMSE (b) MAE 

  
(c) R2 (d) MAPE 

Fig.6 Radar chart of performance metrics for machine learning models 

From Table 4 and Fig.6, it can be observed that all developed ML models have achieved a high 256 

level of learning and prediction capability. There are minor differences among the models, which 257 

can be attributed to the different learning methods and limitations of each model. The data shows 258 



that the ERT model exhibits excellent learning and training performance, with the lowest values of 259 

RMSE=1.196 and MAPE=0.027 among the five machine learning models on the training dataset. 260 

However, the XGBoost model shows comparable performance to the ERT model in terms of 261 

learning and training, with the highest R2=0.984 among the five models on the training dataset. 262 

Moreover, the XGBoost model outperforms other models significantly in terms of prediction 263 

performance, with the lowest values of RMSE=2.481, MAE=1.536, and MAPE=0.071 on the 264 

testing dataset, as well as the highest R2=0.965 on the testing dataset among all models. Therefore, 265 

the evaluation metrics indicate that all developed machine learning models can accurately predict 266 

the moment capacity of ECC-concrete composite beams reinforced with steel and FRP bars. 267 

Although the ERT model demonstrates good learning and training performance, the XGBoost 268 

model exhibits better balance and prediction accuracy. 269 

To better assess the performance of each model, Taylor diagrams were plotted to evaluate the 270 

learning, training, and prediction capabilities of each model. Taylor diagrams essentially integrate 271 

three evaluation metrics of the model: correlation coefficient, center root-mean-square error, and 272 

standard deviation, onto a single coordinate graph, based on the cosine relationship among them 273 

[25]. By comparing the distances between the model-simulated and the tested data points, the model 274 

that is closest to the experimental data points demonstrates the best simulation performance. 275 

Currently, Taylor diagrams have been widely used to assess the performance of fiber reinforced 276 

composite materials. Fig.7 depicts the Taylor diagrams of the five machine learning models for the 277 

moment capacity of ECC-composite beams hybrid reinforced with steel and FRP bars in the 278 

training and testing datasets. In the figure, the purple dashed line represents the scale of the center 279 

root-mean-square error, the radial axes represent the normalized standard deviation, and the circular 280 

arcs represent the correlation coefficients. From both plots, it can be observed that XGBoost 281 

exhibits higher correlation coefficients and lower standard deviation and center root-mean-square 282 

error in both learning and prediction phases. Its model data points are closer to the true data points, 283 

demonstrating the best learning and training performance, and its prediction performance is closest 284 

to the experimental data. 285 



  
(a) Training dataset (b) Test dataset 

Fig.7 Taylor diagram presentation of ML models 

5. Assessment of Input Parameter Variable Importance and Correlation 286 

In recent years, given the impact of machine learning models on scientific research, efforts 287 

have been made to develop a method capable of explaining these models, namely Shapley Additive 288 

Explanations (SHAP) [49]. SHAP additive explanations are popular in machine learning models as 289 

they help individuals understand the importance of each input variable on the output variable [50]. 290 

This explanatory method can address the issue of multicollinearity by not only considering the 291 

influence of individual variables but also taking into account the impact of variable groups and 292 

potential synergistic effects between variables. It calculates the average marginal effect of each 293 

input parameter by evaluating the magnitude of feature variable attributes, including all possible 294 

combinations. The absolute value of the resulting SHAP values is used to determine the 295 

contribution of each input parameter to the output parameter; the higher the SHAP value, the greater 296 

the impact of the input parameter on the output parameter [51]. Therefore, in this study, SHAP 297 

additive explanations were applied to the XGBoost model with the best predictive performance, as 298 

shown in Fig.8. 299 



  
(a) SHAP value (b) mean |SHAP value| 

Fig.8 SHAP summary plot for input features 

In Fig. 8 (a), each data sample is represented by a point, where the horizontal position of these 300 

points indicates the SHAP value calculated for the given input feature. Positive SHAP values 301 

indicate increasing influence of the input feature on the model output, while negative SHAP values 302 

represent decreasing influence of the input variable. Additionally, coloring is applied to the input 303 

feature values within each data sample, with blue shading for low values, red shading for high 304 

values, and purple shading near the mean to provide visualization. Moreover, the width of the color 305 

region for each feature variable indicates the magnitude of its influence. In Fig.8 (b), passing the 306 

SHAP value matrix to the bar plot function will create a global feature importance plot, where the 307 

global importance of each feature is considered as the average absolute value of that feature across 308 

all given samples. The x-axis represents the mean absolute SHAP value, while the y-axis sorts the 309 

input variables based on their importance, with the input variable having the highest contribution 310 

positioned at the top. As shown in Fig. 8, when examining the factors affecting the bending capacity 311 

of steel and FRP bars hybrid reinforced ECC-concrete composite beams, it is found that the 312 

equivalent reinforcement ratio (ρ), design strength of FRP bars (ffd) and effective beam depth (h0) 313 

have significantly influence. However, from the SHAP analysis plot, it is less obvious that the 314 

compressive strength of concrete (fc) has a significant impact on the bending capacity. 315 

From reviewing the literature and relevant documents, there are three methods to measure the 316 

correlation density between variables: the Pearson correlation coefficient, the Spearman rank 317 

correlation coefficient, and the Kendall rank correlation coefficient. The Pearson correlation 318 

coefficient is used for continuous variables and requires the assumption of a normal distribution. 319 

The Kendall rank correlation coefficient is suitable for ordered categorical variables. The Spearman 320 

rank correlation coefficient has a broader scope of application and fewer prerequisites. It is used for 321 

ordinal variables and interval data that do not meet the assumption of a normal distribution. The 322 

specific formulas are shown below. 323 



Fig. 9 presents the Spearman rank correlation matrix for input features. It can be observed 324 

from the figure that among the beam dimension parameters, there is a notable correlation between 325 

beam width and effective height. Despite this correlation, these two parameters were independent 326 

variables as reported in the data collected. In the ECC-related parameters, a significant correlation is 327 

evident between fec and fet, as anticipated. Additionally, r shows correlation with both fec and fet, 328 

though the correlation is not significant. 329 

 
Fig.9 Spearman Correlation Matrix for input features 

Passing the SHAP value matrix to a heatmap for visualization, where instances are on the x-330 

axis and model outputs are on the y-axis, SHAP values are encoded according to a color scale. The 331 

samples are sorted based on hierarchical clustering according to explanatory similarity, grouping 332 

samples with similar reasons for model output together. The SHAP heatmap is depicted in Fig.10, 333 

with the model's outputs displayed above the heatmap matrix, and the global importance of each 334 

input parameter shown as a bar plot on the right-hand side in black. The f(x) value above the image 335 

represents the model's output, with the gray dashed line indicating the baseline. The f(x) curve 336 

demonstrates different SHAP values detected for similar f(x) values. From Fig.10, it's evident that 337 

the most effective input feature for the bending capacity of steel and FRP bars hybrid reinforced 338 

ECC-concrete composite beams is the equivalent reinforcement ratio (ρ), while the least effective 339 

input feature is the compressive strength of concrete (fc). By exporting the SHAP additive 340 

explanation plots and SHAP heatmap obtained from the XGBoost model, our understanding about 341 

how input features affect the bending capacity of steel and FRP bars hybrid reinforced ECC-342 

concrete composite beams is greatly enhanced. 343 



 
Fig.10 SHAP heat maps for input features 

6. Graphical user interface development 344 

In the development of machine learning models, it is particularly important to create a user 345 

interface application that allows direct interaction by researchers and engineers, aiming to 346 

popularize the widespread use of these models in engineering applications. A Graphical User 347 

Interface (GUI) facilitates users' understanding of complex data analysis and model outcomes, 348 

enabling them to better comprehend and optimize the behavior of the model by adjusting 349 

parameters and input values. This interface opens up the use of machine learning models to a wider 350 

audience, making the complex analysis process more understandable and facilitating 351 

communication between developers and users to improve the reliability of model results [52]. The 352 

GUI application is developed based on the tkinter module in the Python programming language, 353 

where developers can utilize simple components such as text boxes, buttons, and labels to 354 

implement GUI development. 355 

Therefore, this paper developed a GUI application based on the XGBoost model, which, as 356 

demonstrated in the comparison of five machine learning models in the previous section, exhibits 357 

higher accuracy. As shown in Fig.11, the GUI application developed can easily allow the users to 358 

input their own calculated data to predict the moment capacity of ECC-concrete composite beams 359 

hybrid reinforced with steel and FRP bars. For example, when the width of the beam cross-section 360 

is 150 mm, the yield strength of steel bar is 340 MPa, the effective height of beam is 166 mm, the 361 



design strength of FRP bar is 1260 MPa, the compressive strength of concrete is 47 MPa, the 362 

compressive strength of ECC is 41 MPa, the equivalent reinforcement ratio is 0.5%, the tensile 363 

strength of ECC is 3 MPa, and the ECC height ratio of beam height is 50%, the output flexural 364 

moment capacity is 26.97 kN·m. By creating a GUI module in the Python programming language, 365 

such development contributes to solving complex problems and expanding interfaces for interaction 366 

with humans. 367 

 

Fig.11 GUI for predicting bending capacity of ECC-concrete composite beams hybrid reinforced 

with steel and FRP bars 

7. Conclusion 368 

This study comprehensively investigates the bending capacity of steel and FRP bars hybrid 369 

reinforced ECC-concrete composite beams by using five different machine learning algorithm 370 

models (SVR, XGBoost, MLP, RF, and ERT). Utilizing 150 datasets from literature, analysis and 371 

organization of eight feature parameters were conducted, leading to the development of the most 372 

accurate model. Furthermore, employing the SHAP method, the impact of each input parameter on 373 

the bending capacity of steel and FRP bars hybrid reinforced ECC-concrete composite beams was 374 

evaluated, obtaining the following conclusions. 375 

1) All five machine learning algorithm models used in the study demonstrate good predictive 376 

performance. Among them, ERT exhibits superior training performance, with the lowest values of 377 

RMSE=1.196 and MAPE=0.027 among all models on the training dataset. However, XGBoost 378 

achieves the best predictive performance, with the lowest values of RMSE=2.481, MAE=1.536, and 379 

MAPE=0.071 among all models on the testing dataset. Additionally, XGBoost attains the highest R2 380 

value of 0.965 on the testing dataset, surpassing all other models. 381 



2) From the radar chart depicting the performance of the five machine learning algorithm 382 

models, it is evident that XGBoost exhibits superior balance and predictive accuracy. Analysis via 383 

Taylor diagrams reveals that, both in training and prediction scenarios, the data points of the 384 

XGBoost model are closest to the actual values, illustrating its optimal learning performance. 385 

Moreover, the predicted values are closest to the actual experimental values. 386 

3) According to the Spearman correlation matrix plot of the 150 experimental data points 387 

collected, a significant correlation exists between width and effective height within beam dimension 388 

parameters. Among ECC input parameters, there is a clear correlation between compressive and 389 

tensile strength. Additionally, there is a weak correlation between ECC height ratio of beam height 390 

and compressive/tensile strength.  391 

4) According to the analysis results of the SHAP additive explanation plot and the SHAP heat 392 

map, the equivalent reinforcement ratio (ρ), design strength of FRP bars (ffd) and effective height of 393 

the beam (h0) have significant impacts on the bending capacity. These are important input 394 

parameters. In comparison with other features, the influence of the compressive strength of concrete 395 

(fc) on flexural capacity is less pronounced. 396 

5) A graphical user interface (GUI) application was developed to accurately predict the 397 

bending capacity of steel and FRP bars hybrid reinforced ECC-concrete composite beams. The GUI 398 

can assist design engineers and researchers in estimating the bending capacity while significantly 399 

reducing the need for expensive test materials and complex experimental testing. 400 

This study provides a theoretical basis for predicting the bending capacity of ECC-concrete 401 

composite beams hybrid reinforced with steel and FRP bars. As the results of this study are limited 402 

to the selected parameters, future work will focus on developing prediction expressions applicable 403 

to a wider range of variable parameters using machine learning methods with more extensive 404 

parameter data. 405 
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Appendix 551 

 b(mm) h0(mm) fc(MPa) fec(MPa) fet(MPa) fy(MPa) ffd(MPa) ρ(%) r(%) Mu(kN·m) 

Tan 

Chen 

100 116 48.2 0 0 408 0 0.97 0 6.18 
100 116 48.2 38.8 2.4 408 0 0.97 25 7.17 
100 116 48.2 38.8 2.4 408 0 0.97 50 8.31 
100 116 48.2 38.8 2.4 408 0 0.97 75 7.63 
100 116 0 38.8 2.4 408 0 0.97 100 5.91 
100 116 48.2 0 0 408 0 1.95 0 10.31 
100 116 48.2 38.8 2.4 408 0 1.95 25 11.02 
100 116 48.2 38.8 2.4 408 0 1.95 50 13.6 
100 116 48.2 38.8 2.4 408 0 1.95 75 13.51 
100 116 0 38.8 2.4 408 0 1.95 100 11.82 
100 116 48.2 0 0 503 0 1.95 0 13.86 
100 116 48.2 38.8 2.4 503 0 1.95 25 13.37 
100 116 48.2 38.8 2.4 503 0 1.95 50 15.42 
100 116 48.2 38.8 2.4 503 0 1.95 75 15.81 
100 116 0 38.8 2.4 503 0 1.95 100 13.71 

Xiao 

Feng 

100 116 47 0 0 344 0 1.95 0 10.53 
100 116 47 40.6 2.4 344 0 1.95 25 10.9 
100 116 47 40.6 2.4 344 0 1.95 50 11.1 
100 116 47 40.6 2.4 344 0 1.95 75 12.2 
100 116 0 40.6 2.4 344 0 1.95 100 11.3 
100 118 47 0 0 0 1310 0.43 0 4.42 
100 118 47 40.6 2.4 0 1310 0.43 25 5.59 
100 118 47 40.6 2.4 0 1310 0.43 50 6.21 
100 118 47 40.6 2.4 0 1310 0.43 75 5.46 
100 118 0 40.6 2.4 0 1310 0.43 100 6.22 
100 118 47 0 0 0 1310 0.85 0 9.6 
100 118 47 40.6 2.4 0 1310 0.85 25 10.1 
100 118 47 40.6 2.4 0 1310 0.85 50 10.4 
100 118 47 40.6 2.4 0 1310 0.85 75 10.65 
100 118 0 40.6 2.4 0 1310 0.85 100 10.2 

Biyuan 

Wang 

150 166 47 0 0 408 0 0.45 0 9 
150 166 47 40.6 2.4 408 0 0.45 25 9.75 
150 166 47 40.6 2.4 408 0 0.45 50 11.25 
150 166 47 40.6 2.4 408 0 0.45 75 12 
150 166 0 40.6 2.4 408 0 0.45 100 12.5 
150 166 47 0 0 408 0 0.91 0 19.25 
150 166 47 40.6 2.4 408 0 0.91 25 19.5 
150 166 47 40.6 2.4 408 0 0.91 50 19.75 
150 166 47 40.6 2.4 408 0 0.91 75 20.5 
150 166 0 40.6 2.4 408 0 0.91 100 22.5 
150 168 47 0 0 0 1260 0.2 0 9.5 
150 168 47 40.6 2.4 0 1260 0.2 25 10.25 
150 168 47 40.6 2.4 0 1260 0.2 5 10.25 
150 168 47 40.6 2.4 0 1260 0.2 75 11.25 
150 168 0 40.6 2.4 0 1260 0.2 100 11.5 
150 168 47 0 0 0 1260 0.4 0 12 

150 168 47 40.6 2.4 0 1260 0.4 25 15.5 

150 168 47 40.6 2.4 0 1260 0.4 50 17.5 

150 168 47 40.6 2.4 0 1260 0.4 75 19.5 



150 168 0 40.6 2.4 0 1260 0.4 100 21.5 

Linglo

ng Pan 

150 166 46.5 0 0 345 0 0.91 0 17.08 

150 166 46.5 40.6 2.4 345 0 0.91 25 18.63 

150 166 46.5 40.6 2.4 345 0 0.91 50 19.25 

150 166 46.5 40.6 2.4 345 0 0.91 75 19.12 

150 166 0 40.6 2.4 345 0 0.91 100 18.93 

150 167 46.5 0 0 410 0 0.31 0 6.31 

150 167 46.5 40.6 2.4 410 0 0.31 25 6.95 

150 167 46.5 40.6 2.4 410 0 0.31 50 7.23 

150 167 46.5 40.6 2.4 410 0 0.31 75 8.83 

150 167 0 40.6 2.4 410 0 0.31 100 10.51 

150 167 46.5 0 0 410 0 0.63 0 10.85 

150 167 46.5 40.6 2.4 410 0 0.63 25 12.11 

150 167 46.5 40.6 2.4 410 0 0.63 50 13.34 

150 167 46.5 40.6 2.4 410 0 0.63 75 13.02 

150 167 0 40.6 2.4 410 0 0.63 100 12.83 

150 166 46.5 0 0 503 0 0.91 0 21.34 

150 166 46.5 40.6 2.4 503 0 0.91 25 22.56 

150 166 46.5 40.6 2.4 503 0 0.91 50 22.95 

150 166 46.5 40.6 2.4 503 0 0.91 75 24.02 

150 166 0 40.6 2.4 503 0 0.91 100 22.56 

Junyu 

Chen 

150 167 47 0 0 408 0 0.63 0 11 

150 167 47 40.6 3 408 0 0.63 25 12 

150 167 47 40.6 3 408 0 0.63 50 13 

150 167 47 40.6 3 408 0 0.63 75 13 

150 167 0 40.6 3 408 0 0.63 100 13 

150 166 47 0 0 408 0 0.91 0 19.25 

150 166 47 40.6 3 408 0 0.91 25 19.5 

150 166 47 40.6 3 408 0 0.91 50 19.75 

150 166 47 40.6 3 408 0 0.91 75 20.5 

150 166 0 40.6 3 408 0 0.91 100 21.5 

150 166 47 0 0 340 1260 0.5 0 23 

150 166 47 40.6 3 340 1260 0.5 25 24 

150 166 47 40.6 3 340 1260 0.5 50 27.5 

150 166 47 40.6 3 340 1260 0.5 75 27.5 

150 166 0 40.6 3 340 1260 0.5 100 25 

150 167 47 0 0 408 1260 0.41 0 18 

150 167 47 40.6 3 408 1260 0.41 25 19.25 

150 167 47 40.6 3 408 1260 0.41 50 22 

150 167 47 40.6 3 408 1260 0.41 75 22 

150 167 0 40.6 3 408 1260 0.41 100 23 

150 166 47 0 0 408 1260 0.55 0 22 

150 166 47 40.6 3 408 1260 0.55 25 27.5 

150 166 47 40.6 3 408 1260 0.55 50 23 

150 166 47 40.6 3 408 1260 0.55 75 27.5 

150 166 0 40.6 3 408 1260 0.55 100 26 

150 167 47 0 0 408 1260 0.67 0 17.5 

150 167 47 40.6 3 408 1260 0.67 25 22 

150 167 47 40.6 3 408 1260 0.67 50 22.5 

150 167 47 40.6 3 408 1260 0.67 75 20 

150 167 0 40.6 3 408 1260 0.67 100 20 

150 166 47 0 0 408 1260 0.96 0 23.75 



150 166 47 40.6 3 408 1260 0.96 25 27.5 

150 166 47 40.6 3 408 1260 0.96 50 25.5 

150 166 47 40.6 3 408 1260 0.96 75 27.5 

150 166 0 40.6 3 408 1260 0.96 100 27.5 

150 166 47 0 0 503 1260 0.96 0 27 

150 166 47 40.6 3 503 1260 0.96 25 30.5 

150 166 47 40.6 3 503 1260 0.96 50 30 

150 166 47 40.6 3 503 1260 0.96 75 31 

150 166 0 40.6 3 503 1260 0.96 100 27.5 

Zufa 

Jiang 

140 160 0 45.2 5 0 2437 0.7 100 34.8 

140 160 0 45.2 5 0 2437 1.05 100 43.6 

140 153 0 45.2 5 0 2437 1.76 100 51.4 

140 160 0 45.2 5 0 2701 0.38 100 27.6 

140 160 0 45.2 5 0 2001 0.178 100 52.2 

140 160 0 45.2 5 0 1000 0.105 100 30.9 

140 160 0 45.2 5 406 0 0.105 100 23.46 

140 160 45.2 0 0 0 2437 0.105 0 36.26 

140 160 45.2 0 0 0 1000 0.105 0 25.83 

Ren 

Hu 

150 248 49.4 0 0 470 1660 4.89 0 96.2 

150 257 0 42.1 4 470 1660 1.84 100 45.96 

150 254 0 42.1 4 470 1660 2.69 100 70 

150 248 0 42.1 4 470 1660 4.89 100 117.7 

150 248 49.4 42.1 4 470 1660 4.89 30 105.4 

150 128 49.4 42.1 4 470 1660 9.45 30 44.9 

150 148 49.4 42.1 4 470 1660 8.19 30 53.5 

150 178 49.4 42.1 4 470 1660 6.81 30 68.9 

150 198 49.4 42.1 4 470 1660 6.12 30 78.9 

150 228 49.4 42.1 4 470 1660 5.32 30 94.4 

100 198 49.4 42.1 4 470 1660 9.187 30 69.2 

150 248 49.4 42.1 4 470 1660 4.89 16.7 102.1 

150 248 49.4 42.1 4 470 1660 4.89 43.3 113.5 

150 248 49.4 42.1 4 470 1660 4.89 56 105.6 

150 248 49.4 42.1 4 470 1660 4.89 70 104.5 

150 248 49.4 42.1 4 470 1660 4.89 83 101.5 

150 248 40 42.1 4 470 1660 4.89 30 92.5 

150 248 50 42.1 4 470 1660 4.89 30 106.1 

150 248 60 42.1 4 470 1660 4.89 30 110.5 

150 248 70 42.1 4 470 1660 4.89 30 124.9 

150 248 80 42.1 4 470 1660 4.89 30 133.1 

Shuo 

Wang 

150 264 31.25 0 0 0 910 0.571 0 21.3 

150 264 31.25 29.76 2.5 0 910 0.571 33 27 

150 264 31.25 29.76 2.5 0 910 0.571 67 27.6 

150 264 31.25 29.76 2.5 0 910 0.571 100 30.3 

150 264 31.25 0 0 0 910 0.85 0 24.3 

150 264 31.25 29.76 2.5 0 910 0.85 33 33.6 

150 264 31.25 29.76 2.5 0 910 0.85 67 36.3 

150 264 31.25 29.76 2.5 0 910 0.85 100 30.6 

150 264 43.5 29.76 2.5 0 910 0.57 33 30.6 

150 264 50.34 29.76 2.5 0 910 0.57 33 33.9 
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