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ABSTRACT 

 

Toxic compounds, such as pesticides, are routinely tested against a range of aquatic, 

avian and mammalian species as part of the registration process. The need for 

reducing dependence on animal testing has led to an increasing interest in alternative 

methods such as in silico modelling. The QSAR (Quantitative Structure Activity 

Relationship)-based models are already in use for predicting physicochemical 

properties, environmental fate, eco-toxicological effects, and specific biological 

endpoints for a wide range of chemicals. Data plays an important role in modelling 

QSARs and also in result analysis for toxicity testing processes. This research 

addresses number of issues in predictive toxicology. One issue is the problem of data 

quality. Although large amount of toxicity data is available from online sources, this 

data may contain some unreliable samples and may be defined as of low quality. Its 

presentation also might not be consistent throughout different sources and that makes 

the access, interpretation and comparison of the information difficult.  To address this 

issue we started with detailed investigation and experimental work on DEMETRA 

data. The DEMETRA datasets have been produced by the EC-funded project 

DEMETRA. Based on the investigation, experiments and the results obtained, the 

author identified a number of data quality criteria in order to provide a solution for 

data evaluation in toxicology domain. An algorithm has also been proposed to assess 

data quality before modelling. Another issue considered in the thesis was the missing 

values in datasets for toxicology domain. Least Square Method for a paired dataset 

and Serial Correlation for single version dataset provided the solution for the problem 

in two different situations. A procedural algorithm using these two methods has been 

proposed in order to overcome the problem of missing values. Another issue we paid 

attention to in this thesis was modelling of multi-class data sets in which the severe 

imbalance class samples distribution exists. The imbalanced data affect the 

performance of classifiers during the classification process. We have shown that as 

long as we understand how class members are constructed in dimensional space in 

each cluster we can reform the distribution and provide more knowledge domain for 

the classifier.  

 

Keywords: artificial intelligent, data quality, data generation, model performance, 

toxicity, QSAR, classification algorithm, clustering, imbalanced dataset, endpoints 
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1. INTRODUCTION 

1.1 Project Description and Objectives 

Problem Background: 

Toxic compounds, such as pesticides, are routinely tested against a range of aquatic, 

avian and mammalian species as part of the registration process. The need for 

reducing dependence on animal testing has led to an increasing interest in alternative 

methods such as in silico modelling. These models can quantify molecular properties 

of a compound to predict a specific physiological effect e.g. a toxicological endpoint 

in a given animal species. The QSAR (Quantitative Structure Activity Relationship)-

based models are already in use for predicting physicochemical properties, 

environmental fate, eco-toxicological effects, and specific biological endpoints for a 

wide range of chemicals. Most of the models are based on a particular statistical 

method such as regression, partial least squares and principle component analysis.  

There are a number of limitations to this conventional QSAR approach. One needs to 

develop a separate model for each class (and sometimes for each sub-class) of 

chemicals. The ability of conventional QSAR approaches in handling complex data is 

usually limited. The outcome is often hard to generalise across different compounds 

or test species. 

For the reasons mentioned above, the emphasis amongst molecular modelling 

community has shifted in recent years towards the development and use of 

generalised approaches that are applicable across chemical classes or test species. 

More powerful computational approaches have also become available recently (expert 

systems, Bayesian networks, machine learning etc). This has opened up new avenues 

for identifying relational patterns within complex datasets, and thereby overcoming 

the limitations associated with conventional QSARs [1]. 

Problem Description: 

Data plays important role in modelling QSARs and also new finding in all the 

processes of toxicity testing. Data quality and modelling are the main issues for this 

project. First we need to identify the data quality problems in order to define an 

assessment framework. Then modelling the multidimensional and imbalance data 

with high accuracy would be the second step. In order to achieve these objectives, the 

following milestones are identified. 
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Project Objectives: 

 

� Design a prototype in order to collect toxicity data from online sources. The 

toxicity data would be studied from structural and representational points of view.   

� Study and investigate the quality of the data collected from different sources or 

within one source calculated by different software tools in order to identify 

deficiencies and highlight quality criteria applicable to the toxicity data sets. 

� Define algorithm to fill in missing values, increase data size and consequently 

model performance in toxicity datasets.  

� Define algorithm to generate artificial data in imbalanced datasets and improve 

model performance based on each dataset characteristics.  

In this work we have used number of toxicity data files for our experimental work 

which are kept confidential by University of Bradford-Central Science Laboratory 

contract thus no quantitative information is provided in thesis analysis. 

1.3 Thesis Structure 

The thesis is composed of nine chapters and one appendix. 

Chapter 1 (Introduction) presents the project, stating problem statement, problem 

description, problem’s background and project objectives. 

Chapter 2 (Data in Predictive Toxicology) includes the project description and 

objectives and also the result of comparison investigation on online toxicology data 

representation, structures and values presented and literature study of this issue (the 

work done by other people). Some of these results have been produced in first and 

second paper represented to the University of Bradford workshop.  

Chapter 3 (Data Quality Assessment) discusses some of the data quality assessment 

methods in different domains and their relevance to toxicology domain. Also we 

discuss the missing value problem and some of the existing solutions. 

Chapter 4 (A study on data quality in toxicology and new algorithm for data quality 

assessment process) starts with looking at DEMETRA datasets for five endpoints and 

highlights the deficiencies in the data values and presentation. The data has been 

modelled using eight different algorithms using the Weka data mining tool and 

comparison study between the two datasets for the same endpoints has been carried 

out to show how the values differences affect the model performance. The results of 

this work has been summarized and presented at the UKCI international conference. 

Also this chapter investigates the data quality assessment criterion in toxicology 
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domain, which has been drawn as a result of experimental work. As a result a 

procedural algorithm has been proposed. All the experimental work of modelling the 

data on five endpoints is produced. The result of the work has been presented and 

published at AAIA international conference, also the extended version with the result 

of more experimental work has been published in TQ (Task Quarterly) computer 

science Polish national journal. 

Chapter 5 (A New Algorithm for Missing Value Generation in Toxicity Datasets) 

explains about using the old method of Least Square Method to generate artificial data 

to fill missing values in empty cells and reconstructing and modelling data. The effect 

of this action has been analysed in different conditions: when there are one or more 

version of the same dataset exists. An algorithm to show the procedural process has 

been proposed.  

Chapter 6 (Artificial Data Generation, Data Characteristics and Model 

Performance) proposes an algorithm in order to generate artificial data in a way that 

boost the learner performance. With the use of clustering algorithms, ROC analysis 

and Probability Density Function, the core of potential cluster or class is identified 

and then artificial data added to boost the class. An algorithm has been proposed in 

chapter 8. The results of this work have been published in ICDM international 

conference. 

Chapter 7 (Conclusions and Future Work) explains conclusions of the work 

performed for the duration of this project and also the future work and the possible 

extension routes have been suggested. In this chapter original contributions have also 

been listed. 

The appendix presents details on analysis and design of the software prototype 

for toxicology data management. 
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2. DATA IN PREDICTIVE TOXICOLOGY 
Predictive toxicology, the science of developing in silico models for toxicity 

prediction is an important field for chemical and pharmaceutical industry, regulatory 

bodies and environmental protection agencies. In this domain the use of experimental 

data for Quantitative Structure Activity Relationship modelling [2] is a primary task. 

Quantity Structure Activity Relationship is relating aspects of chemical compound 

structure to biological activities against various endpoints in order to predict chemical 

toxicity of new compounds. The sensitivity of this procedure proves how vital the 

data is in this domain. 

 2.1 Data Description in Predictive Toxicology 

 

Public toxicity databases are a valuable source of information of available toxicity 

data. These databases have been scattered across public and private sources. They 

offer bank of chemicals and chosen endpoints that are in place for use by public, 

scientists, government and industry. But the main problem with databases is that they 

don’t have a standard format and contain different types of descriptive information. A 

major problem with many of them is also that they don’t contain chemical structure 

information. One of the examples of such a database is IRIS (Integrated Risk 

Information System) [3]. This database like most other toxicity databases is 

searchable and indexed by common chemical names and/or CAS number (Chemical 

Abstract Service Registry number). Although CAS identifiers are unique, they are 

subject to transcription, typing and formatting errors, and have no chemical meaning. 

In contrast, chemical structures have universally understood scientific content. 

Linkage of chemical structures with chemical toxicity information is very important 

issue in designing (quantitative) structure-activity relationship (Q) SAR models. This 

models are used for chemical compounds toxicity predictions [4, 5]. 

The generality, quality and usability of toxicity databases highlight the importance of 

the data representation from various points of view. Their data quality, structure and 

format, data availability and accessibility are the issues that need proper attention in 

order to produce reliable projects to mine information related to chemical toxicity.  

The effort of environmental agencies to organize and manage toxicity databases lays 

on standardization of the elements of these data in order to improve their integrity and 

reliability. One of these organizations is National Institute of Standards and 



 14 

Technology [6] which focuses on producing a common vocabulary and 

standardization of weights, measures, names and symbols to scientific enterprises and 

agreement of a data file terminologies. Another issue that raises the importance of the 

matter further is the use of this data for Quantitative Structure Activity Relationship 

modeling method or relating aspect of compound structure to biological activities in 

order to predict chemical toxicity of new compounds. Data analysis and integration 

for producing models using data mining/ machine learning techniques also rely on 

quality of data. The idea of developing Artificial Intelligence (AI) in-silico modeling 

for toxicity prediction is also main interest to regulatory bodies and environmental 

protection agencies that encourages a non-animal alternative to toxicity testing [7].  

2.1.1 Toxicology Data Dimensions 

Toxicology is the study of the harmful interactions between chemicals and biological 

systems. Toxic chemicals have varying degrees of activity in biological systems. The 

level of toxicity, however, depends on the level and type of exposure. Exposure also 

depends on how the toxic is introduced to the organism. If gaseous, it is likely to be 

inhaled or absorbed through organism’s surface. Thus toxicological effects are 

proportional to both dose and exposure time, and can be acute (short term), sub-

chronic (mid-term) or chronic (long-term) [8]. In toxicology databases compounds are 

listed with the number of properties, which explain all details about that specific 

compound and also the toxicity information.  Some of the keywords used in these 

databases are explained below:   

-Descriptor: an element that describes a specific property of the compound. 

-Chemical compound:  is a substance formed from two or more elements, with a fixed 

ratio that determines its composition. 

-Endpoints: a biological effect used as an index of the effect of a chemical on an 

organism. 

- Mechanism of Action/Mode (MOA): the way a chemical compound interacts with a 

living system.   

-Dose: a measured amount of a chemical compound. Dose is often expressed in 

milligrams per kilogram (mg/kg) or parts per million (ppm).  

-LD50: the amount of a chemical that is lethal to one-half (50%) of the experimental 

animals exposed to it. LD50s are usually expressed as the weight of the chemical per 
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unit of body weight (mg/kg). It may be fed (oral LD50), applied to skin (dermal LD50), 

or administered in the form of vapours (inhalation LD50) [9]. For aquatic species, this 

is expressed as lethal concentration i.e. LC50 (mg/ litre). 

Figure1 shows screen shots of four different toxicology database’s user interface, 

which are displaying information about same chemical compound [10, 11, 12, 13, 14]. 

Study has shown that toxicity information related to the same compound has various 

representations in different databases. This variation has lots of reasons that once 

again prove that data is not reliable.  

 

 
Figure1: Information relate to “Acrolein” are displayed from four different databases. 

 

2.1.2 Descriptors Calculation 

In predictive toxicology chemical compounds descriptors are calculated by different 

software programs. In our project we used the datasets which their descriptors have 

been generated by ACD and PALLAS. Followings are the description of these 

programs.  

ACD: Advanced Chemistry Development, Inc., (ACD/Labs) is a chemistry software 

company offering solutions that truly integrate chemical structures with analytical 
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chemistry information to produce ChemAnalytics™. ACD/Labs creates innovative 

software packages that aid chemical research scientists worldwide with spectroscopic 

validation of structures, elucidation of unknown substances, chromatographic 

separation, medicinal chemistry, preformulation of novel drug agents, systematic 

nomenclature generation, and chemical patenting and publication. Combined, 

ACD/Labs' solutions create an analytical informatics system that provides dramatic 

feed-forward effects on the chemical and pharmaceutical research process. Founded 

in 1993, and headquartered in Toronto, Canada [15]. 

PALLAS: Software predicting pKa, logP, logD values and metabolites based on 

structural formulae of compounds. In the field of industrial pharmacy perhaps the 

most important physicochemical characteristics of drugs and excipients are their 

acidity or basicity (expressed by their pKa value), their hydrophobicity and it's 

dependence on pH (expressed by their logP and logD values respectively).To 

determine precision values of pKa, logP or logD presents a great deal of work. Thus 

the use of computers is giving great progress to the practice. The profile in reaction 

kinetics depends closely on pKa values (1, 2, 3). In preparative chemistry, pKa values 

of the reaction products can be used to select conditions for synthesis. The knowledge 

of the pKa values of intermediate products is also important, although they are often 

very difficult to measure [16]. 

2.1.3 Toxicology Database Example (DSSTox –Features and Elements) 

Distribute Structure-Searchable Toxicity (DSSTox) [17], is a free public accessible 

site, which has been launched on US Environmental Protection Agency public 

Internet. This website is connected to four DSSTox databases with all the associated 

documentations collaborating one with each other within different areas of toxicology 

and chemical activity. Also the main aim of this project is to adequately meet the data 

requirements for flexible searching, (Q) SAR model development and building of 

Chemical Relational Databases (CRD). This database has three major elements:  

1) “Adopt and encourage the use of a common standard SDF (Structure Data File) file 

format for public toxicity databases that includes chemical structure, text and property 

information.  It was already adopted as an industry standard import/export feature of 

chemical modeling and CRD applications. The latter refers to a computer application 
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that provides for storage of chemical records containing structures and text/data 

fields”. 

 2) “Implement a distributed source approach that will enable decentralized; free 

public access to toxicity data files and that will effectively link toxicity data sources 

with potential users and modelers of these data from other disciplines. The DSSTox 

Source refers to the person or organization that compiled and currently maintains a 

public toxicity database for which a corresponding DSSTox SDF file has been 

created. The Source is considered as the owner of the data and is responsible for the 

file’s maintenance and upgrade and would be referenced and acknowledged in any 

subsequent use of that file”. 

3) “Engage public/commercial/academic/industry groups in contributing to and 

expanding the DSSTox public database network: A DSSTox Central Website will 

serve as the hub of the DSSTox project providing general information on DSSTox 

standard file format, a central index of field names and links to DSSTox Sources and 

SDF files, CRD vendors and public tools and resources of general interest to the 

DSSTox community. It also connects the DSSTox user community members and to 

enlist their help in encouraging the DSSTox recommended standards, reporting 

DSSTox SDF file errors to the Sources, offering enhancements to existing DSSTox 

SDF files and aiding in the construction of new DSSTox SDF files “[18]. 

2.1.4 DEMETRA Datasets 

The DEMETRA datasets have been produced by the EC-funded project QLK5-CT-

2002-00691. It was focused on the development of environmental modules for 

evaluation of toxicity of pesticide residues in agriculture. 

This project’s aim has been to develop predictive models and software which give a 

quantitative prediction of the toxicity of a molecule, in particular molecules of 

pesticides, candidate pesticides, and their derivatives. The input for models is the 

chemical structure of the compound, and the software algorithms use “Quantitative 

Structure-Activity Relationships” (QSARs).  

DEMETRA project has constructed a database for five toxicological end-points. A 

survey was conducted amongst DEMETRA partners and subcontractors to gather 

information about databases that contain pesticide toxicity data to determine the 

availability of sufficient good quality data.  
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Suitable datasets were defined, with pesticides and their activities. They have 

collected at least 100 chemicals for each end point and more than 200 chemicals for 

two endpoints. These datasets are named after the endpoints the values are collected 

for: DietaryQuail, Bee, Daphnia, OralQuail and Trout; description of the datasets is 

included in chapter 5 below. 

2.1.5 In silico Analysis 

Toxicity is the one of the most important parts in drug discovery. There are therefore 

great needs for the techniques that can identify the effects of the untested chemical 

compounds at the early stage of the product development on the environment. 

Computer based (in silico) techniques are the solution for this problem. These 

techniques are cost effective and fast without an available compound. In silico 

toxicity predictions are methods to test biological models, drugs and medical 

experiments using complex computer models rather than costly animal experiments. 

They model biochemical events relevant for toxicity testing and produce prediction 

from a training set of experimentally determined data (Data Driven Systems) [19]. 

2.1.6 In vivo and in vitro Testing 

In vivo testing programs are methods that use laboratory animals. It was initiated in 

the early 1970s and used to assess the safety of various substances. These tests are 

carried out for the development of drugs, food additives, pesticides, and industrial 

chemicals, and in humans using several animal species. In vivo studies differ in 

duration from short-term dosing to lifetime exposure. They include studies to assess 

the potential of birth defects, as well as multigenerational studies for assessing 

adverse reproductive outcomes. They are conducted under the Good Laboratory 

Practices (GLP) guidelines. These guidelines, produced by the U.S. Food and Drug 

Administration (FDA) and other regulatory agencies, lay out the boundaries within 

which toxicity studies that are to be used for regulatory purposes will be conducted. 

Most laboratories conduct toxicology studies within the regulations of the GLP 

guidelines even if the studies are not going to be used for regulatory purposes [20]. 
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2.1.7 Pesticide Risk Assessment 

Pesticides are products that are used to control pests. Some examples of these are: 

slug pellets, ant powder, weed killers, and rat and mouse baits. Pesticides are not just 

chemicals; they include a very large range of different types of products. Some of 

them are natural which are used in farms to protect crops from insect pests, weeds and 

fungal diseases. However, as pesticides are used to kill unwanted pests, weeds and 

moulds, they can also harm people, wildlife and the environment. This is why there 

are strict controls in place over their sale and use. There is a legal obligation to carry 

out and record a Local Environment Risk Assessment for Pesticides.There are 

statutory controls on the advertisement, sale, supply, storage and use of pesticides in 

the UK. Some of these rules indicate that a pesticide should be: 

• Safe to humans - the consumer, users and bystanders. 

• Safe to the environment - including soil, water and non-target animals and plants. 

• Effective - that they control the pest, weed, or disease and that they have no 

adverse effect on the crops [21]. 

2.1.8 QSAR Modelling 

A QSAR is a model, which relates the biological activities of a series of similar 

compounds to one or more physicochemical or structural properties of the 

compounds. In this definition, "similar" means having the same mechanism of action, 

but not necessarily having a related chemical structure. Quantitative Structure 

Activity Relationships (QSARs) are mathematical models representing complex 

relationships between compound’s chemical properties and biological activities. They 

are used to provide prediction of biological activities of untested or unavailable 

chemical compounds.  

When a chemical is administered to an organism, two events must occur for a 

biological response to be triggered. Firstly, the compound has to be transported to the 

site of action (the "receptor"); secondly, it must interact with the target in an 

appropriate manner. Interaction with the target ("receptor") is governed largely by two 

factors: the size and shape of the xenobiotic, which will control how well the 

molecule fits the receptor site; and the nature and relative positions of appropriate 

functional groups on the molecule, which will affect the type and strength of the 

interaction with complementary groups on the receptor [2]. 
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As it is apparent from above, data plays important role in modelling QSARs and also 

new finding in all the processes of toxicity testing. 

Scientists nowadays use a variety of tools such as TOPKAT [22], DEREK [23] and 

OASIS [24] to accomplish these models. There are some data quality assurance and 

standard procedural issues for the data used and also for the model itself, which are as 

follows: 

-Basic QSAR-modelling conditions: include checking data for homogeneity and 

representatively. Data Homogeneity: means that the used compounds for modelling 

should have similar chemical and biological properties. 

-Representatively: the selection of the training set and the type of compounds 

included is very important. This set should be able to represent the chemical domain 

of compounds for study.  

-Procedural steps: the model needs to be validated. Valid models are more suitable to 

predict better. They are characterized by model coefficients proportional to their 

significance to the modelled process and consistent with fundamental chemical, 

biological and toxicological knowledge [25].  

Above are just some examples of the issues highlighted for QSAR modeling. Of 

course considering these would assure more reliable model development. There are 

also some general rules that need to be considered when ones want to select the data 

from open source databases.  Some of these rules are as follows:  

-Data selection from experiments that have used standardized procedure or applied 

Good Laboratory Practice (GLP).  

-Data generated from long-term chronic exposures rather than to short-term acute 

exposures. 

-Data measured by a single protocol and same laboratory and by the same worker.  

-Free of experimental errors. 

-Data generated from studies using a similar route of exposure(s) to the likely ones at 

the site” [26, 27]. 

Compiling data for QSARs modeling needs special attention. Since the base of every 

model is the similarity of group of compounds in structure and activities, the model at 

the end should be able to project this through simple testing strategies. This is 

achieved by selection of meaningful, interpretable descriptors.    
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A. The importance of descriptors selection in modelling 

Modelling valuable QSARs is based on two fundamental elements: (i) datasets 

(collected as a result of experimental testing on selected chemicals under 

investigations) and (ii) descriptors (values used to describe properties of those 

chemicals and their effects). Properties also identify the effects and behaviours of 

chemicals. QSARs project the relationships between these structural descriptors and 

descriptors of biological effects (such as LD50: the amount of a chemical that is lethal 

to half (50%) of the experimental animals exposed to it) using the datasets. The 

reliability and validity of the produced model depends on the quality of the 

descriptors [20]. If one descriptor is significant in terms of correlation to the toxicity 

output, two are not necessarily better, particularly when they reflect the same property 

(are highly correlated). Thus special attention needs to be paid when descriptors are 

selected to model QSARs. Descriptors that are related to the biological endpoint of 

the compound have more impact in the produced model. Examples of such molecular 

properties are hydrophobicity, steric and electronic properties, molecular weight, pKa 

and so forth. These descriptors provide more insight details about compounds 

mechanical properties [25]. 

2.2 Data Integration 

The concepts of data integration and data fusion are normally considered the same 

although they are different. Integration may play a similar role as fusion though it 

implicitly refers more to concatenation than to the extraction of relevant information 

[28]. Following sections clarify the meaning of these two terms further.  

A. Data Integration 

The fast growing technology of the Internet and e-business in recent years has caused 

an explosion in the amounts and types of information available to enterprises. Data is 

accessible from different sources and in various formats, which faces the businesses 

the challenge of information integration [29]. They need to use different tools and 

techniques to understand the data, extract information from this data and use the result 

for their progression and future management’s decisions making. Roth et al. [29] 

defines information integration as “a technology approach that combines core 

elements from data management systems, content management systems, data 

warehouses and other enterprise applications into a common platform”. 
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It requires combining and matching information in different sources and resolving a 

variety of conflicts. With the number of data sources growing very fast, data 

integration would become even more vital in the future [30]. 

B. Data Fusion 

There are a number of definitions published from different sources, definitions such 

as merging, combining and integrating. Mangolini defines data fusion as a “set of 

methods”, tools and means using data coming from various sources of different 

nature, in order to increase the quality of the requested information [28].  

Based upon the works of Buchroithner [31] and Wald [32] the following definition 

was adopted best describes the concept: “data fusion is a formal framework in which 

are expressed means and tools for the alliance of data originating from different 

sources. It aims at obtaining information of greater quality; the exact definition of 

greater quality will depend upon the application”. However, the definition for data 

fusion should not be restricted to data output from sensors, methods, techniques or 

architectures of the systems [28]. 

2.3 Why Data Integration in Toxicology 

Integrated access to information that is spread over multiple, distributed and 

heterogeneous sources is an important problem in many scientific domains. In 

toxicology there is an overwhelming amount of data in public and commercial 

databases available for data analysis and knowledge discovery. The time and cost 

effective usage of these data is hampered by two main problems: (i) the distribution of 

relevant data over many heterogeneous data sources and (ii) the quantity of errors and 

inconsistencies within these sources. The first problem is solved by data integration 

approaches, which the second problem is tackled by means of data fusion or cleansing 

[33]. As mentioned in the first chapter data from different sources is needed to be 

integrated in a central repository, stored, accessed and studied for scientific findings 

like mining and modeling Q(SAR)s.  

Regarding the presentation of the data and data structure an important step has been 

taken for predictive toxicology data and vocabulary standardization. XML (Extensible 

Markup Language) has been used to explain the data objects in order to make the 

intergration easier. Specifically PToxML (XML for Predictive Toxicology) has been 

proposed to describe chemical information. 
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There is also an idea of Multidimensional integration approach where the data are 

materialized in a local relational database. This database treats each data source as an 

independent dimension, which its component schema links to global schema. 

Although at the moment the main problem of integration is a data inconsistency so a 

framework is needed in order to clarify integration process for toxicity data. Several 

approaches to solve inconsistency between databases have been implemented. For 

example one is data fusion or reconciliation of data. That is different values become 

just one using a fusion function (i.e. average, highest a majority), depending on the 

data semantics. Some guidelines have been brought forward in the following chapters, 

which highlights the main issues about what sort of data needs to be considered and 

collected for study.  

2.4 Benchmark Datasets  

In our work besides Demetra datasets we used number of UCI [34] datasets.  This is 

an online repository of large datasets which encompasses a wide variety of data types, 

analysis tasks, and application areas. The primary role of this repository is to enable 

researchers in knowledge discovery and data mining to scale existing and future data 

analysis algorithms to very large and complex data sets.  

There are number of datasets which are designed for classification tasks which have 

been used to test our data generation algorithm in the last chapter. 

2.5 Summary and Conclusions 

We described toxicity data as available from online sources. This data is sometimes 

unreliable and possess low quality. Its presentation is also not consistent throughout 

different sources and that makes the interpretability and accessibility of the 

information difficult.  The toxicity data have different dimensions. The chemical 

compounds also have number of properties (descriptors), which relates to their 

biological activities. This relationship can be modelled by QSARs, which are used for 

toxicity prediction of untested chemicals. There are standard procedural steps to build 

QSARs. Data quality and descriptor selection plays important role in this process. 

Data quality and QSARs are two fundamental elements in toxicology studies. 

Therefore we address these issues in chapter 3.  
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3. DATA QUALITY ASSESSMENT 

 

Nowadays, given the development and low cost of high data storage capacities, more 

experimental data is available from various scientific laboratories. A modern 

approach to the accessibility of large amounts of data is therefore using data 

integration methods. In this context, data quality is one of the most important 

attributes for data integration. 

What is data quality assessment? Data quality assessment is the process of evaluating 

data to meet the specific needs of the domain users. Most important measures of data 

quality are accuracy, completeness, consistency, timeliness, uniqueness and validity. 

Data quality initiatives are generally focused on improving these metrics so that data 

will promote reliability of the system. 

Data quality efforts tend to focus on transforming data to improve the efficiency of 

enterprise applications. This data might comprise number of attributes and elements.  

In our project we draw our attention to the importance of this issue.  

We have used toxicology domain as the field of our experimental work. In predictive 

toxicology, the experimental data is used for Quantitative Structure Activity 

Relationship modelling (QSAR) [25]. QSAR is relating aspects of chemical 

compound structure to biological activities against various endpoints in order to 

predict chemical toxicity of new compounds. Currently most of toxicity data is 

obtained from publicly available databases such as Toxnet [10] or DSSTox [17] as 

collation of various experimental data from governmental or industrial bodies. But 

because of their limitations such as various experimental conditions, incomplete 

source identification or lack of standardization requirements for different 

measurement units, many of them may still not be fully recognized as reliable 

sources. Efforts are paid to organize and manage toxicity databases toward 

standardization and to improve their integrity and reliability by National Institute of 

Standards and Technology [6] which focuses on producing a common vocabulary of 

weights, measures, names and symbols to scientific enterprises and agreement of a 

data file terminologies. This effort provides procedural guidelines for experimental 

work but still the inconsistencies of data values within a source or from one source to 

another remain a subject to be addressed. These drawbacks generated a demand of 

methods to tackle the data quality problems [40]. In the next sections, we overview 
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some integration methods implemented in other domains to address the problem of 

low quality data. A short analysis of each method is also provided to clarify the 

relevance of each approach to the predictive toxicology domain. 

3.1 Data Quality Assessment Methods 

Data quality and information quality are terms often used synonymously, although 

quality data refers to attributes such as error rate, correctness and integrity but 

information quality is concerned with how the information is produced and 

interpreted and contains dimensions like: availability, completeness and 

documentation [41].  

A number of tools and methods have been studied and introduced in order to resolve 

data quality issues in information integration. Some of these methods have been 

analyzed here. These are as follows: 

A) According to Naumann [41] quality of information depend on user, which is 

considered as subject, the information as object and the process of accessing the 

information as predicate of a query. These are factors used to qualify the information 

based on different criteria.  

For example, for the Subject (the user) there are some information quality (IQ) criteria 

such as: believability, concise representation, interpretability, relevancy, reputation 

and understandability, which are assessed by user according to his experience, 

sampling and continuous assessment. Criteria for the information itself include: 

completeness, customer support, documentation, objectivity, price, reliability, 

security, timeliness and verifiability, assessed based on parsing, sampling, contract 

and expert input. The process criterion includes: accuracy, amount of data, 

availability, latency and response time, assessed based on cleansing techniques, 

parsing and continuous assessment. 

This method identifies elements that are information system processing oriented, like 

security, timeliness, price and latency, pointing to implementation of time and cost 

effective processing. Other information quality measurements such as believability, 

reputation and understandability are also very user dependent assessment methods 

which could be varied dramatically from one user to another and therefore cause 

problems at the end. In our opinion, for toxicology scientists, access to reliable data 

with accurate information is far too important that he can easily overlook the process-
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based criterion. Other issues such as completeness, concise representation and 

reliability seem however relevant to any domain. 

B) Fusionplex [42] is a system that integrates information from multiple sources and 

also resolves data inconsistencies by the use of data fusion methods. A feature weight 

is identified and added to the database related to that source with the mean of adding 

few more columns with features for each source. Some examples for features are: 

Timestamp: the time when the source information was validated, Cost: the money 

spent to transmit information over the network, Information Accuracy: the level of 

correctness attained in measurement or how this data conforms to the standards. 

Availability: if information is provided at random time, Clearance: the security 

needed to access the information.  

This system retrieves all relevant data from sources and assembles them. The 

intermediate product is poly-instances, which include all inconsistencies. 

For this method, inconsistencies are described as schematic differences between 

databases. For example in one database we might have “salary” as an attribute and in 

one “income” which both represent the same thing. Inconsistency also refers to data 

representation in the form such as “currency” represents US dollar in one database 

and Swedish krona in another. Fusionplex measures the data quality at the integration 

stage with fusion methods. It measures the quality based on the general information 

processing criteria such as accuracy and availability rather than the data itself. Two 

specific inconsistencies resolved with this system apply also in predictive toxicology 

in the form of representation of measurements and weights. However, our main 

problem, the values confliction from one source to another, stays still untouched. For 

predictive toxicology data need to be collected and integrated from different sources, 

but one must address the issue of suitability of this data for integration in term of 

quality. Some of the source features criteria currently point to validation of the source 

by the user, which still can be changed between various users. 

C) COLUMBA: multidimensional data integration [33] is an integrated database of 

protein annotations. It performs the quality assessment of data by a data cleansing 

method. Errors in these databases are considered as syntactic and semantic. Syntax 

errors are mainly domain or format violations in data entries and misspellings. 

Syntactic cleansing such as format, domain transformation, standardization, 

normalization and dictionary lookup is performed by the individual parsers.  

Semantic errors are considered to be very effective in the quality of data. These errors 
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are resolved by using redundant information, which is possible where we have 

another version of the same data source. The process of choosing the data is based on 

schema mapping rules and comparison of the data on this schema, which contains a 

number of tables. Then the inconsistencies are highlighted and the reliable data is 

integrated into a third instance of the target schema.  

The limitation of the COLUMBA system lays on relying on the redundant data. 

Where no instances of the data are found in the system, the quality process cannot be 

achieved. Still this method raises some questions such as:  

How redundant data is qualified? What are the sources of this data? How it can be 

trusted? All these questions take us back to the initial main issue: what data quality is. 

Some steps of this approach might be considered relevant at data cleansing stage, such 

as overcoming syntax and semantic errors (misspelling, standardization) which are 

important issues since have direct effect on the quality of the data and need 

consideration in any type of database management system although value of the data 

through this process can not be evaluated and measured for accuracy which is very 

important concept in toxicology domain. 

D) An information quality assessment methodology (AIMQ) has been introduced by 

Richard Y. Wang [43] and contains three components: Product-Service-Performance 

(PSP), IQ Assessment and IQ Benchmark Gap Analysis. Product-Service-

Performance contains four parts: these are criteria to identify the best practice of 

company in production and delivery.   

 
Table1: The PSP/IQ Model 

 Conforms to 

specifications 

Meets or exceeds consumer 

expectations 

Product quality Sound information 

IQ dimensions: 

Free of error 

Concise representation 

Completeness 

Consistent representation 

Useful information 

IQ dimensions: 

Relevancy 

Understandability 

Interpretability 

Objectivity 

Service quality Dependable information 

IQ dimensions: 

Timeliness 

Security 

Usable information 

IQ dimensions: 

Believability 

Accessibility 

Ease of operation 

Reputation 
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The second component measures information quality according to specified 

dimensions, based on questionnaires. The third component consists of the IQ 

Benchmark Gaps Analysis techniques and the IQ Role Gaps analysis technique. IQ 

Benchmark Gaps compares an organization’s assessment to that of a best practice 

organization.  

This approach is mostly based on data processing. It is also user oriented in the sense 

that user decides according to the questionnaire if the information and processing 

procedures are sufficient. The evaluated outcome will differ from one user to another. 

Some of the criteria such as free-of-error, concise representation, believability and 

relevancy still need to be based on some matrixes which would be referred to at the 

evaluation stage and can explain for instance what sort of information is believable 

which still shows dependency that wouldn’t be good practice for evaluating toxicity 

data. The other two components are entirely assessing the organizational performance 

in the sense of improving their products and services based on feedback from 

consumers. 

E) A methodology for establishing and maintaining quality in data context [44] 

considers five levels: 

-Test of completeness and emptiness: this is done for every single table or file of data 

used under review. 

-Ranges, Means and Distributions: at this stage every element in each table is 

reviewed and compared with the standards of data definition document in order to 

assure producing meaningful value within the standard framework. 

-Derived Relationships: this analysis investigates the meaning of the data in 

relationships when appears for the same element in different tables. 

-Meaning and Interpretation: the real meaning of data is interpreted within all the 

collected data. 

-Hypothesis and Discovery: the result of the prior analysis is studied, the source of 

inconsistencies identified and relevant actions taken to overcome the weaknesses. 

The approach of establishing and maintaining quality in data context within 

organization could be a first step forward toward a reliable toxicity database 

management system. It is an approach of inside out observation and cleansing. It is 

also a good applicable practice for any system although it has no use at the integration 

stage when the organization is forced to collect data from various sources. It makes 

the internal database free of error but has no control over incoming data from 
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distributed sources, since the data sources have different file formats, structure and 

represent different information and doesn’t match the internal database schema.  

F) Data quality in predictive toxicology: identification of chemical structures and 

calculation of chemical properties: 

Helma [5] highlights some of data inefficiencies and errors in toxicology databases, 

also draws some rules from a case study, which was carried out in order to emphasize 

how some of the elements in experimental work could be assessed under quality 

assurance. In most toxicology databases instead of chemical structure, compounds are 

identified by CAS Registry number, and because of formatting or typing errors 

sometimes compounds cannot be identified in sources of data.  

Since this data is studied for QSAR modeling it is essential to identify the properties 

of compound, which may have an impact to the endpoints, and consequently to the 

prediction of the toxic effect and the model. Some recommendations have been given 

for the retrieval of structures from external databases and the calculation of chemical 

descriptors which are based on how data should be recorded in one organization 

database with the emphasis on accuracy of the chemical structures and systematic 

problems.  

What has been highlighted by Helma emphasizes the idea of data representation rules 

in any source of toxicity database. Some of these rules are drawn from standard 

agencies in place for collecting, storing and processing such data. If every 

organization follows the same rule, soon all the toxicology databases would have 

common representations, attributes and elements, which automatically increase 

quality and reliability of their data.  

3.2 Possible Approaches for Measuring Data Quality in Predictive Toxicology 

As it has been mentioned with integration process data need to be collected from 

various sources. This data need to be filtered in order to extract the quality data.  At 

the moment there are lots of publicly available data sources. But there are no 

guidelines on how to measure the quality of these sources. These sources may conflict 

with each other at three different levels:  

� Schema level; the sources are in different data models or have different schemas 

within the same data model. 
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� Representation level: the data in the sources is represented in different natural 

languages or different measurement systems. 

� Data level: there are factual discrepancies among the sources in data values that 

describe the same object [45]. 

In toxicology we are more concerned about the sources at data level. High data 

quality has been defined as data that is fit for use by data consumers and is treated 

independent of the context in which data is produced and used. Data quality in general 

has been characterized by quality criteria or dimensions such as accuracy, 

completeness, consistency and timeliness. However there is no general agreement on 

data quality dimensions. Following is a table about these dimensions collected from 

different experts in this field which are good guidelines on this issue [45]. All these 

elements could be considered when we select the data source. We need to examine the 

source against this criterion and then make the selection. Some of these elements 

might not apply to the type of data we wish to collect but some of them like: 

timeliness, completeness or accuracy is very important in our case as mentioned 

above. Based on the information above we can look at Table 3 which identifies the 

ways on how some of the elements on source selection can be measured [46]. Since 

scientists of molecular data are the best people who can comment on this, one 

approach could be to choose number of users to measure quality of some of the 

reputable sources based on this table. Then this information could be stored in some 

sort of database and used when required. This could be in the form of a table with the 

list of sources and quality measurements above as fields in the table. We could use 

ranking criteria (for example between 0-1) or percentage for each field and fill the 

table with values we collect. Sometimes the source itself provides some information 

about itself for example how often the data is updated or how old the data is. In other 

cases users themselves could process this.  

Table2: some of the highlighted dimensions for source selection 

 

 

Source Specific 

Ease of understanding  

Reputation 

 

Reliability  

Timeliness 

User grade from 1-10 based on representation of the data. 

User grade from 1-10 based on personal preferences and 

professional experience. 

Ranking from 1-10 based on accuracy of experimental method 

with which the data is produced. 

Update-frequency measured in days.  For instance in toxicology 

the laboratory standards may change over time and also the 

results of one laboratory is so dependant on the environmental 

factors of where the laboratory is based and when the data has 

been collected. 
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The information in this table may be starting point in research for automation of a 

dataset development as a feasible computer science objective. 

3.3 Data Cleaning Methods 

Data cleaning techniques and procedures for noise removal could also enhance data 

quality. These methods could be applied to the data at different stages to address 

variety of data quality problems. At data collection stage, this could be in the form of 

removing duplicated records, missing values, spelling errors and outdated codes [47]. 

These techniques could also be used at data analysis stage. The purpose of data 

cleaning at this stage is to remove data errors in order to increase the quality for better 

classification models produced by machine learning and data mining algorithms. 

These techniques are based on outlier detection. Examples of some of these 

techniques are: cluster based, distance based and density based outlier detection. In 

this thesis our proposed algorithm for quality assessment addresses some of the 

criteria for cleaning data (section 4.3). Some common criteria are also such as: check 

for invalid values, out of range values, null values and missing values. 

3.4 The Missing Values Problem 

 

The subject of missing values in databases has long been studied and discussed in 

different domains. This is a big problem for data storage and processing. Incomplete 

data reduces quality and reliability of the models. It appears in different forms in 

databases. It is indicated for example by “0”, “N/A”, “NIL”, dashes or just empty 

cells. The missing values may occur for different reasons such as complexity of the 

computational measurement for that specific parameter (when data has to be 

generated by computer automatically) or, in some surveys; because of ambiguity (i.e. 

the interviewee finds it difficult to answer a given question). But the significance of 

the missing data and its effect on data mining is not always clear in final analysis. 

Even some well established data analysis tools assume that there is not particular 

importance for the missing value and that is why the system or the user may replace it 

or just omit it. This proves how important is to trust and understand the available data.   

How this problem could be overcome has always been an issue. In some domains, 

when the data is processed, the incomplete data is simply ignored, deleted at data 

cleaning stage or not considered in analysis. Various machine learning and data 

mining tools deal with the problem differently.  
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3.4.1 Methods to Overcome Missing Values Problem 

A) Omit records: one very simple way is to omit the records with empty cells, which 

as a result reduces the sample size and has dramatic affect on the analysed data 

parameters and statistical characterization of the data. It is used especially in cases 

when high proportion of data is missing.  

B) Calculation of the average (mean): in cases when there is just one attribute value 

missing, the average value of all the other attributes in that row is calculated and 

considered for the missing value. The danger of this approach is the decrease of the 

data characteristics variability and balancing out the values. Also when there are 

outliers in the datasets, in the case when the related missing values falls in that 

category, this will affect the mean value calculated parameter. All of these will affect 

the final result of the mining task especially when the procedure is based on 

classification strategies [48]. 

C) Single imputation: for cases where a big proportion of data is missing, the method 

of statistical computation of missing values could be applied. With this strategy 

missing data in each cell is estimated based on available data in another relevant cell, 

which satisfies certain matching criteria. A good example is missing income value 

estimated by comparison with existed records from another survey for a person living 

in the same area and having the same educational background and age. The 

disadvantage of this method is that artificial data, which replace the missing values, is 

exactly the same as existing data. This results in reduced data values variation 

characteristics and increases specific class or cluster of information that in turn affect 

the quality of data mining analysis results [49]. 

D) Multiple imputations: is another method, which instead of filling empty cells with 

specific values, it replaces them with a set of applicable values. The multiply imputed 

datasets are then analysed and results are combined [50]. 

E) Expectation Maximization (EM) algorithm: it firstly uses imputation for missing 

values and then re-estimates the missing data values and iterates until convergence. 

The method of iteration has been widely applied to missing data problems [50]. 

3.5 Imbalanced Datasets 

In data mining, classification learning is a supervised learning scheme that uses 

knowledge gained through the training process of classified instances for 
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classification of unseen examples. One of the main issues for classifier during this 

process is the samples distribution of classes or class balance. Imbalanced or skewed 

dataset [51], affect the performance of classification algorithms. The over represented 

classes provide enough information for training the classifier because of their 

sufficient number of samples against the under represented class. Real world scientific 

applications often face this problem for a number of reasons [52].  

Various approaches and methods have been proposed to tackle imbalanced data 

problem. One of these methods is one-sided selection [53] in which the border-

line/negative examples or the ones overlapping in two class dimensional space are 

removed. 

Another method is DataBoost-IM approach [54]. According to this method the hard 

examples from minority and majority class are identified. Then the synthetic samples 

are generated using the hard samples and added to the original dataset. The class 

distribution and the total weights of the different classes in the new training set are re-

balanced at the last stage. 

Guided re-sampling technique [55] is another solution which first determines the 

subcomponents within each class. The element in each subcomponent is re-sampled 

until each subcomponent has the same number of examples as biggest subcomponent. 

Then the between-class imbalance is eliminated by randomly selecting and 

duplicating members of the minority class. 

SMOTEBoost [56] is another method which increases the learner performance in 

classification of minority class with creating synthetic instances by operating in the 

feature space rather than data space. Using this method a new minority class sample is 

created in the neighbourhood of the minority class target. 

There are also some methods which down-size the majority class in order to equalize 

the distribution of two classes [57] [58]. All these methods concentrate on the two-

class problem with minority and majority class.  

3.6 Summary and Conclusions 

Data quality is an important issue in scientific domains. There are some approaches to 

overcome the problem. Naumman [41] introduces an information quality framework 

based on the user, information and the process of accessing this information. Another 

example is Fusionplex [42], which is a system that integrates information from 
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multiple sources and also resolves data inconsistencies by use of fusion methods. 

COLUMBA [33] is another system that performs the quality check by data cleansing 

procedures. The Information Quality Assessment Methodology introduced by Richard 

Y. Wang [43], overcome quality issue by defining number of criteria in its 

components. The methodology for establishing and maintaining quality in data 

context [44] is another strategy, which assess the data at different levels. Helma [5] 

also introduces some method for measuring quality in predictive toxicology. Data 

cleaning is also used to enhance the quality of the data. There is also an issue of 

missing values in datasets, which reduces the quality and reliability of the data. There 

are some methods in use to overcome this problem. Some of these methods are such 

as: omit records, calculate average, single imputation, multiple imputations and 

expectation maximisation.  

Another issue is modelling this data which raises the problem of how subcomponents 

of this data have been structured that identify the data as balanced or imbalanced. The 

imbalanced data affect the performance of classifiers during the classification process. 

Number of methods has been proposed to overcome imbalanced data problem such 

as; re-sampling [55], DataBoost-IM [54] and SMOTEBoost [56]. 

In this chapter we identified the main weaknesses for data characterization and impact 

in model development. In chapter eight we propose an algorithm in order to overcome 

the problem and improve model performance. 
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4. A STUDY ON DATA QUALITY IN TOXICOLOGY AND NEW 

ALGORITHM FOR DATA QUALITY ASSESSMENT PROCESS 
 

Measuring the quality of available information is an important issue in many 

scientific domains, and even more so if provides a basis for further model 

development. An example is predictive toxicology that relies on data from public and 

commercial databases for analysis and modelling towards Quantitative Structure 

Activity Relationship (QSAR) models development. Much work has been done on 

QSAR modelling, but in many cases little attention has been paid to the quality of 

toxicology data, since there is not a clear definition of what quality is or criteria to 

base the quality assessment on. This chapter presents the result of investigation into 

online databases and the contradiction in the data presentation and values and also 

number of quality issues from experimental work on toxicological data (DEMETRA 

datasets) and also proposes some quality criteria as a result of the study. 

4.1 Inconsistencies in Online Databases Data Presentation and Values 

 

In this study we compare values for same attributes of chemical compounds presented 

for same carcinogenicity tests by three different sources, also study the values 

presented for aquatic studies by two other databases. The following online databases 

have been studied in order to find the deficiencies in data values and representation: 

-IRIS (Integrated Risk Information System): this data base provides toxicology data 

in support of human health risk assessment. It is compiled by the U.S Environmental 

Protection Agency and contains 543 chemical records on values on cancer and non-

cancer health effects that may result from lifetime oral or inhalation exposure to 

specific chemical compound in the environment. 

-ITER (International Toxicity Estimates for Risk): this database contains data in 

support of human health risk assessment. It is compiled by Toxicology Excellence for 

Risk Assessment and contains 617 chemical records with key data from different 

sources. It provides data related to non-cancer oral, cancer oral, non-cancer inhalation 

and cancer inhalation. 

-CCRIS (Chemical Carcinogenesis Research Information System): it is a 

scientifically evaluated and referenced data bank, developed and maintained by the 

National Cancer Institute. It contains 8937 chemical records. Data is represented for 
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carcinogenicity studies, tumor promotion studies, mutagenicity and tumor inhibition 

studies. 

These databases can be accessed via Toxnet web site. [10] 

For information relate to aquatic species testing, following databases have been 

chosen: 

-ECOTOX: The ECOTOXicology database (ECOTOX) is a source for locating single 

chemical toxicity data for aquatic life, terrestrial plants and wildlife.  ECOTOX was 

created and is maintained by the U.S.EPA, Office of Research and Development 

(ORD), and the National Health and Environmental Effects Research Laboratory's 

(NHEERL's) Mid-Continent Ecology Division. This site is accessible via:  

http://www.epa.gov/ecotox[17] 

-USGS: The Columbia Environmental Research Centre provides leadership and 

scientific information for the U.S. Geological Survey by addressing national and 

international environmental contaminant issues, and assessing effects of habitat 

alterations on aquatic and terrestrial ecosystems. This includes large-river floodplains, 

coastal habitats, wetlands, and lakes. This site is accessible via:  

http://www.cerc.usgs.gov [59] 

For this work following issues have been considered: 

a) We selected common chemical compounds in first three databases (IRIS, ITER and 

CCRIS) relate to carcinogenicity and non- carcinogenicity studies. The dose used and 

the time of exposure which logically needed to be in the same measurements. The 

type of exposure also needed to be the same. For this purpose following chemical 

compounds were chosen to study: PHENOL with CASRN: 108-95-2. 

These databases represent the data for testing on various types of rats and mouse.  

b) In the last two aquatic databases (ECOTOX and USGS), we have selected 

information provided for testing on: PENTACHLOROPHENOL, CASRN: 87865 

tested on DAPHNIA MAGNA. 

c) We compared the values and recorded them in the table. 

The results of our study are listed below: 

Results of PENTACHLOROPHENOL, CASRN: 87865 tested on DAPHNIA 

MAGNA from two aquatic databases are as follows:  
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Table4: Results from ECOTOX online database 
Scientific 

name 

End 

point 

Effect Effect 

Measurement 

Trend 

Effect% 

Duration/Exp 

Type 

Conc(ug/L) 

Daphnia 

magna 

LC50 MOR MORT --------- 48 h F55 

Daphnia 

magna 

LC50 MOR MORT INC 

---------- 

48 h A 1230,1120-1340 

Daphnia 

magna 

LC50 MOR MORT ----------- 48 h F 320 

Daphnia 

magna 

NR-

ZERO 

MOR MORT NEF 

-------- 

0 

48 h A`400 

 
Table5: Results from USGS online database 

CHEMICAL PERCENT DESCRIP SPECIES SIZE 

PENTACHLOROPHENOL 86 

TECHNICAL 
MATERIAL DAPHNIA MAGNA 1ST INSTAR 

PENTACHLOROPHENOL 96 

TECHNICAL 

MATERIAL DAPHNIA MAGNA 1ST INSTAR 

Chemical Name: PENTACHLOROPHENOL   

Common Use: HERBICIDE    

Measurement Units UG    

CAS Number: 87-86-5    

HARDNESS TYPE TEST_UNT TOX_UNT LC50_24H 

40 STATIC EC UG  

40 STATIC EC UG  

FROM_24H TO_24H LC50_48H FROM_48H TO_48H 

  410 319 527 

  240 138 307 

DIET TEMP PH   

 17 7.4   

 17 7.4   

 

Results for PHENOL with CASRN: 108-95-2 on rats from IRIS, ITER and CCRIS 

for oral Carcinogenicity Studies is as follows:  

Table6: Results from IRIS online database for Carcinogenicity studies on rats 
 

IRIS 

Species F344 rats (male) 

Dose 0, 2500, or 5000 ppm-0, 260, and 585 mg/kg-day 

Effect Decrease in body weight, decrease in water consumption 

Period 103 weeks 

Route oral 

Study National Toxicology Program 

 

Additional information: 

NCI (1980): dose related decreases in body weight as compared with the controls 

were observed in male by 15% in high dose. Water consumption was reduced by 

approximately 10% at the high dose. In aged rat assessment found statistically 

significant increases in chronic kidney inflammation in high-dose (5000 ppm). There 

were no significant changes at low dose.   
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There were no dose-related trends in cancer incidence in male rats but the study 

reported several tumours for which statistically significant increases were seen in low-

dose males only. 

 

 

Table7: Results from ITER online database for Carcinogenicity studies on rats 
 ITER 

Species F344 rats (male) 

Dose 0, 2500, or 5000 ppm-0, 260, and 585 mg/kg-day 

Effect Decrease in body weight 

Period 2 years 

Route oral 

Study National Toxicology Program (1980) 

 

Additional information: 

ATSDR: Health Canada, RIVM and U.S.EPA have evaluated the carcinogenicity data 

for phenol. Under the current EPA guidelines phenol would be characterised as group 

D, not classifiable as to human carcinogenicity. Health Canada did not assign a 

specific classification but indicated that available data support the likelihood that 

phenol is at most weakly carcinogenic. RIVM noted that available data in animals 

suggest that phenol can act as a tumour promoter. 

Table8: Results from CCRIS online database for Carcinogenicity studies on rats 
 CCRIS 

Species F344 rats (male) 

Dose 0; 2500; 5000 ppm 

Effect Negative 

Period Not specified 

Route oral 

Study National Toxicology Program, National Cancer Institute 

 

Analysis:  the results show that there are inconsistencies in data presentation. In IRIS, 

ITER and CCRIS data is represented in three different ways.  

IRIS presents the data in long document explanatory form. Although seem to be 

supported by the same laboratories as ITER and also information are much detailed 

compare to other two databases.  

ITER presents the data in the form of summary table from different laboratories. For 

some of those laboratories data doesn’t exist. 

In CCRIS data is represented for each individual species in very short form. Some 

information is missing like the duration of the exposure of the compounds. 

It is very difficult to go through pages of information and select the numerical figures 

which are a big draw back in presenting information.  
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The data in all three databases is in textual form which is very difficult to analyze. 

Non numerical data presentation can not be used for experimental modeling.  

Although it seems that data in IRIS and ITER are represented by same laboratories 

still information are not the same. (as noted in additional information section) 

Data presented in ECOTOX and USGS have different form, used different attributes 

to explain the measurements (some are similar) (tables 4 and 5). The values are 

different as expected in both databases. Although the data in ECOTOX doesn’t 

explain the test condition like: PH and Temperature which would have effect on result 

so the comparison can not be very consistent since the test condition is not clear in 

ECOTOX.  

4.2 Detailed Investigations and Experiments on DEMETRA Data 

 

The contribution of our investigations at this stage is to highlight some usual 

problems of data quality used for toxicity prediction. Our current objective is the 

study of inconsistencies in data values and their effect on downstream QSAR 

modelling.  

Given the current facilities available for complex calculations, it seems that high 

confidence is implicitly awarded to data downloaded from online resources. The same 

applies to data generated by specialist software. We used the opportunity to study the 

DEMETRA data sets on some issues on data quality for large databases. We started 

with identification of descriptors sharing the same name and duplicated as generated 

by various software used by research laboratories involved in the project. We 

addressed the differences in data source values and also differences in performance of 

models developed from the same data sources. Data on five toxicity endpoints are 

provided by the DEMETRA project [60] for four different species: Bee, Daphnia, 

Trout, OralQuail and DietaryQuail. For each dataset, values for six compound 

descriptors calculated by two specialist programs: ACD [61] and Pallas [62], have 

been considered. These programs calculate pKa, logP, logD values and also 

metabolites based on structural formulae of compounds. In the field of industrial 

pharmacy perhaps the most important physicochemical characteristics of compounds 

are their acidity or basicity (expressed by their pKa value), hydrophobicity and its 

dependence on pH (expressed by their logP and logD respectively) [62]. Calculating 

accurate values of pKa, logP, logD and other chemical descriptors requires a great 

deal of work and use of specialized software.  
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For this work the number of chemical compounds presented in each data set varies 

from 105 for Bee endpoint to 252 for Trout. Our aim was to highlight the variation of 

values for each descriptor produced from one program to another and also to compare 

any further quantitative differences between specific descriptors calculated by one 

program with the value for the same descriptor and chemical compound generated by 

the other one. Then we compare the accuracy of basic classification models built 

using input data presented for each endpoint by descriptors calculated by ACD and 

Pallas. Ten tables were investigated, two for each endpoint. The aim of this 

experiment was to identify how the predictive models’ quality is affected by hidden 

parameters such as source of data, subjective input characterization in running feature 

extraction algorithms etc. Comparisons of models performance will address 

variations, contradictions, reliability and deficiency issues. 

4.2.1 Data Pre-Processing 

Follow up experiments are related to value comparisons for different endpoint 

presented by software (Pallas, ACD). There are number of Excel files presented by 

Demetra project explaining the descriptors values for same chemical compounds 

tested on different species, which we were going to work with. They are endpoints 

for: Bee, Trout, Daphnia, DietryQuail and OralQuail. For each endpoint we have 

number of files which have been calculated by different programs but we are only 

concern about the values which are produced by Pallas and ACD.  

This experiment is divided into number of subsections, each section apply to each 

endpoint.  

For all endpoints we consider the same number of chemicals with same descriptors. 

Since there are some empty cells in each file we will clean the data before training 

any model. 

Following tasks have been carried out on each endpoint: 

• Data cleaning: all the uncompleted rows (or with zero values) have been deleted. 

• Same chemicals have been selected and inserted in new file. 

• Same descriptors have been selected plus ID attribute (field) and saved in a file with 

added SD extension in their name which stands for selected descriptors. (ex: 

B_2DPALLAS_v2_SD.xls). 

• After the selection we have two files for each endpoint to start with. One file 

produced from Pallas and one from ACD. For Bee endpoint we have 95 selected 



 41 

compounds which are common between both files. For Trout we have 262 selected 

chemical compounds. For Daphnia we have 244 compounds. For OralQuail we have 

104 chemical compounds and for DietaryQuail we have 107 chemical compounds. 

Following file: “data (5DS+ClassEC)_v2.xls” (from Demetra) also categorizes the 

chemicals into classes which should be used for modeling. A column has been added 

in each file to contain the class category of chemical compound. 

• There are number of pdf files presented by Demetra project which specify the 

criterion for selecting test and training data sets for each endpoint which are as 

follows: TestData_Trout.pdf, TestData_Daphnia.pdf, TestData_OralQuail.pdf, 

ToxicityTestData_DietaryQuail.pdf, TestData_Bee.pdf 

• We used Weka [63] and SPSS [64] for modeling. In Weka number of supervised 

learning algorithm have been selected and used for modeling. 

• For training models on Weka, each file has been converted in Weka format and 

saved as arff file. 

• In SPSS, Linear Regression has been chosen for modeling. 

 

4.2.1.1 Procedure 

 

The following files have been under consideration: (for Bee endpoint): 

B_2DPALLAS_v2.xls and Bee1_1v1_ACD2D_v1.xls, (for Daphnia): 

D1.1v1_ACD2Dv1.xls and D_2DPallas_v2.xls, (for Trout): T3.1v2_2DPallas_v1.xls 

and T3.1v2_2DACDv1.xls, (for OralQuail): OQ1_1v1_ACD2Dv1.xls and 

OQ_2DPallas_v1.xls and (for DietryQuail): DQ_2DPallas_SD.xls, 

DQ1_1v1_ACD2D_v1.xls. Common descriptors from both files were selected. 

• Selected descriptors from first file calculated by Pallas are: 

LogP(Pallas), LogDpH3 (Pallas), LogDpH5 (Pallas), LogDpH7 (Pallas), LogDpH7.4 

(Pallas), LogDpH9 (Pallas). 

• Following descriptors are selected from second file calculated by ACD:  

LogP (ACD), LogDpH3 (ACD), LogDpH5 (ACD), LogDpH7 (ACD), LogDpH7.4 

(ACD), LogDpH9 (ACD). 

• From all the files, number of chemical compounds has been deleted in order to 

make sure both files have same number of chemicals. There were number of 

chemicals in each file which had missing values for some of the descriptors, those 

have been deleted originally. 
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• The files have been converted to CSV format and then into arff to be compatible 

with Weka data mining tool. 

• Following guidelines provided from DEMETRA (mentioned above) test data and 

training data has been specified (85% training, 15% testing). Chemicals which their 

IDs was specified by document for each endpoint have been selected as testing data 

and saved in a file with added “testing” extension. Same thing was performed for 

training data. 

• The training set and testing set files have also been converted in arff format for 

modeling in Weka. 

• For Daphnia following chemicals with ID: 59, 92, 409 were not added to testing set 

because of missing values, they were deleted at initial stage. 

• For Oral Quail the chemicals with following IDs: 48, 95, 51, 103, 125, 139, 282, 

346 have different CAS number (in DEMETRA classification file and toxicity file). 

• For Trout endpoint the same problem exists for chemicals with following IDs: 51, 

92, 123, 125, 139, 140, 171, 228, 230, 282, 305, 324, 332, 345, and 346.  

• For some of the chemicals the value for all descriptors are same (ex: Trout: IDs: 

268,270,279).  

• For Trout endpoint, legend for Pallas is different from other endpoints, although the 

descriptors were selected accordingly (ex: Pallas04=LogDpH7 but in other files 

Pallas05=LogDpH7). 

• At the initial stage when classes from DEMETRA files assigned to chemical 

compounds in Bee1_1v1_ACD2D_v1.xls and B_2DPALLAS_v2.xls, an 

inconsistency was discovered. In file produced by ACD, chemical compound with 

ID=450=Allethrin has been given CAS no: 584-79-2, in file produced by Pallas, 

ID=450=28434-00-6=s-bioallethrin which in Toxnet this is different name for same 

chemical which have the same CAS: 284-79-2. Also for curiosity files produced by 

Dragon (another program for chemicals descriptors calculation) [65] for the same 

endpoint was checked. In Dragon the CAS number for compound “Diquet” is: 828-

00-2 but in DEMETRA file for the same compound the CAS number is: 85-00-7. 

The result is shown in table 8.  

Table8: Results from CCRIS online database for Carcinogenicity studies on rats 
Demetra 5DS+ClassEC)_v2.xls: 

452=Diquet=85-00-7 

ACD=450=Allethrin=585-79-2 

Pallas=450=s-bioallethrin=28434-00-6 

Dragon 452=Diquet=828-00-2 450=s-bioallethrin=2764-72-9 

Toxnet Diquet=2764-72-9 & 85-

00-7 

s-bioallethrin=Allethrin=584-79-2 
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4.2.2 Comparison of Global Parameters and Source Value Difference 
 

Considering there are two files (specified as training) one presents the values for 

chemical compound calculated by ACD and the other one by Pallas. 

1) Using Excel functions we calculated the parameters Mean, Min, Max and STDEVP 

for each column (LogP, LogDpH3, LogDpH5, LogDpH7, LogDpH7.4, LogDpH9) in 

these two files separately. At the second stage we compared each descriptors value for 

these parameters with its corresponding from the other file (ex: values for parameters 

from LogP for ACD were compared for same parameters for LogP for Pallas). Lastly 

the results were presented as graph to visualize the differences.  

2) For second experiment, using Excel two extra columns were added to each original 

column in files calculated by Pallas. Data from file calculated by ACD was copied to 

first file for comparison purposes. One added column in Pallas present the values for 

the same descriptors which have been calculated by ACD and second column present 

the subtraction of two values (Values presented by Pallas minus values presented by 

ACD for the same chemical compound). Then at the next stage the parameters Mean, 

Min, Max and STDEVP were calculated for value difference. A graph was used to 

visualize these parameters. 

3) Modelling: Files prepared for training and testing were used for modelling in Weka 

using following algorithms: 

BayesNet (Bayes): is a probabilistic graphical model that represents a set of variables 

and their probabilistic independencies.  

Multilayerperceptron (Function): a network composed of more than one layer of 

neurons, with some or all of the outputs of each layer connected to one or more of the 

inputs of another layer. 

IBK (Lazy): K-nearest neighbour classifier which can select appropriate value of K 

based on cross-validation. Can also do distance weighting. 

ClassificationViaRegression (Meta): it uses regression learner to learn a model to 

predict each binary target.  

ZeroR (rules): algorithm for building and using a 0-R classifier which predicts the 

mean for a numeric class or the mode for a nominal class. 

LMT (Tree): algorithm for logistic model tree structure. 

J48 (Tree): algorithm for generating a pruned or unpruned C4.5 decision tree. 
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JRip (Rules): this algorithm implements a propositional rule learner, Repeated 

Incremental Pruning to Produce Error Reduction (RIPPER). 

For modelling first a training data (from ACD and Pallas for same endpoint) was 

tested against test set using these algorithms and then for second time the training set 

was modelled with 10-fold Cross Validation testing method using same algorithms. 

The accuracy of each model(one from modelling against testing set and one from 

modelling with Cross Validation testing method) was recorded in separate table to 

compare which model suits which endpoint. Other parameters from modelling can 

also be recorded.  

4.2.3 Results of Global Value Comparison 

 

The result of the experiments for each endpoint has been recorded in the form of 

tables of values and also by graph for visualization. The result of this comparison is 

shown by separate graph for each column of the table (attribute/descriptor). The 

summary of the result has also been recorded in one single table for all the descriptors 

at the end of the section. These summary results have been shown graphically by two 

different graphs. There is also an analysis of the results for each endpoint which 

clarifies the findings. For simplicity in the analysis section we just refer to the 

summary table and summary graphs. 

4.2.3.1 Bee Endpoint 

 

As first experiment four following parameters have been calculated for each column 

in each file (in ACD and Pallas): Minimum, Maximum, Average (mean), Standard 

Deviation (for population) using Excel functions and recorded. The result for each 

descriptor was separated in different table to show the difference of these parameters 

for descriptors which values calculated with ACD and Pallas. The result was showed 

on charts to visualize the comparison. Table 9 shows the recorded parameters. For 

example second column in the table headed “PALLAS001” records the values for 

Mean, Max, Min and STDEVP calculated for the first descriptor (attribute) for all the 

chemical compounds in files produced by PALLAS program for Bee endpoint and so 

on. As it shown for instance in top table the minimum value for the first attribute 

PALLAS001 in PALLAS is -0.952306 for a chemical compound and in the ACD file 

the lowest value for the first attribute ACD001 in ACD file is -1.4202 and so on for 
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other parameters. These tables highlights the statistical differences between two files 

produced for same chemical compounds with same attributes (descriptors).   

Table9: Results of the experiment for calculation of values Mean, Min, Max, and STDEVP for Bee 

endpoint 

 

B_2DPALLAS_v2 PALLAS001 PALLAS002 PALLAS003 PALLAS005 PALLAS006 PALLAS007 

Mean 3.121244223 2.748138773 2.702774168 2.5439506 2.509456989 2.390566365 

Max 8.16996 8.16996 8.16996 8.16996 8.16996 8.16996 

Min -0.952306 -3.78509 -4.75384 -5.6052 -5.99314 -7.5105 

STDEVP 1.978863877 2.293025338 2.467585066 2.748947509 2.807788628 3.016086395 

 

Bee1_1v1_ACD2D_v1 ACD001 ACD002 ACD003 ACD004 ACD005 ACD006 

Mean 3.239792632 2.935269474 2.817703158 2.686745263 2.675383158 2.640947368 

Max 8.2665 8.1404 8.1404 8.1404 8.1404 8.1678 

Min -1.4202 -3.4969 -4.2068 -5.0751 -5.2504 -5.8599 

STDEVP 2.060131802 2.306282759 2.462253314 2.618868261 2.649345297 2.763805686 

As it has been mentioned previously the six attributes which are shown in table nine 

as PALLAS001, PALLAS002, PALLAS003, PALLAS005, PALLAS006, 

PALLAS007 and also in ACD file are ACD001, ACD002, ACD003, ACD004, 

ACD005, ACD006 are LogP, LogDpH3, LogDpH5, LogDpH7, LogDpH7.4, 

LogDpH9. For clarity and to distinguish between two files PALLAS and ACD we 

replace the names with PALLAS and ACD followed by numbers for the descriptors. 

But in the following graphs for each endpoint we have shown the comparison 

between each parameter (max, mean, min, stdevp) calculated for each descriptor 

(column) by ACD and PALLAS. Following graph is the representation of the 

calculated parameters for the descriptor (LogP) for all chemical compounds which 

shows the value for both Pallas and ACD. 

Comparison of parameters Mean,Max,Min and STDEVP 

for LogP attribute calculated b y ACD and PALLAS
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ACD001 3.239792632 8.2665 -1.4202 2.060131802
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Figure2: the result of the mean, max, min and STDEVP for LogP attribute for all chemical compounds 

for Bee endpoint 
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Following graph is the result of the calculated parameters for descriptor (LogDpH3) 

for all chemical compounds which shows the value for both Pallas and ACD. 

Comparison of parameters Mean,Max,Min and STDEVP 

for LogDpH3 attrib ute calculated by ACD and PALLAS
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Figure3: the result of the mean, max, min and STDEVP for LogDpH3 attribute for all chemical 

compounds for Bee endpoint 
Following graph is the result of the calculated parameters for descriptor (LogDpH5) 

for all chemical compounds which shows the value for both Pallas and ACD. 

Comparison of parameters Mean,Max,Min and STDEVP for 

attribute LogDpH5 calculated by ACD and PALLAS
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Figure4: the result of the mean, max, min and STDEVP for LogDpH5 attribute for all chemical 

compounds for Bee endpoint 

Following is the result of the calculated parameters for descriptor (LogDpH7) for all 

chemical compounds which shows the value for both Pallas and ACD. 

Comparison of parameters Mean,Max, Min and STDEVP for 

attribute LogDpH7 calculated by ACD and PALLAS

Mean

Max

Min

STDEVPMean

Max

Min

STDEVP

-10

-5

0

5

10

PALLAS005 2.5439506 8.16996 -5.6052 2.748947509

ACD004 2.686745263 8.1404 -5.0751 2.618868261

Mean Max Min STDEVP

 
Figure5: the result of the mean, max, min and STDEVP for LogDpH7 attribute for all chemical 

compounds for Bee endpoint 
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Following is the result of the calculated parameters for descriptor (LogDpH7.4) for all 

chemical compounds which shows the value for both Pallas and ACD. 

Comparison of parameters Mean,Max,Min and STDEVP for 

attribute LogDpH7.4 calculated by ACD and PALLAS
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Figure6: the result of the mean, max, min and STDEVP for LogDpH7.4 attribute for all chemical 

compounds for Bee endpoint 

 
Following is the result of the calculated parameters for descriptor (LogDpH9) for all 

chemical compounds which shows the value for both Pallas and ACD. 

Comparison of parameters Mean,Max,Min and STDEVP for 

attribute LogDpH9 calculated by ACD and PALLAS
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Figure7: the result of the mean, max, min and STDEVP for LogDpH9 attribute for all chemical 

compounds for Bee endpoint 

 

As it has been shown in previous graphs for this endpoint there are value differences 

for each calculated parameter (min, max, mean, stdevp) between two files(ACD, 

PALLAS). In the second experiment we have calculated these differences and 

recorded in the table and also visualise by graphs. Following shows the results of this 

experiment.  

For instance if for “Mean” parameter for LogP in PALLAS file for Bee endpoint we 

have value: 2.390566365 and for same parameter in ACD file we have 2.640947368, 

the difference between these two values would be: -0.250381004 when the value 

produced by ACD is deducted from value presented by PALLAS. In following tables 
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we calculated these differences to clarify the problem. We have also shown the results 

by two graphs for better visualisation. Both graphs produce the same results.   

Table10: Results of the experiment for calculation of value difference between each descriptor 

presented by ACD and Pallas for Bee endpoint 

 
 

Comparison of value differences b etween attributes which have been 

calculated b y ACD and PALLAS
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Mean -0.118548408 -0.187130701 -0.114928989 -0.142794663 -0.165926168 -0.250381004

Max 2.21882 2.22028 2.21881 3.58602 3.80667 3.81636

Min -3.00158 -3.00158 -3.00158 -3.00158 -3.00158 -3.27919

STDEVP 0.848747337 0.88311137 0.867948411 0.988557764 1.021915587 1.13706038

LogP LogDpH3 LogDpH5 LogDpH7 LogDpH7.4 LogDpH9

 
Figure8: the result of the value difference between attributes calculated by ACD and PALLAS for Bee 

endpoint 

 
 

Comparison of attrib utes values differences
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Max 2.21882 2.22028 2.21881 3.58602 3.80667 3.81636

Min -3.00158 -3.00158 -3.00158 -3.00158 -3.00158 -3.27919

STDEVP 0.84874734 0.88311137 0.86794841 0.98855776 1.02191559 1.13706038
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Figure9: the result of the attribute values difference for Bee endpoint 

 
For comparison purposes and also for clarity the previous results of all the values of 

max and min for descriptors and also max and min descriptors value difference put in 

Pallas value minus ACD value LogP LogDpH3 LogDpH5 LogDpH7 LogDpH7.4 LogDpH9 

Mean -0.118548408 -0.187130701 -0.114928989 -0.142794663 -0.165926168 -0.250381004 

Max 2.21882 2.22028 2.21881 3.58602 3.80667 3.81636 

Min -3.00158 -3.00158 -3.00158 -3.00158 -3.00158 -3.27919 

STDEVP 0.848747337 0.88311137 0.867948411 0.988557764 1.021915587 1.13706038 
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one table.The table also shows the ID for descriptors which hold the minimum and 

maximum value for that descriptor.  

Table11: Results of the experiment for calculation of value difference, Min, Max, and also ID of the 

chemicals presented by ACD and Pallas for Bee endpoint 
 

Pallas LogP LogDpH3 LogDpH5 LogDpH7 LogDpH7.4 LogDpH9 

Min -0.952306 -3.78509 -4.75384 -5.6052 -5.99314 -7.5105 

Max 8.16996 8.16996 8.16996 8.16996 8.16996 8.16996 

Min Value Difference -3.00158 -3.00158 -3.00158 -3.00158 -3.00158 -3.27919 

Max Value Difference 2.21882 2.22028 2.21881 3.58602 3.80667 3.81636 

ID of Min 192 382 457 373 373 373 

ID of Max 146 146 146 146 146 146 

ACD LogP LogDpH3 LogDpH5 LogDpH7 LogDpH7.4 LogDpH9 

Min -1.4202 -3.4969 -4.2068 -5.0751 -5.2504 -5.8599 

Max 8.2665 8.1404 8.1404 8.1404 8.1404 8.1678 

Min Value Difference -3.00158 -3.00158 -3.00158 -3.00158 -3.00158 -3.27919 

Max Value Difference 2.21882 2.22028 2.21881 3.58602 3.80667 3.81636 

ID of Min 373 382 382 373 373 373 

ID of Max 146 248 248 248 248 146 

 
Analysis: as it shown in table 11, the minimum value difference for LogP ranges 

from -3.00158 to 2.21882 which show inconsistencies for value calculation from one 

program to another. The graphical results are also shown in figures8 and 9. For 

logDpH3 and LogDpH5 the difference is in the same range and suddenly the graph 

has big picks on maximum value difference for LogDpH7 and LogDpH7.4 and 

LogDpH9 up to 3.8163. The minimum value difference still shows the gap between 

calculated values which is almost same for all descriptors and ranges from -3.0015 to 

-3.279 (LogDpH9) which shows a pick at the end for the last descriptor. The ID for 

chemical compound which hold the minimum value and maximum value for each 

decriptor is also different in some cases. For instance the ID for chemical compound 

which has the minimum value for LogP descriptor is 192 in files produced by 

PALLAS program and is 373 in files produced by ACD. These two IDs belong to two 

different compounds.  

4.2.3.2 Daphnia Endpoint 

 

As first experiment four following parameters have been calculated for each column 

in each original file (in ACD and Pallas): Minimum, Maximum, Average (mean), 

Standard Deviation (for population) using Excel functions and recorded in the bottom 

of the each column. The result for each descriptor was separated in different table to 

show the difference of these parameters for descriptors which values calculated with 
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ACD and Pallas. The results are shown on charts to visualize the comparison. 

Following are the results achieved from this experiment.  

Table12: Results of the experiment for calculation of values Mean, Min, Max, and STDEVP for 

Daphnia presented by ACD and Pallas 
  

D_2DPALLAS_v2_SD PALLAS001 PALLAS002 PALLAS003 PALLAS005 PALLAS006 PALLAS007 

Mean 3.111978528 2.676990389 2.66961504 2.46706606 2.42831149 2.30689498 

Max 11.6915 11.6915 11.6915 11.6915 11.6915 11.6915 

Min -2.701 -6.54063 -6.54052 -7.85046 -7.89228 -9.10505 

STDEVP 2.200465279 2.599263541 2.65732754 2.82991807 2.86838325 3.02949894 

D1_1v1_ACD2Dv1_SD ACD001 ACD002 ACD003 ACD004 ACD005 ACD006 

Mean 3.270184836 2.966811066 2.90584713 2.7529582 2.72891475 2.65871311 

Max 13.676 13.676 13.676 13.676 13.676 13.676 

Min -2.3559 -5.4966 -5.8715 -6.499 -6.6644 -6.8685 

STDEVP 2.254639469 2.484495301 2.55814327 2.65603901 2.67889429 2.74335268 

 

Following is the result of the calculated parameters for the descriptor (LogP) for all 

chemical compounds which shows the value for both Pallas and ACD. 

Comparison of parameters Mean,Max,Min and STDEVP for 

attribute LogP calculated by ACD and PALLAS
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Figure10: comparison of parameters Mean, Max, Min and STDEVP for LogP for all chemicals for 

Daphnia endpoint 
Following is the result of the calculated parameters for the descriptor (LogDpH3) for 

all chemical compounds which shows the value for both Pallas and ACD. 

Comparison of parameters Mean,Max,Min and STDEVP for 

attribute LogDpH3 calculated by ACD and PALLAS
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Figure11: comparison of parameters Mean, Max, Min and STDEVP for LogDpH3 for all chemicals for 

Daphnia endpoint 
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Following is the result of the calculated parameters for the descriptor (LogDpH5) for 

all chemical compounds which shows the value for both Pallas and ACD. 

Comparison of parameters Mean,Max,Min and STDEVP for 

attribute LogDpH5 calculated by ACD and PALLAS
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Figure12: comparison of parameters Mean, Max, Min and STDEVP for LogDpH5 for all chemicals for 

Daphnia endpoint 

 

Following is the result of the calculated parameters for the descriptor (LogDpH7) for 

all chemical compounds which shows the value for both Pallas and ACD. 

Comparison of parameters Mean,Max,Min and STDEVP for 

attribute LogDpH7 calculated by ACD and PALLAS
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Figure13: comparison of parameters Mean, Max, Min and STDEVP for LogDpH7 for all chemicals for 

Daphnia endpoint 
Following is the result of the calculated parameters for the descriptor (LogDpH7.4) 

for all chemical compounds which shows the value for both Pallas and ACD. 

Comparison of parameters Mean,Max,Min and STDEVP for 

attribute LogDpH7.4 calculated by ACD and PALLAS
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Figure14: comparison of parameters Mean, Max, Min and STDEVP for LogDpH7.4 for all chemicals 

for Daphnia endpoint 
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Following is the result of the calculated parameters for the descriptor (LogDpH9) for 

all chemical compounds which shows the value for both Pallas and ACD. 

Comparison of parameters Mean,Max,Min and STDEVP for 

attribute LogDpH9 calculated by ACD and PALLAS
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Figure15: comparison of parameters Mean, Max, Min and STDEVP for LogDpH9 for all chemicals for 

Daphnia endpoint 

 

Following shows the result of the second experiment on data, which presents the 

statistical parameters for value differences between each descriptor that, has been 

presented by ACD and Pallas (visualize by two different graphs). 

 
Table13: Results of the experiment for calculation of value difference of the chemicals presented by 

ACD and Pallas for Daphnia endpoint 

 

Pallas value minus ACD value LogP LogDpH3 LogDpH5 LogDpH7 LogDpH7.4 LogDpH9 

Mean -0.158206308 -0.289820677 -0.236232093 -0.28589214 -0.300603268 -0.351818136 

Max 2.21882 4.00517 3.19537 3.58602 3.80667 3.81636 

Min -7.40214 -8.11613 -8.11602 -8.50406 -8.10928 -7.40214 

STDEVP 0.968550135 1.370624032 1.372725317 1.370407454 1.353867766 1.308841823 

 

Comparison of value of differences between attributes which have been 

calculated by ACD and PALLAS
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Figure16: comparison of value difference for all chemicals for Daphnia endpoint 
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Comparison of parameters Mean,Max,Min and STDEVP for attribute values 

differences
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Min -7.40214 -8.11613 -8.11602 -8.50406 -8.10928 -7.40214

STDEVP 0.96855013 1.37062403 1.37272532 1.37040745 1.35386777 1.30884182
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Figure17: comparison of value difference for all chemicals for Daphnia endpoint showing by different 

graph 

 

For comparison purposes all the values of max and min for descriptors and also 

minimum and maximum value difference put in one table (table 14). The table also 

shows the ID for descriptors which hold the minimum and maximum value for that 

descriptor. 

Table14: Results of the experiment for calculation of value difference, Min, Max, and also ID of the 

chemicals presented by ACD and Pallas for Daphnia endpoint 

Pallas LogP LogDpH3 LogDpH5 LogDpH7 LogDpH7.4 LogDpH9 

Min -2.701 -6.54063 -6.54052 -7.85046 -7.89228 -9.10505 

Max 11.6915 11.6915 11.6915 11.6915 11.6915 11.6915 

Min Value Difference -7.40214 -8.11613 -8.11602 -8.50406 -8.10928 -7.40214 

Max Value Difference 2.21882 4.00517 3.19537 3.58602 3.80667 3.81636 

ID of Min 346 51 51 417 417 143 

ID of Max 418 418 418 418 418 418 

ACD LogP LogDpH3 LogDpH5 LogDpH7 LogDpH7.4 LogDpH9 

Min -2.3559 -5.4966 -5.8715 -6.499 -6.6644 -6.8685 

Max 13.676 13.676 13.676 13.676 13.676 13.676 

Min Value Difference -7.40214 -8.11613 -8.11602 -8.50406 -8.10928 -7.40214 

Max Value Difference 2.21882 4.00517 3.19537 3.58602 3.80667 3.81636 

ID of Min 143 143 143 143 143 143 

ID of Max 90 90 90 90 90 90 

 

Analysis: as it shown in table 14 the value difference for LogP calculated by ACD 

and Pallas ranges from Min –7.40214 to Max 2.2188. Considering the numerical 

value the difference of 7.40214 is extremely high and unreliable. This value belong to 

compound with the ID=90. This means there is difference of 7.40214 between the 

value for LogP calculated for this compound by ACD and PALLAS. The results also 

showed graphically in figures16 and 17. The variation for compounds with ID=39, 

415 and 419 is also very high, ranging from –2.389 to –3.300. The ID for compounds 

holding the minimum and maximum values for each descriptor, are also different. For 

instance in files produced by ACD the compound with biggest LogP value has ID, 90 
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but in PALLAS that is calculated for compound with ID, 418. For other descriptors 

there are also same inconsistencies. This creates doubts in reliability to produced 

values by these two programs.  

4.2.3.3 Trout Endpoint 

 

As first experiment four following parameters have been calculated for each column 

in each file (in ACD and Pallas): Minimum, Maximum, Average (mean), Standard 

Deviation (for population) using Excel functions and recorded in the bottom of the 

each column. The result for each descriptor was separated in different table to show 

the difference of these parameters for descriptors which values calculated with ACD 

and Pallas. The results are shown on charts to visualize the comparison. Following are 

the results achieved from this experiment. The analysis follows at the end of this 

section. 

Table15: Comparison of parameters Mean, Min, Max, and STDEVP of the chemicals presented by 

ACD and Pallas for Trout endpoint 

T3.1v2_2DPallas_v1 PALLAS001 PALLAS002 PALLAS003 PALLAS004 PALLAS005 PALLAS006 

Mean 3.264245559 2.837395973 2.876839175 2.781595156 2.760571741 2.676192422 

Max 8.68196 8.68196 8.68196 8.68196 8.68196 8.68196 

Min -2.701 -6.54063 -6.54052 -6.5299 -6.51344 -9.10505 

STDEVP 2.024651218 2.418369574 2.401885891 2.477602322 2.501244884 2.628349429 

T3.1v2_2DACDv1 ACD001 ACD002 ACD003 ACD004 ACD005 ACD006 

Mean 3.401836641 3.137187786 3.086464122 2.963532443 2.945440458 2.878457252 

Max 13.676 13.676 13.676 13.676 13.676 13.676 

Min -2.3559 -5.4966 -5.8715 -6.499 -6.6644 -6.8685 

STDEVP 2.053151135 2.269363202 2.333381275 2.425906057 2.443537865 2.506445732 

 

Following is the result of the calculated parameters for the descriptor (LogP) for all 

chemical compounds which shows the value for both Pallas and ACD. 

Comparison of parameters Mean,Max,Min and STDEVP for 

attribute LogP Calculated by ACD and Pallas
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Figure18: comparison of parameters Mean, Max, Min and STDEVP for LogP for Trout endpoint 
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Following is the result of the calculated parameters for the descriptor (LogDpH3) for 

all chemical compounds which shows the value for both Pallas and ACD. 

Comparison of parameters Mean,Max Min and STDEVP for 

attribute LogDpH3 calculated by ACD and Pallas
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Figure19: comparison of parameters Mean, Max, Min and STDEVP for LogDpH3 for Trout endpoint 

 

Following is the result of the calculated parameters for the descriptor (LogDpH5) for 

all chemical compounds which shows the value for both Pallas and ACD. 

Comparison of parameters Mean,Max,Min and STDEVP for 

attribute LogDpH5 calculated by ACD and Pallas
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Figure20: comparison of parameters Mean, Max, Min and STDEVP for LogDpH5 for Trout endpoint 

 

Following is the result of the calculated parameters for the descriptor (LogDpH7) for 

all chemical compounds which shows the value for both Pallas and ACD. 

Comparison of parameters Mean,Max,Min and STDEVP for 

attribute LogDpH7 calculated by ACD and Pallas
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Figure21: comparison of parameters Mean, Max, Min and STDEVP for LogDpH7 for Trout endpoint 
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Following is the result of the calculated parameters for the descriptor (LogDpH7.4) 

for all chemical compounds which shows the value for both Pallas and ACD. 

Comparison of parameters Mean,Max,Min and STDEVP for 

attribute LogDpH7.4 calculated by ACD and Pallas
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Figure22: comparison of parameters Mean, Max, Min and STDEVP for LogDpH7.4 for Trout endpoint 

 

Following is the result of the calculated parameters for the descriptor (LogDpH9) for 

all chemical compounds which shows the value for both Pallas and ACD. 

Comparison of parameters Mean,Max,Min and STDEVP for 

attribute LogDpH9 calculated by ACD and Pallas
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Figure23: comparison of parameters Mean, Max, Min and STDEVP for LogDpH9 for Trout endpoint 

 

Following shows the result of the second experiment on data which presents the 

statistical parameters for value differences between each descriptor that has been 

presented by ACD and Pallas (visualize by two different graphs). 

Table16: Results of the experiment for calculation of value difference between each descriptor 

presented by ACD and Pallas for Trout endpoint 

Pallas value minus ACD value LogP LogDpH3 LogDpH5 LogDpH7 LogDpH7.4 LogDpH9 

Mean -0.137591082 -0.299791814 -0.209624947 -0.181937287 -0.184868717 -0.20226483 

Max 2.69049 4.00517 3.19537 3.58602 3.80667 3.81636 

Min -7.40214 -8.11613 -8.11602 -8.1055 -8.08934 -7.40214 

STDEVP 1.079291098 1.43300063 1.367397639 1.326989991 1.314810855 1.291744174 
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Comparison of value differences for attributes 

LogP,LogDpH3,LogDpH5,LogDpH7,LogDpH7.4 and LogDpH9 calculated by ACD 

and Pallas
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STDEVP 1.0792911 1.43300063 1.36739764 1.32698999 1.31481085 1.29174417
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Figure24: comparison of value difference for attributes for trout endpoint 

 

Comparison of value differences for attributes 
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Figure25: comparison of value difference for attributes for trout endpoint by different graph 

 

For comparison purposes all the values of max and min for descriptors and also max 

and min descriptors value difference put in one table (table 17).The table also shows 

the ID for descriptors which hold the minimum and maximum value for that 

descriptor. 

Table17: Results of the experiment for calculation of value difference, Min, Max, and also ID of the 

chemicals presented by ACD and Pallas for Trout endpoint 

Pallas LogP LogDpH3 LogDpH5 LogDpH7 LogDpH7.4 LogDpH9 

Min -2.701 -6.54063 -6.54052 -6.5299 -6.51344 -9.10505 

Max 8.68196 8.68196 8.68196 8.68196 8.68196 8.68196 

Min Value Difference -7.40214 -8.11613 -8.11602 -8.1055 -8.08934 -7.40214 

Max Value Difference 2.69049 4.00517 3.19537 3.58602 3.80667 3.81636 

ID of Min 346 51 51 51 51 143 

ID of Max 93 93 93 93 93 93 

ACD LogP LogDpH3 LogDpH5 LogDpH7 LogDpH7.4 LogDpH9 

Min -2.3559 -5.4966 -5.8715 -6.499 -6.6644 -6.8685 

Max 13.676 13.676 13.676 13.676 13.676 13.676 

Min Value Difference -7.40214 -8.11613 -8.11602 -8.1055 -8.08934 -7.40214 

Max Value Difference 2.69049 4.00517 3.19537 3.58602 3.80667 3.81636 

ID of Min 143 143 143 143 143 143 

ID of Max 90 90 90 90 90 90 
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Analysis: as it shown in table 17 and also in figures24 and 25, the value comparison 

shows that there are high variations. For LogP the value difference starts from –

7.4021 to 2.69049. This variation continues across table for all other descriptors. For 

this endpoint also the ID for compounds which hold the minimum value and 

maximum value for descriptors are different in two files. For instance the ID for a 

compound with minimum value for LogP presented by ACD is 143 and in PALLAS 

are 346.  

4.2.3.4 DietaryQuail Endpoint 

 

As first experiment four following parameters have been calculated for each column 

in each file (in ACD and Pallas): Minimum, Maximum, Average (mean), Standard 

Deviation (for population) using Excel functions and recorded in the bottom of the 

each column. The result for each descriptor was separated in different table to show 

the difference of these parameters for descriptors which values calculated with ACD 

and Pallas. The results are shown on charts to visualize the comparison. Following are 

the results achieved from this experiment.  

Table18: Calculation of values Mean, Min, Max, and STDEVP for DQ endpoint 

DQ_2DPallas PALLAS001 PALLAS002 PALLAS003 PALLAS005 PALLAS006 PALLAS007 

Mean 3.57314711 3.23550601 3.20153731 3.07774728 3.05740324 3.01022853 

Max 8.16996 8.16996 8.16996 8.16996 8.16996 8.16996 

Min -2.244 -2.36733 -2.51701 -3.92561 -3.99634 -4.04894 

STDEVP 2.13345441 2.3971412 2.37181452 2.42087622 2.42777757 2.4655906 

DQ_1v1_ACD2D_v1 ACD001 ACD002 ACD003 ACD004 ACD005 ACD006 

Mean 3.55633271 3.34428879 3.28468037 3.12487664 3.10740467 3.0653486 

Max 8.5027 8.5012 8.5008 8.4633 8.4118 8.1678 

Min -1.4136 -1.4184 -2.5887 -5.6348 -5.8515 -5.9949 

STDEVP 2.06740742 2.12813686 2.2116162 2.45152799 2.48180499 2.52838837 

Following is the result of the calculated parameters for the descriptor (LogP) for all 

chemical compounds which shows the value for both Pallas and ACD. 

Comparison of parameters Mean,Max,Min and STDEVP for LogP 

calculated by ACD and Pallas
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Figure26: comparison of parameters Mean, Max, Min and STDEVP for LogP for DQ endpoint 
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Following is the result of the calculated parameters for the descriptor (LogDpH3) for 

all chemical compounds which shows the value for both Pallas and ACD. 

Comparison of parameters Mean,Max,Min and STDEVP for LogDpH3 

calculated by ACD and Pallas
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Figure27: comparison of parameters Mean, Max, Min and STDEVP for LogDpH3 for DQ endpoint 

 

Following is the result of the calculated parameters for the descriptor (LogDpH5) for 

all chemical compounds which shows the value for both Pallas and ACD. 

Comparison of parameters Mean,Max,Min and STDEVP for LogDpH5 

calculated by ACD and Pallas
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Figure28: comparison of parameters Mean, Max, Min and STDEVP for LogDpH5 for DQ endpoint 

 

Following is the result of the calculated parameters for the descriptor (LogDpH7) for 

all chemical compounds which shows the value for both Pallas and ACD. 

Comparison of parameters Mean,Max,Min and STDEVP for LogDpH7 

calculated by ACD and Pallas
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Figure29: comparison of parameters Mean, Max, Min and STDEVP for LogDpH7 for DQ endpoint 
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Following is the result of the calculated parameters for the descriptor (LogDpH7.4) 

for all chemical compounds which shows the value for both Pallas and ACD. 

Comparison of parameters Mean,Max,Min and STDEVP for LogDpH7.4 

calculated by ACD and Pallas

Mean

Max

Min

STDEVP
Mean

Max

Min

STDEVP

-8

-6

-4

-2

0

2

4

6

8

10

PALLAS006 3.057403237 8.16996 -3.99634 2.427777569

ACD005 3.107404673 8.4118 -5.8515 2.48180499

Mean Max Min STDEVP

 
Figure30: comparison of parameters Mean, Max, Min and STDEVP for LogDpH7.4 for DQ endpoint 

 

Following is the result of the calculated parameters for the descriptor (LogDpH9) for 

all chemical compounds which shows the value for both Pallas and ACD. 

Comparison of parameters Mean,Max,Min and STDEVP for LogDpH9 calculated 

by ACD and Pallas
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Figure31: comparison of parameters Mean, Max, Min and STDEVP for LogDpH9 for DQ endpoint 

 

Following shows the result of the second experiment on data which presents the 

statistical parameters for value differences between each descriptor that has been 

presented by ACD and Pallas (visualize by two different graphs). 

 

Table19: Results of the experiment for calculation of value difference between each descriptor 

presented by ACD and Pallas for DQ endpoint 

Pallas value minus ACD value LogP LogDpH3 LogDpH5 LogDpH7 LogDpH7.4 LogDpH9 

Mean 0.016814402 -0.108782776 -0.083143065 -0.047129357 -0.050001436 -0.055120068 

Max 2.47788 2.47788 2.47788 5.460421 5.677121 5.820521 

Min -2.389233 -5.34828 -6.73168 -5.770222 -5.079628 -4.56813 

STDEVP 0.834197788 1.128481214 1.179696466 1.259636044 1.249687774 1.171923581 
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Comparison of value differences between attributes which have been calculated by ACD and 

PALLAS
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Figure32: comparison of value difference for all chemicals for DQ endpoint 
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Figure33: comparison of value difference for all chemicals for DQ endpoint by different graph 

 

For comparison purposes all the calculated values of max and min for descriptors and 

also maximum and minimum value difference between descriptors, put in one table 

(table 20). The table also shows the ID for descriptors which hold the minimum and 

maximum value for that descriptor. 

 

Table20: Results of the experiment for calculation of value difference, Min, Max, and also ID of the 

chemicals presented by ACD and Pallas for DQ endpoint 

Pallas LogP LogDpH3 LogDpH5 LogDpH7 LogDpH7.4 LogDpH9 

Min -2.244 -2.36733 -2.51701 -3.92561 -3.99634 -4.04894 

Max 8.16996 8.16996 8.16996 8.16996 8.16996 8.16996 

Min Value Difference -2.38923 -5.34828 -6.73168 -5.77022 -5.07963 -4.56813 

Max Value Difference 2.47788 2.47788 2.47788 5.460421 5.677121 5.820521 

ID of Min 442 337 230 230 230 230 

ID of Max 146 146 146 146 146 146 

ACD LogP LogDpH3 LogDpH5 LogDpH7 LogDpH7.4 LogDpH9 

Min -1.4136 -1.4184 -2.5887 -5.6348 -5.8515 -5.9949 

Max 8.5027 8.5012 8.5008 8.4633 8.4118 8.1678 

Min Value Difference -2.38923 -5.34828 -6.73168 -5.77022 -5.07963 -4.56813 

Max Value Difference 2.47788 2.47788 2.47788 5.460421 5.677121 5.820521 

ID of Min 447 447 230 447 447 447 

ID of Max 411 411 411 411 411 146 
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Analysis: as it shown in table 20 and figures32 and 33, there are sudden picks for 

LogDpH5 which carries for LogDpH7, LogDpH7.4 and LogDpH9. The difference 

between Min value calculated for ACD and Pallas for LogP and LogDpH3 is very 

high. There are also differences between the compounds which hold the maximum 

and minimum values for descriptors across two files. For instance in the PALLAS file 

the ID for compound with minimum LogP value is 442 but in ACD is 447.  

4.2.3.5 OralQuail Endpoint 

 

As first experiment four following parameters have been calculated for each column 

in each file (in ACD and Pallas): Minimum, Maximum, Average (mean), Standard 

Deviation (for population) using Excel functions and recorded in the bottom of the 

each column. The result for each descriptor was separated in different table to show 

the difference of these parameters for descriptors which values calculated with ACD 

and Pallas. The result was showed on charts to visualize the comparison. Following 

are the results achieved from this experiment.  

Table21: Results of the experiment for calculation of parameters Mean, Min, Max, and STDEVP of the 

chemicals presented by ACD and Pallas for OQ endpoint 

 

OQ_2DPallas_v1 PALLAS001 PALLAS002 PALLAS003 PALLAS005 PALLAS006 PALLAS007 

Mean 2.882384377 2.356942575 2.225951613 2.050985316 2.038297758 2.036627778 

Max 8.16996 8.16996 8.16996 8.16996 8.16996 8.16996 

Min -2.82609 -6.54063 -6.54052 -6.5299 -7.05401 -7.78253 

STDEVP 2.207122552 2.68692086 2.701264404 2.740502259 2.741228452 2.716455172 

OQ1_1v1_ACD2Dv1 ACD001 ACD002 ACD003 ACD004 ACD005 ACD006 

Mean 3.052807692 2.684603846 2.597591346 2.466474038 2.454674038 2.419223077 

Max 13.676 13.676 13.676 13.676 13.676 13.676 

Min -1.6559 -4.7181 -3.763 -4.6224 -5.0095 -5.2056 

STDEVP 2.198203905 2.351511638 2.372459659 2.487731672 2.503263771 2.497835524 

Following is the result of the calculated parameters for the descriptor (LogP) for all 

chemical compounds which shows the value for both Pallas and ACD. 

Comparison of parameters Mean,Max,Min and STDEVP for 

attribute LogP calculated by ACD and Pallas

Mean

Max

Min

STDEVPMean

Max

Min

STDEVP

-5

0

5

10

15

PALLAS001 2.882384377 8.16996 -2.82609 2.207122552

ACD001 3.052807692 13.676 -1.6559 2.198203905

Mean Max Min STDEVP

 
Figure34: comparison of parameters Mean, Max, Min and STDEVP for LogP for OQ endpoint 
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Following is the result of the calculated parameters for the descriptor (LogDpH3) for 

all chemical compounds which shows the value for both Pallas and ACD. 

Comparison of parameters Mean,Max,Min and STDEVP for 

attribute LogDpH3 calculated by ACD and Pallas
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Figure35: comparison of parameters Mean, Max, Min and STDEVP for LogDpH3 for OQ endpoint 

 

Following is the result of the calculated parameters for the descriptor (LogDpH5) for 

all chemical compounds which shows the value for both Pallas and ACD. 

Comparison of parameters Mean,Max,Min and STDEVP for 

attribute LogDpH5 calculated by ACD and Pallas
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Figure36: comparison of parameters Mean, Max, Min and STDEVP for LogDpH5 for OQ endpoint 
 

Following is the result of the calculated parameters for the descriptor (LogDpH7) for 

all chemical compounds which shows the value for both Pallas and ACD.  

Comparison of parameters Mean,Max,Min and STDEVP for 

attribute LogDpH7 calculated by ACD and Pallas
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Figure37: comparison of parameters Mean, Max, Min and STDEVP for LogDpH7 for OQ endpoint 
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Following is the result of the calculated parameters for the descriptor (LogDpH7.4) 

for all chemical compounds which shows the value for both Pallas and ACD. 

Comparison of parameters Mean,Max,Min and STDEVP for 

attribute LogDpH7.4 calculated by ACD and Pallas
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Figure38: comparison of parameters Mean, Max, Min and STDEVP for LogDpH7.4 for OQ endpoint 
 

Following is the result of the calculated parameters for the descriptor (LogDpH9) for 

all chemical compounds which shows the value for both Pallas and ACD. 

Compaison of parameters Mean,Max,Min and STDEVP 

calculated by ACD and Pallas
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Figure39: comparison of parameters Mean, Max, Min and STDEVP for LogDpH9 for OQ endpoint 

 

Following shows the result of the second experiment on data which presents the 

statistical parameters for value differences between each descriptor that has been 

presented by ACD and Pallas (visualize by two different graphs). 

Table22: Results of the experiment for calculation of value difference between each descriptor 

presented by ACD and Pallas for OQ endpoint 

Pallas value minus ACD value LogP LogDpH3 LogDpH5 LogDpH7 LogDpH7.4 LogDpH9 

Mean -0.170423315 -0.327661271 -0.371639733 -0.415488722 -0.416376281 -0.382595299 

Max 2.47788 4.00517 3.19537 2.47788 2.47788 2.47788 

Min -7.40214 -8.11613 -8.11602 -8.1055 -8.08934 -7.40214 

STDEVP 1.332322235 1.743614319 1.762835989 1.679479728 1.656292526 1.568929912 
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Comparison of value differences for attributes LogP,LogDpH3,LogDpH5, 

LogDpH7,LogDpH7.4 and LogDpH9 calculated by ACD and Pallas
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Figure40: comparison of value difference for attributes for OQ endpoint 
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Figure41: comparison of value difference for attributes for OQ endpoint by different graph 

 

For comparison purposes all the values of max and min for descriptors and also max 

and min descriptors value difference put in one table (table 23). The table also shows 

the ID for descriptors which hold the minimum and maximum value for that 

descriptor. 
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Table23: Results of the experiment for calculation of value difference, Min, Max, and also ID of the 

chemicals presented by ACD and Pallas for OQ endpoint 

Pallas LogP LogDpH3 LogDpH5 LogDpH7 LogDpH7.4 LogDpH9 

Min -2.82609 -6.54063 -6.54052 -6.5299 -7.05401 -7.78253 

Max 8.16996 8.16996 8.16996 8.16996 8.16996 8.16996 

Min Value Difference -7.40214 -8.11613 -8.11602 -8.1055 -8.08934 -7.40214 

Max Value Difference 2.47788 4.00517 3.19537 2.47788 2.47788 2.47788 

ID of Min 433 51 51 51 372 372 

ID of Max 146 146 146 146 146 146 

ACD LogP LogDpH3 LogDpH5 LogDpH7 LogDpH7.4 LogDpH9 

Min -1.6559 -4.7181 -3.763 -4.6224 -5.0095 -5.2056 

Max 13.676 13.676 13.676 13.676 13.676 13.676 

Min Value Difference -7.40214 -8.11613 -8.11602 -8.1055 -8.08934 -7.40214 

Max Value Difference 2.47788 4.00517 3.19537 2.47788 2.47788 2.47788 

ID of Min 347 347 347 372 372 372 

ID of Max 90 90 90 90 90 90 

 

Analysis: as it shown in figures40 and 41 and also in table 23, the value difference 

calculated for each descriptor for all chemical compounds are very high. There are 

also differences between values for chemicals with lowest and highest values for 

descriptors across both files. For instance the ID for chemical compound with 

minimum value for LogP is 347 in ACD file and is 433 in PALLAS. 

4.2.4 Comparison of Model Performance 

 

Original data sets (prepared for training and testing) were used to develop Weka 

models based on the following algorithms: ClassificationViaRegression, BayesNet, 

MultilayerPerceptron, IBK, ZeroR, LMT, J48 and JRip [58]. For performance of 

models study, two case studies have been considered. Firstly models obtained from 

training data (separated inputs from ACD and Pallas for same endpoint) were tested 

against test data sets. Secondly 10-fold Cross Validation has been used on training 

data. The accuracy of each model (one from modeling against testing set and one 

from modeling with Cross Validation testing method) was recorded to identify which 

model suits which endpoint. Other parameters from modeling can also be recorded. 

We compare classification accuracy for models obtained as described above, once 

using training set against test set and once using 10-fold Cross Validation with 8 

algorithms on all the endpoints. 

4.2.5 Descriptor Swap (LogP, LogDpH3, LogDpH5, LogDpH7) 

 

For this work first the value difference from previous experiment were considered. If 

the value was big, then number of descriptors was swap between files produced by 

ACD and Pallas. Then the produced files were modelled using all the algorithms used 
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in previous work using Weka. At the last stage results were compared with the ones 

collected from the previous work (containing files with their original descriptors 

values modelled using Weka). First time LogP was swapped between two files for all 

endpoint and data was modelled. Second time for just two endpoints (with large 

descriptors value difference) three more descriptors were also swapped and the data 

was modelled and result was recorded. The idea of this task was to see how much the 

variation of values could affect the model performance. Table 23 and 24 shows the 

result of modelling PALLAS and ACD dataset for trout endpoint in its original form 

(with no swapping) and then after LogP swap, LogP and LogDpH5 and LogP, 

LogDpH5 and LogDpH7 swap between two files (ACD and PALLAS). The 

algorithms were trained against test in this instance.  

Table23: Model performance after descriptor swap for Trout dataset produced by Pallas 

Endpoint Trout Algorithm accuracy against test set (%) 

Pallas BN MLP IBK CVR J48 JRip ZeroR LMT 

Original Model 42.5 47.5 40 40 42.5 45 40 42.5 

LogP swap 58.6957 54.3478 39.1304 56.5217 52.1739 50 43.4783 56.5217 

LogP & LogDpH5 swap 58.6957 45.6522 58.6957 43.4783 52.1739 56.5217 43.4783 47.8261 

LogP,LogDpH5 & LogDpH7 swap 56.5217 56.5217 43.4783 56.5217 58.6957 47.8261 43.4783 56.5217 
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Figure42: Algorithm accuracy after descriptor swap for Trout dataset produced by Pallas 

 

 

Table24: Model performance after descriptor swap for Trout dataset produced by ACD 

Endpoint Trout Algorithm accuracy against test set (%) 

ACD BN MLP IBK CVR J48 Jrip ZeroR LMT 

Original Model 47.5 50 35 45 40 37.5 40 45 

LogP swap 63.0435 54.3478 47.8261 58.6957 47.8261 43.4783 43.4783 50 

LogP & LogDpH5 swap 56.5217 50 58.6957 39.1304 54.3478 60.8696 43.4783 41.3043 

LogP,LogDpH5 & LogDpH7 swap 56.5217 56.5217 47.8261 50 50 54.3478 43.4783 47.8261 
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ACD:Algorithm accuracy against test set
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Figure43: Algorithm accuracy after descriptor swap for Trout dataset produced by ACD 

 

Following tables 25 and 26 shows the result of modelling both datasets (ACD, 

PALLAS) after and before swapping. The data was modelled using 10-fold Cross 

Validation in this instance. The results are shown graphically in Figures 44 and 45. 

 
Table25: Model performance after descriptor swap for Trout dataset produced by Pallas using 10-fold 

Cross Validation 
 

Endpoint Trout Algorithm accuracy tested by 10-fold Cross Validation (%) 

Pallas BN MLP IBK CVR J48 JRip ZeroR LMT 

Original Model 44.1176 47.549 38.2353 43.1373 48.5294 43.1373 44.6078 45.5882 

LogP swap 57.4074 52.3148 44.4444 54.6296 50.9259 50.9259 44.9074 49.537 

LogP & LogDpH5 swap 46.5686 49.5098 34.8039 48.5294 45.098 47.0588 44.6078 50 

LogP,LogDpH5 & LogDpH7 swap 56.9444 52.3148 48.1481 51.3889 53.2407 57.4074 44.9074 46.2963 
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Figure44: Algorithm accuracy after descriptor swap for Trout dataset produced by Pallas using 10-fold 

Cross Validation 
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Table26: Model performance after descriptor swap for Trout dataset produced by ACD using 10-fold 

Cross Validation 
 

Endpoint Trout Algorithm accuracy tested by 10-fold Cross Validation (%) 

ACD BN MLP IBK CVR J48 JRip ZeroR LMT 

Original Model 42.6471 47.0588 42.1569 50.4902 48.0392 48.5294 44.6078 46.0784 

LogP swap 56.0185 53.7037 47.6852 55.0926 54.6296 55.0926 44.9074 53.2407 

LogP & LogDpH5 swap 45.5882 46.5686 38.7255 47.549 45.5882 45.098 44.6078 48.5294 

LogP,LogDpH5 & LogDpH7 swap 58.3333 55.5556 46.7593 56.4815 53.7037 51.8519 44.9074 53.2407 

 

ACD:Algorithm accuracy by 10-fold cross validation 
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Figure45: Algorithm accuracy after descriptor swap for Trout dataset produced by ACD using 10-fold 

Cross Validation 
 

Analysis: for this endpoint, modelling training set against test set the results have 

been improved dramatically. This shows correlation between swapped descriptors 

values in another file is more with rest of the descriptors. The results for 10-fold Cross 

Validation method have also been improved. For instance using BN algorithm with 

10-fold Cross Validation, the result of the original modelling shows 42.6471% 

accuracy (table 26) but after LogP swap the results have increased to 56.0185%.  In 

very few cases there is reduction in classification accuracy. For example in table 26 

the result recorded for J48 algorithm for original file in ACD is 48.0392% but after 

swapping LogP & LogDpH5 the result decreased to 45.5882%.   

These value ranges show more correlation could be used as guidelines for descriptors 

value bias. The results are more improved in the case of LogP, LogDpH5 and 

LogDpH7 swap in both cases. 
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Table27: Algorithms accuracy after descriptor swap for LogP in ACD and Pallas datasets for Bee 

endpoint 

Endpoint Algorithm accuracy against test set (%) 

Bee BN MLP IBK CVR J48 JRip ZeroR LMT 

(Pallas)-Before 31.25 37.5 18.75 37.5 37.5 37.5 31.25 37.5 

(Pallas)-After 31.25 31.25 37.5 37.5 31.25 25 31.25 37.5 

(ACD)-Before 31.25 37.5 31.25 31.25 25 31.25 31.25 37.5 

(ACD)-After 31.25 37.5 25 31.25 31.25 37.5 31.25 37.5 

Endpoint Algorithm accuracy tested by 10-fold Cross Validation (%) 

Bee BN MLP IBK CVR J48 JRip ZeroR LMT 

(Pallas)-Before 41.7722 34.1772 32.9114 40.5063 31.6456 41.7722 41.7722 36.7089 

(Pallas)-After 41.7722 31.6456 31.6456 41.7722 30.3797 40.5063 41.7722 40.5063 

(ACD)-Before 35.443 36.7089 39.2405 39.2405 35.443 44.3038 41.7722 39.2405 

(ACD)-After 35.443 21.519 35.443 39.2405 31.6456 44.3038 41.7722 40.5063 

 

For this endpoint since the value difference between descriptors is not too high just 

one experiment has been performed. The results are shown in table 27. LogP was 

swapped between two files to see how that affects the models. For first modelling 

using test sets the results have improved for IBK in Pallas files and for ACD two-

algorithm J48 and JRip shows improvement.  The other algorithm doesn’t show 

improvement. For 10-fold Cross Validation for Pallas the accuracy increases using 

CVR and LMT and for ACD using LMT algorithm.   

Table28: Algorithms accuracy after descriptor swap in datasets (Pallas) for Daphnia endpoint 

Endpoint Daphnia Algorithm accuracy against test set (%) 

Pallas BN MLP IBK CVR J48 JRip ZeroR LMT 

Original Model 42.5 47.5 40 40 42.5 45 40 42.5 

LogP swap 40 52.5 40 45 40 37.5 40 40 

LogP & LogDpH3 swap 42.5 55 40 42.5 40 45 40 47.5 

LogP,LogDpH3 & LogDpH5 swap 45 55 45 52.5 40 42.5 40 37.5 
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Figure46: Algorithms accuracy after descriptor swap in datasets (Pallas) for Daphnia endpoint 
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Table29: Algorithms accuracy after descriptor swap in datasets (ACD) for Daphnia endpoint 

Endpoint Daphnia Algorithm accuracy against test set (%) 

ACD BN MLP IBK CVR J48 JRip ZeroR LMT 

Original Model 47.5 50 35 45 40 37.5 40 45 

LogP swap 47.5 47.5 40 42.5 40 42.5 40 45 

LogP & LogDpH3 swap 47.5 45 45 40 40 40 40 45 

LogP,LogDpH3 & LogDpH5 swap 47.5 45 45 40 45 40 40 45 
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Figure47: Algorithms accuracy after descriptor swap in datasets (ACD) for Daphnia endpoint 

 
Table30: Algorithms accuracy after descriptor swap in datasets (Pallas) for Daphnia endpoint using 10-

fold Cross Validation 

Endpoint Daphnia Algorithm accuracy tested by 10-fold Cross Validation (%) 

Pallas BN MLP IBK CVR J48 JRip ZeroR LMT 

Original Model 44.1176 47.549 38.2353 43.1373 48.5294 43.1373 44.6078 45.5882 

LogP swap 46.0784 47.0588 38.7255 44.6078 44.1176 46.0784 44.6078 45.5882 

LogP & LogDpH3 swap 48.5294 48.5294 39.2157 46.0784 47.0588 50.4902 44.6078 47.0588 

LogP,LogDpH3 & LogDpH5 swap 47.0588 48.0392 36.7647 48.0392 49.5098 48.0392 44.6078 48.5294 
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Figure48: Algorithms accuracy after descriptor swap in datasets (Pallas) for Daphnia endpoint using 

10-fold Cross Validation 
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Table31: Algorithms accuracy after descriptor swap in datasets (ACD) for Daphnia endpoint using 10-

fold Cross Validation 

Endpoint Daphnia Algorithm accuracy tested by 10-fold Cross Validation (%) 

ACD BN MLP IBK CVR J48 JRip ZeroR LMT 

Original Model 42.6471 47.0588 42.1569 50.4902 48.0392 48.5294 44.6078 46.0784 

LogP swap 43.1373 44.1176 39.7059 44.1176 45.098 47.0588 44.6078 46.0784 

LogP & LogDpH3 swap 45.5882 47.0588 37.2549 46.5686 45.5882 46.0784 44.6078 48.0392 

LogP,LogDpH3 & LogDpH5 swap 45.098 45.5882 37.2549 49.0196 45.098 48.0392 44.6078 47.0588 
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Figure49: Algorithms accuracy after descriptor swap in datasets (ACD) for Daphnia endpoint using 10-

fold Cross Validation 
 

Analysis: for this endpoint the descriptors which had highest value difference in both 

files were selected. As it shown in table 28, for modelling using test set the results are 

improved for Pallas files, especially for CVR, MLP and BN algorithm but for ACD 

the results in table 29 show improvement for IBK, J48 and JRip algorithm. The results 

are graphically represented in figures47 and 48. For modelling using 10-fold Cross 

Validation the results in tables 30 show massive improvements for Pallas for all 

algorithms especially the correlation between LogP and LogDpH3 with other 

descriptors values is considerable but results for ACD files in table 31 does not 

improve except for BN algorithm. The results are shown graphically in figure 49.  
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Table32: Algorithms accuracy after descriptor swap for LogP in ACD and Pallas datasets for OQ 

endpoint 

Endpoint Algorithm accuracy against test set (%) 

OralQuail BN MLP IBK CVR J48 JRip ZeroR LMT 

(Pallas)-Before 44.4444 44.4444 33.3333 44.4444 44.4444 44.4444 44.4444 44.4444 

(Pallas)-After 44.4444 44.4444 38.8889 44.4444 44.4444 44.4444 44.4444 44.4444 

(ACD)-Before 44.4444 44.4444 50 44.4444 44.4444 44.4444 44.4444 44.4444 

(ACD)-After 44.4444 44.4444 44.4444 44.4444 44.4444 44.4444 44.4444 44.4444 

Endpoint Algorithm accuracy tested by 10-fold Cross Validation (%) 

OralQuail BN MLP IBK CVR J48 JRip ZeroR LMT 

(Pallas)-Before 58.1395 53.4884 44.186 54.6512 55.814 58.1395 58.1395 56.9767 

(Pallas)-After 58.1395 53.4884 43.0233 58.1395 56.9767 58.1395 58.1395 56.9767 

(ACD)-Before 58.1395 55.814 34.8837 58.1395 58.1395 58.1395 58.1395 58.1395 

(ACD)-After 58.1395 54.6512 43.0233 54.6512 58.1395 58.1395 58.1395 56.9767 

 

As the result show in table 32, since the value difference between descriptors in two 

files is not considerable just one swap for LogP has been done for this endpoint. The 

results have been improved in some algorithms (J48) for Pallas using 10-fold Cross 

Validation and also IBK for ACD. In modelling using test sets the results are same 

and in the case of IBK algorithm for ACD is even worse. Figures50 and 51 show the 

results in graphical form.  

Algorithm accuracy results after logP swap using test set
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Figure50: Algorithms accuracy after descriptor swap for LogP in datasets (ACD and Pallas) for OQ 

endpoint 
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Algorithm accuracy results after logP swap using 10-fold Cross 

Validation
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Figure51: Algorithms accuracy after descriptor swap for LogP in datasets (ACD and Pallas) for OQ 

endpoint using 10-fold Cross Validation 
 

Table33: Algorithms accuracy after descriptor swap for LogP in datasets (ACD and Pallas) for DQ 

endpoint 

Endpoint Algorithm accuracy against test set (%) 

DietryQuail BN MLP IBK CVR J48 JRip ZeroR LMT 

(Pallas)-Before 33.3333 38.8889 38.8889 16.6667 27.7778 33.3333 33.3333 50 

(Pallas)-After 33.3333 38.8889 38.8889 27.7778 22.2222 33.3333 33.3333 44.4444 

(ACD)-Before 33.333 50 50 22.2222 33.3333 33.3333 33.3333 44.4444 

(ACD)-After 33.3333 33.3333 33.3333 16.6667 38.8889 27.7778 33.3333 38.8889 

Endpoint Algorithm accuracy tested by 10-fold Cross Validation (%) 

DietryQuail BN MLP IBK CVR J48 JRip ZeroR LMT 

(Pallas)-Before 30.3371 25.8427 31.4607 34.8315 32.5843 29.2135 32.5843 32.5843 

(Pallas)-After 30.3371 37.0787 32.5843 30.3371 32.5843 24.7191 32.5843 30.3371 

(ACD)-Before 31.4607 33.7079 25.8427 29.2135 31.4607 29.2135 32.5843 28.0899 

(ACD)-After 31.4607 29.2135 29.2135 29.2135 26.9663 31.4607 32.5843 26.9663 
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Figure52: Algorithms accuracy after descriptor swap for LogP in datasets (ACD and Pallas) for DQ 

endpoint 
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Algorithm accuracy results after logP swap using 10-fold Cross 

Validation

0

5

10

15

20

25

30

35

40

BN MLP IBK CVR J48 JRip ZeroR LMT

(Pallas)-Before

(Pallas)-After

(ACD)-Before

(ACD)-After

 
Figure53: Algorithms accuracy after descriptor swap for LogP in datasets (ACD and Pallas) for DQ 

endpoint using 10-fold Cross Validation 
 

For this endpoint the results in table 33 don’t show much improvement, although in 

number of cases for ACD files using Cross Validation (IBK, JRip) there is an 

increase. This is because the value difference produce by two programs is not 

considerable. Figures52 and 53 show the results graphically.  

4.2.6 Adding Artificial Data (using average- first time) 

 

For this task artificial data was added to each file. Between each row the average 

values of descriptors in that row was added to make a new row and new compound. 

Then new file was trained twice. For each file (ACD and PALLAS) we have two 

versions. One version is original file with no artificial data added and another version 

with artificial data added.  For instance in table 34 they have been recorded as T_P 

original mean the file with no added artificial data for Trout endpoint produced by 

PALLAS. T_P artificial means the file with added artificial data for Trout endpoint 

produced by PALLAS. 
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Table34: Algorithms accuracy after adding artificial data to all the datasets (ACD and Pallas) to all 

endpoints  

Endpoints Algorithm accuracy against test set (%) 

  BN MLP IBK CVR J48 JRip ZeroR LMT 

T_P original 56.5217 54.3478 36.9565 56.5217 54.3478 47.8261 43.4783 52.1739 

T_P artificial 59.4203 56.5217 39.1304 47.8261 42.029 39.1304 43.4783 37.6812 

T_A original 63.0435 65.2174 47.8261 63.0435 56.5217 58.6957 43.4783 60.8696 

T_A artificial 60.8696 65.2174 44.9275 52.1739 42.029 36.2319 43.4783 40.5797 

D_P original 42.5 47.5 40 40 42.5 45 40 42.5 

D_P artificial 38.3333 45 38.3333 26.6667 38.3333 31.6667 40 30 

D_A original 47.5 50 35 45 40 37.5 40 45 

D_A artificial 53.3333 53.3333 45 46.6667 40 30 40 38.3333 

B_P original 31.25 37.5 18.75 37.5 37.5 37.5 31.25 37.5 

B_P artificial 25 25 41.6667 33.3333 29.1667 29.1667 29.1667 25 

B_A original 31.25 37.5 31.25 31.25 25 31.25 31.25 37.5 

B_A artificial 25 29.1667 25 29.1667 16.6667 25 29.1667 12.5 

OQ_P original 44.4444 44.4444 33.3333 44.4444 44.4444 44.4444 44.4444 44.4444 

OQ_P artificial 44.4444 44.4444 44.4444 44.4444 44.4444 44.4444 44.4444 48.1481 

OQ_A original 44.4444 44.4444 50 44.4444 44.4444 44.4444 44.4444 44.4444 

OQ_A artificial 44.4444 44.4444 51.8519 44.4444 44.4444 44.4444 44.4444 44.4444 

DQ_P original 33.3333 38.8889 38.8889 16.6667 27.7778 33.3333 33.3333 50 

DQ_P artificial 25.9259 37.037 37.037 25.9259 25.9259 25.9259 33.3333 29.6296 

DQ_ A original 33.333 50 50 22.2222 33.3333 33.3333 33.3333 44.4444 

DQ_A artificial 22.2222 48.1481 33.3333 25.9259 29.6296 25.9259 33.3333 29.6296 

 
Table35: Algorithms accuracy after adding artificial data to all the datasets (ACD and Pallas) to all 

endpoints using 10-fold Cross Validation 

Endpoints Algorithm accuracy tested by 10-fold Cross Validation (%) 

  BN MLP IBK CVR J48 JRip ZeroR LMT 

Trout (Pallas) 57.4074 50.463 43.0556 54.6296 52.3148 50.9259 44.9074 50 

Trout (Pallas) artificial 62.6543 54.9383 48.4568 63.8889 66.358 58.642 45.0617 64.5062 

Trout (ACD) 56.4815 49.0741 51.3889 54.6296 51.3889 56.0185 44.9074 51.8519 

Trout (ACD) artificial 63.8889 49.3827 55.8642 59.8765 65.7407 63.8889 45.0617 66.0494 

Daphnia (Pallas) 44.1176 47.549 38.2353 43.1373 48.5294 43.1373 44.6078 45.5882 

Daphnia (Pallas)artificial 61.7647 51.634 45.4248 55.8824 61.1111 59.8039 44.4444 58.8235 

Daphnia(ACD) 42.6471 47.0588 42.1569 50.4902 48.0392 48.5294 44.6078 46.0784 

Daphnia(ACD)artificial 62.0915 50.9804 55.2288 60.7843 60.7843 63.3987 44.7712 63.3987 

Bee(Pallas) 41.7722 34.1772 32.9114 40.5063 31.6456 41.7722 41.7722 36.7089 

Bee(Pallas)artificial 47.4576 28.8136 36.4407 47.4576 42.3729 50.8475 41.5254 51.6949 

Bee(ACD) 35.443 36.7089 39.2405 39.2405 35.443 44.3038 41.7722 39.2405 

Bee(ACD)artificial 47.4576 35.5932 38.1356 51.6949 47.4576 44.0678 42.3729 41.5254 

OralQuail(Pallas) 58.1395 53.4884 44.186 54.6512 55.814 58.1395 58.1395 56.9767 

OralQuail(Pallas)artificial 64.3411 52.7132 41.8605 66.6667 68.9922 62.0155 58.1395 65.1163 

OralQuail(ACD) 58.1395 55.814 34.8837 58.1395 58.1395 58.1395 58.1395 58.1395 

OralQuail(ACD)artificial 64.3411 56.5891 38.7597 62.7907 68.2171 67.4419 58.1395 63.5659 

DietryQuail(Pallas) 30.3371 25.8427 31.4607 34.8315 32.5843 29.2135 32.5843 32.5843 

DietryQuail(Pallas)artificial 43.609 41.3534 30.0752 44.3609 50.3759 43.609 32.3308 40.6015 

DietryQuail(ACD) 31.4607 33.7079 25.8427 29.2135 31.4607 29.2135 32.5843 28.0899 

DietryQuail(ACD)artificial 45.1128 31.5789 29.3233 39.0977 42.1053 48.8722 32.3308 42.8571 
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Statistical Representation of the Results in This Chapter 

 

Findings from all the experiments show following results:  

 
Table36: Proportion of missing values in all the datasets (ACD and Pallas) in all endpoints 
 ACD (%) Pallas (%) 

 T D B OQ DQ T D B OQ DQ 

Rows with missing values 5.3 6.0 4.3 8.6 8.9 2.1 1.8 1.8 1.7 4.3 

Rows with disguised 

missing value 

30.8 22.7 23.9 25.8 42.2 51  45.4 31.6 48.2 60.1 

 

Table 37 shows the increase of classification accuracy (%) after doing tasks compare 

to the original modelling when files where in their original format training data 

against test set. Table 39 shows the results using 10-fold Cross Validation. As it 

shown in some cases the classification accuracy has increased as a result of the 

performed tasks. For instance in table 37 the accuracy after modelling Pallas_LogP 

dataset (which is a dataset with LogP swapped) for BN algorithm has increased by 

15.5% compare to the result from the original dataset modelled using the same 

algorithm. When there is a decrease in accuracy it is shown with minus sign in the 

table. In some cases there has been no difference which is shown by zero.  

Table 38 shows the results for the same parameters in ACD files training data against 

test set. Table 39 shows the results when the files have been modelled using 10-fold 

Cross Validation. 

Table37: Proportion of the classification accuracy results (%) for all endpoints after descriptor swap 

and adding artificial data (Pallas) 
Swapping Descriptors & Adding 

Artificial data 

Increased accuracy using training set against test set, Pallas (%) 

Trout BN MLP IBK CVR J48 JRip ZeroR LMT 

Pallas_LogP  15.5 4.34 12.8 13.69 7.8 5.9 3.4 15 

Pallas_LogP & LogDpH5  9.02 0 23.69 -5.86 14.3 23.3 3.4 -4.3 

Pallas_LogP, LogDpH5 & LogDpH7  9.02 6.5 12.8 5 10 16.8 3.4 2.8 

Artificial data -2.18 0 -2.9 -10.87 -14.5 -22.46 0 -20.29 

Daphnia         

Pallas_LogP  0 -3.5 5 -2.5 0 5 0 0 

Pallas_LogP & LogDpH5  0 -5 10 -5 0 2.5 0 0 

Pallas_LogP, LogDpH5 & LogDpH7  0 -5 10 -5 5 2.5 0 0 

Artificial data 5.83 3.33 10 1.66 0 -7.5 0 -6.67 

Bee         

Pallas_LogP 0 0 -6.25 0 6.25 6.25 0 0 

Artificial data -6.25 -8.33 -6.25 -2.08 -8.34 -6.25 -2.08 -25 

OralQuail         

Pallas_LogP 0 0 -5.56 0 0 0 0 0 

Artificial data 0 0 1.85 0 0 0 0 0 

DietaryQuail         

Pallas_LogP 0 -16.67 -16.67 -5.56 5.55 -5.55 0 -5.55 

Artificial data -11.11 -1.86 -16.67 3.7 -3.7 -7.4 0 -14.82 
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Table38: Proportion of the classification accuracy results (%) for all endpoints after descriptor swap 

and adding artificial data (ACD) 
Swapping Descriptors & Adding 
Artificial data 

Increased accuracy using training set against test set, ACD (%) 

Trout BN MLP IBK CVR J48 JRip ZeroR LMT 

ACD_LogP  16.1 6.8 -0.8 16.5 9.6 15 3.47 14 

ACD_LogP & LogDpH5  16.1 -1.8 18.6 3.4 9.6 11.5 3.47 5.3 

ACD_LogP,LogDpH5 & LogDpH7  14 9.0 3.4 16.5 16.1 2.8 3.47 14 

Artificial data 2.9 2.18 2.18 -8.7 -12.32 -8.69 0 -14.49 

Daphnia         

ACD_LogP  -2.5 5 0 5 -2.5 -7.5 0 -2.5 

ACD_LogP & LogDpH5  0 7.5 0 2.5 -2.5 0 0 0 

ACD_LogP, LogDpH5 & 
LogDpH7  

2.5 7.5 5 12.5 -2.5 -2.5 0 2.5 

Artificial data -4.17 -2.5 -2.17 -13.34 -4.17 -13.34 0 -7.5 

Bee         

ACD_LogP 0 -6.25 18.75 0 -6.25 -12.5 0 0 

Artificial data -6.25 -12.5 22.91 -4.17 -8.33 -8.33 -2.08 -12.5 

OralQuail         

ACD_LogP 0 0 5.55 0 0 0 0 0 

Artificial data 0 0 11.11 0 0 0 0 4.3 

DietaryQuail         

ACD_LogP 0 0 0 11.11 -5.55 0 0 -5.55 

Artificial data -7.4 -1.85 -1.85 9.26 -1.85 -7.4 0 -20.38 

 
 

Table39: Proportion of the classification accuracy results (%) for all endpoints after descriptor swap 

and adding artificial data (Pallas) using 10-fold Cross Validation 
Swapping Descriptors & Adding Artificial 

data 

Increased accuracy using 10-fold Cross Validation, Pallas (%) 

Trout BN MLP IBK CVR J48 JRip ZeroR LMT 

Pallas_LogP  13.37 6.6 5.5 5.4 6.59 6.57 0.3 7.17 

Pallas_LogP & LogDpH5  2.94 -0.49 -3.43 -2.95 -2.4 -3.4 0 -2.45 

Pallas_LogP, LogDpH5 & LogDpH7  15.69 8.5 4.6 5.99 5.67 3.3 0.30 7.17 

Artificial data 7.4 0.3 4.48 5.2 14.3 7.8 0.16 14.1 

Daphnia         

Pallas_LogP  0.49 -2.9 -2.4 -6.3 -2.9 -1.4 0 0 

Pallas_LogP & LogDpH5  2.9 0 -4.9 -3.9 -2.4 -2.4 0 1.96 

Pallas_LogP, LogDpH5 & LogDpH7  2.4 -1.47 -4.9 -1.4 -2.9 -0.4 0 0.98 

Artificial data 19.44 3.9 13.07 10.29 12.7 14.8 0.16 17.3 

Bee         

Pallas_LogP 0 -15.1 -3.7 0 -3.7 0 0 1.2 

Artificial data 12.0 -1.1 -1.1 12.4 12.0 -0.2 0.6 2.2 

OralQuail         

Pallas_LogP 0 -1.1 8.1 -3.4 0 0 0 -1.1 

Artificial data 6.2 0.7 3.8 4.6 10.0 9.3 0 5.4 

DietaryQuail         

Pallas_LogP 0 -4.4 3.3 0 -4.4 2.2 0 -1.1 

Artificial data 13.6 -2.1 3.4 9.8 10.6 19.6 -0.2 14.7 
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Table40: Proportion of the classification accuracy results (%) for all endpoints after descriptor swap 

and adding artificial data (ACD) using 10-fold Cross Validation 
Swapping Descriptors & Adding 

Artificial data 

Increased accuracy using 10-fold Cross Validation, ACD (%) 

Trout BN MLP IBK CVR J48 JRip ZeroR LMT 

ACD_LogP  13.29 4.77 6.21 11.49 2.4 7.79 0.3 4.05 

ACD_LogP & LogDpH5  2.45 1.96 -6.21 5.39 -3.43 3.92 0 4.42 

ACD_LogP,LogDpH5 & 

LogDpH7  

12.83 4.77 9.9 8.25 4.72 14.27 0.3 0.7 

Artificial data 5.2 4.4 5.4 9.2 14 7.7 0.16 14.5 

Daphnia         

ACD_LogP  1.9 -0.49 0.49 1.47 -4.4 2.9 0 0 

ACD_LogP & LogDpH5  4.4 0.98 0.98 2.9 -1.4 7.3 0 1.4 

ACD_LogP, LogDpH5 & 

LogDpH7  

2.9 0.49 -1.47 4.9 0.98 4.9 0 2.9 

Artificial data 17.6 4.0 7.1 12.7 12.5 16.6 -0.16 13.2 

Bee         

ACD_LogP 0 -2.5 -1.2 1.2 -1.2 -1.2 0 3.79 

Artificial data 5.6 -5.3 3.5 6.9 10.7 9.0 -0.2 14.9 

OralQuail         

ACD_LogP 0 0 -1.1 3.4 1.16 0 0 0 

Artificial data 6.2 -0.7 -2.3 12.0 13.1 3.8 0 8.1 

DietaryQuail         

ACD_LogP 0 11.2 1.1 -4.4 0 -4.4 0 -2.2 

Artificial data 13.2 15.5 -1.3 9.5 17.7 14.3 -0.2 8.0 

 

 
Table41: Proportion of classes in each training dataset after adding artificial data first time 

% Class1 Class2 Class3 Class4 Class5 

Trout 32.7 31.7 13.5 9.5 0 

Daphnia 44.7 25.4 19.9 9.8 0 

Bee 15.2 17.8 12.7 41.5 12.7 

OralQuail 1.6 19.3 18.6 58.1 0 

DietaryQuail 8.2 32.3 30.8 19.5 9.0 

 

Analysis: as the results show (table 37, 38, 39 and 40)10-fold Cross Validation 

method increases the accuracy results more than using the training set against test set. 

Also three algorithms LMT, ZeroR and IBK have less increase of classification 

accuracy in all the models. As the result for following modelling these three 

algorithms are not going to be used. The proportion of the classes is different in each 

data set so it is important to see how changing these are going to affect the model. 

Next experiment will concentrate on this with adding artificial data on classes that 

have big proportion in the datasets. With adding more rows to the class that is big 

subset of the data we experience the increase in the classification accuracy. Trout and 

Daphnia respond with artificial data very well. There is an increase in classification 

accuracy for most algorithms used for training ACD and Pallas data sets. In ACD files 

for Bee endpoint there are three negative values for MLP, IBK and JRip and in Pallas 

files this applies to MLP and ZeroR. For OralQuail in ACD files are also one zero 

value for ZeroR algorithm and in Pallas files the values are negative for MLP and 

IBK and Zero for ZeroR. For DietaryQuail in ACD files there are two negative values 
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for MLP and ZeroR and in Pallas files this applies to IBK and ZeroR. So considering 

all the results if still the results for IBK, MLP and ZeroR algorithms are not 

satisfactory we will discard them in further modelling. 

4.2.7 Adding Artificial Data (using average-second time) 

 

For this task we need to add artificial data to all datasets the way we did before 

(calculation of the average value of top and bottom row and inserted empty row 

between and fill with average value). The models from previous task need to be 

looked at to see the proportion of the classification accuracy for negative and positive 

values applies to which classes then we can change the proportion of the classes in 

training data set accordingly to see the effect in the models. As it shows in the table 

41(class proportion), for Trout and Daphnia the proportion of Class1 and Class2 

compounds are much higher than Class3 and Class4. For Bee endpoint the proportion 

of Class 4 is very high and other classes are almost same. For OralQuail the 

proportion of class1 is very low and Class4 is very high. For DietaryQuail Class1 and 

Class5 proportions are very low and Class2 and Class3 have almost same proportion 

as Class1 and Class2 in Trout. The results of modelling after adding artificial data for 

the second time is shown in table 42.  

Table42: Classification accuracy result after adding artificial data first and second time for all the 

endpoints 
 Increased accuracy using 10-fold Cross Validation, (%) 

 BN MLP IBK CVR J48 JRip ZeroR LMT 

T_P_artificial_1 5.2 4.4 5.4 9.2 14 7.7 0.16 14.5 

T_P_artificial_2 8.02 4.52 12.39 10.56 17.29 17.05 0.10 17.51 

T_A_artificial_1 7.4 0.3 4.48 5.2 14.3 7.8 0.16 14.1 

T_A_artificial_2 14.05 1.97 2.43 10.56 19.37 7.32 0.10 18.21 

D_P_artificial_1 17.6 4.0 7.1 12.7 12.5 16.6 -0.16 13.2 

D_P_artificial_2 21.97 4.04 6.97 17.79 21.24 23.69 -0.13 19.52 

D_A_artificial_1 19.44 3.9 13.07 10.29 12.7 14.8 0.16 17.3 

D_A_artificial_2 23.44 3.55 12.14 17.07 17.31 17.31 0.10 19.76 

B_P_artificial_1 5.6 -5.3 3.5 6.9 10.7 9.0 -0.2 14.9 

B_P_artificial_2 6.63 -0.41 0.84 6.62 19.30 7.27 -0.37 9.1 

B_A_artificial_1 12.0 -1.1 -1.1 12.4 12.0 -0.2 0.6 2.2 

B_A_artificial_2 7.86 -1.04 -3.57 9.16 11.69 1.55 0.26 5.98 

OQ_P_artificial_1 6.2 -0.7 -2.3 12.0 13.1 3.8 0 8.1 

OQ_P_artificial_2 14.37 2.06 -9.09 14.35 16.70 9.11 -0.24 14.36 

OQ_A_artificial_1 6.2 0.7 3.8 4.6 10.0 9.3 0 5.4 

OQ_A_artificial_2 14.37 0.91 1.37 15.54 15.54 7.94 -0.24 14.95 

DQ_P_artificial_1 13.2 15.5 -1.3 9.5 17.7 14.3 -0.2 8.0 

DQ_P_artificial_2 19.38 9.18 -2.08 13.19 18.26 22.19 0.18 12.61 

DQ_A_artificial_1 13.6 -2.1 3.4 9.8 10.6 19.6 -0.2 14.7 

DQ_A_artificial_2 17.69 -2.06 -0.41 12.02 20.51 22.19 0.18 18.23 

As it shown in table 42 the results for ZeroR and IBK algorithm are generally bad as 

before. For other algorithms Trout, Daphnia shows increase in accuracy after adding 

artificial data for second time but for Bee, results are worse in general so this dataset 

does not respond to artificial data. In this dataset the proportion of class2 and class4 is 
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very high probably that is the reason for decrease in prediction accuracy, which 

should be considered for further modelling. OralQuail dataset with very high Class4 

proportion and very low Class1 percentage still responds to artificial data (except: 

IBK and ZeroR) and shows increase in prediction. DietaryQuail also shows better 

results (except for IBK) algorithm. So what we need to do is to adjust the proportions 

of the Classes for Bee endpoint (add artificial data just to Class1 and Class2) to see 

the effect on the prediction. The first logic is to reduce the Class4 proportion and 

increase Class1 and 2 proportions in the dataset (as it appears in Trout and Daphnia 

datasets and shows very high prediction accuracy). This time IBK and ZeroR 

algorithm wouldn’t be used for modelling. Table 43 compare the proportion of the 

classes in files with artificial data added first time (first row for each dataset) and for 

second time (second row).  

Table43: Proportion of the classes in datasets after adding artificial data first and second time for all the 

endpoints 
% Class1 Class2 Class3 Class4 Class5 

Trout_1 32.7 31.7 13.5 9.5 0 

Trout_2 45 32 13.5 9.5 0 

Daphnia_1 44.5 25.7 20 9.58 0 

Daphnia_2 44.7 25.4 19.9 9.8 0 

Bee_1 15.2 17.8 12.7 41.5 12.7 

Bee_2 15.2 17.8 12.7 41.4 12.7 

OralQuail_1 1.6 19.3 18.6 58.1 0 

OralQuail_2 3.5 19.8 18.7 57.8 0 

DietaryQuail_1 8.2 32.3 30.8 19.5 9.0 

DietaryQuail_2 7.9 32.7 30.5 19.7 9.0 

 
Table44: Proportion of artificial data in datasets first and second time for all the endpoints 
Proportion of 

artificial data % 

Trout Daphnia Bee OralQuail DietaryQuail 

Artificial_1 33 33 33 33 33 

Artificial _2 49.8 49.8 49.6 49.7 49.7 

 
Table45: The classification accuracy algorithms with highest performance (time) for all the 

experiments on datasets 
BN J48 JRip CVR LMT MLP 

6 4 3 3 2 1 

Based on what is represented in table 45 the conclusion would be that the best models 

are BN and J48.Table 46 shows the results of global parameter comparison for all the 

endpoints. These results have been shown in previous sections in this chapter 

separately for each endpoint. This table also displays the ID of the chemical 

compound with the maximum value and minimum value for all the descriptors. It 

shows the minimum value difference between two calculated values by ACD and 

Pallas and also the maximum value difference for the same descriptor presented by 

two programs. 
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Pallas (Daphnia endpoint) LogP LogDpH3 LogDpH5 LogDpH7 LogDpH7.4 LogDpH9 

Min -2.701 -6.54063 -6.54052 -7.85046 -7.89228 -9.10505 

Max 11.6915 11.6915 11.6915 11.6915 11.6915 11.6915 

Min Value Difference -7.40214 -8.11613 -8.11602 -8.50406 -8.10928 -7.40214 

Max Value Difference 2.21882 4.00517 3.19537 3.58602 3.80667 3.81636 

ID of Min 346 51 51 417 417 143 

ID of Max 418 418 418 418 418 418 

ACD(Daphnia endpoint) LogP LogDpH3 LogDpH5 LogDpH7 LogDpH7.4 LogDpH9 

Min -2.3559 -5.4966 -5.8715 -6.499 -6.6644 -6.8685 

Max 13.676 13.676 13.676 13.676 13.676 13.676 

Min Value Difference -7.40214 -8.11613 -8.11602 -8.50406 -8.10928 -7.40214 

Max Value Difference 2.21882 4.00517 3.19537 3.58602 3.80667 3.81636 

ID of Min 143 143 143 143 143 143 

ID of Max 90 90 90 90 90 90 

Pallas(Bee endpoint) LogP LogDpH3 LogDpH5 LogDpH7 LogDpH7.4 LogDpH9 

Min -0.952306 -3.78509 -4.75384 -5.6052 -5.99314 -7.5105 

Max 8.16996 8.16996 8.16996 8.16996 8.16996 8.16996 

Min Value Difference -3.00158 -3.00158 -3.00158 -3.00158 -3.00158 -3.27919 

Max Value Difference 2.21882 2.22028 2.21881 3.58602 3.80667 3.81636 

ID of Min 192 382 457 373 373 373 

ID of Max 146 146 146 146 146 146 

ACD(Bee endpoint) LogP LogDpH3 LogDpH5 LogDpH7 LogDpH7.4 LogDpH9 

Min -1.4202 -3.4969 -4.2068 -5.0751 -5.2504 -5.8599 

Max 8.2665 8.1404 8.1404 8.1404 8.1404 8.1678 

Min Value Difference -3.00158 -3.00158 -3.00158 -3.00158 -3.00158 -3.27919 

Max Value Difference 2.21882 2.22028 2.21881 3.58602 3.80667 3.81636 

ID of Min 373 382 382 373 373 373 

ID of Max 146 248 248 248 248 146 

Pallas(Trout endpoint) LogP LogDpH3 LogDpH5 LogDpH7 LogDpH7.4 LogDpH9 

Min -2.701 -6.54063 -6.54052 -6.5299 -6.51344 -9.10505 

Max 8.68196 8.68196 8.68196 8.68196 8.68196 8.68196 

Min Value Difference -7.40214 -8.11613 -8.11602 -8.1055 -8.08934 -7.40214 

Max Value Difference 2.69049 4.00517 3.19537 3.58602 3.80667 3.81636 

ID of Min 346 51 51 51 51 143 

ID of Max 93 93 93 93 93 93 

ACD(Trout endpoint) LogP LogDpH3 LogDpH5 LogDpH7 LogDpH7.4 LogDpH9 

Min -2.3559 -5.4966 -5.8715 -6.499 -6.6644 -6.8685 

Max 13.676 13.676 13.676 13.676 13.676 13.676 

Min Value Difference -7.40214 -8.11613 -8.11602 -8.1055 -8.08934 -7.40214 

Max Value Difference 2.69049 4.00517 3.19537 3.58602 3.80667 3.81636 

ID of Min 143 143 143 143 143 143 

ID of Max 90 90 90 90 90 90 

Pallas(DietryQuail endpoint) LogP LogDpH3 LogDpH5 LogDpH7 LogDpH7.4 LogDpH9 

Min -2.244 -2.36733 -2.51701 -3.92561 -3.99634 -4.04894 

Max 8.16996 8.16996 8.16996 8.16996 8.16996 8.16996 

Min Value Difference -2.38923 -5.34828 -6.73168 -5.77022 -5.07963 -4.56813 

Max Value Difference 2.47788 2.47788 2.47788 5.460421 5.677121 5.820521 

ID of Min 442 337 230 230 230 230 

ID of Max 146 146 146 146 146 146 
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Table46: Summary result of all statistical parameters from all the experiments 
 

 

 Classification accuracy for training set against test set 

  BN MLP IBK CVR J48 JRip ZeroR LMT 

Trout (Pallas) 56.52 54.35 36.96 56.52 54.35 47.83 43.48 52.17 

Trout (ACD) 63.04 65.22 47.83 63.04 56.52 58.70 43.48 60.87 

Daphnia (Pallas) 42.50 47.50 40.00 40.00 42.50 45.00 40.00 42.50 

Daphnia(ACD) 47.50 50.00 35.00 45.00 40.00 37.50 40.00 45.00 

Bee(Pallas) 31.25 37.50 18.75 37.50 37.50 37.50 31.25 37.50 

Bee(ACD) 31.25 37.50 31.25 31.25 25.00 31.25 31.25 37.50 

OralQuail(Pallas) 44.44 44.44 33.33 44.44 44.44 44.44 44.44 44.44 

OralQuail(ACD) 44.44 44.44 50.00 44.44 44.44 44.44 44.44 44.44 

DietryQuail(Pallas) 33.33 38.89 38.89 16.67 27.78 33.33 33.33 50.00 

DietryQuail(ACD) 33.33 50.00 50.00 22.22 33.33 33.33 33.33 44.44 

Endpoints Classification accuracy using 10-fold Cross Validation 

  BN MLP IBK CVR J48 Jrip ZeroR LMT 

Trout (Pallas) 53.05 51.91 42.37 54.20 48.86 50.76 44.66 50.38 

Trout (ACD) 53.82 51.15 52.29 57.25 58.40 54.58 44.66 55.73 

Daphnia (Pallas) 42.62 41.39 37.70 37.70 51.23 45.90 43.85 47.95 

Daphnia (ACD) 45.90 44.67 41.39 51.64 43.85 46.72 43.85 48.36 

Bee (Pallas) 40.00 32.63 30.53 44.21 32.63 40.00 40.00 40.00 

Bee (ACD) 37.89 27.36 38.95 33.68 33.68 37.89 40.00 36.84 

OralQuail (Pallas) 55.77 49.04 31.73 52.88 51.92 54.81 55.77 52.88 

OralQuail (ACD) 55.77 52.88 34.62 50.00 53.85 55.77 55.77 54.81 

DietryQuail (Pallas) 32.71 31.78 28.04 31.78 20.56 27.10 32.71 25.23 

DietryQuail (ACD) 31.77 29.90 30.84 25.23 29.91 28.97 32.71 35.51 

Table47: The summary result of classification accuracy on datasets from all previous experiments 

ACD(DietryQuail endpoint) LogP LogDpH3 LogDpH5 LogDpH7 LogDpH7.4 LogDpH9 

Min -1.4136 -1.4184 -2.5887 -5.6348 -5.8515 -5.9949 

Max 8.5027 8.5012 8.5008 8.4633 8.4118 8.1678 

Min Value Difference -2.38923 -5.34828 -6.73168 -5.77022 -5.07963 -4.56813 

Max Value Difference 2.47788 2.47788 2.47788 5.460421 5.677121 5.820521 

ID of Min 447 447 230 447 447 447 

ID of Max 411 411 411 411 411 146 

Pallas(OralQuail) LogP LogDpH3 LogDpH5 LogDpH7 LogDpH7.4 LogDpH9 

Min -2.82609 -6.54063 -6.54052 -6.5299 -7.05401 -7.78253 

Max 8.16996 8.16996 8.16996 8.16996 8.16996 8.16996 

Min Value Difference -7.40214 -8.11613 -8.11602 -8.1055 -8.08934 -7.40214 

Max Value Difference 2.47788 4.00517 3.19537 2.47788 2.47788 2.47788 

ID of Min 433 51 51 51 372 372 

ID of Max 146 146 146 146 146 146 

ACD(OralQuail) LogP LogDpH3 LogDpH5 LogDpH7 LogDpH7.4 LogDpH9 

Min -1.6559 -4.7181 -3.763 -4.6224 -5.0095 -5.2056 

Max 13.676 13.676 13.676 13.676 13.676 13.676 

Min Value Difference -7.40214 -8.11613 -8.11602 -8.1055 -8.08934 -7.40214 

Max Value Difference 2.47788 4.00517 3.19537 2.47788 2.47788 2.47788 

ID of Min 347 347 347 372 372 372 

ID of Max 90 90 90 90 90 90 
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Table 47 shows the result of the classification accuracy for all the endpoints in one 

table. The results have been shown before for each endpoint in separate tables. 

 

4.2.8 Collective Summary Results 

 

We found the following deficiencies in data files: 

Check of Input Values: there were number of rows in which the values for all columns 

(descriptors) were identical for specific chemical compounds.  

This might have happened as a result of a mistake in value generation by the software 

used due to the complexity of the calculation of the chemical compounds properties 

(ex: Trout data set). These values might be the default values for descriptors, which 

are generated when the exact measures for compounds attributes cannot be produced. 

For whatever reasons these values appear in the dataset, they need further 

consideration and study and they cannot be relied on.  

We also found a contradiction between ID number and matching chemical specified 

by one program to another in the sense that the ID for the specific chemical was the 

same in both files but the matching name and CAS number were different. For 

example for endpoint Bee LD50, in the file with ACD descriptors, chemical 

compound with ID=450=Allethrin has been given CAS no: 584-79-2 but in the file 

produced by Pallas, ID=450=28434-00-6=s-bioallethrin, which in Toxnet comes with 

a different name for the same chemical having the same CAS: 284-79-2. 

Moreover, a breach of the homogeneity rules was found: in the dataset for endpoint 

Trout, legend (descriptors definition) for Pallas is different from the other endpoints 

although for this work the descriptors were selected accordingly (ex: 

Pallas04=LogDpH7 but for other endpoints Pallas05=LogDpH7). Also the number of 

significant places that represent values in each column and for every row is different, 

which shows inconsistencies of data representation. We have presented the results of 

calculation for Min, Max values and their difference of the same descriptor for the 

same compound available in two data files related to the software used to calculate 

chemical descriptors and also showed the ID number of the chemical compound with 

the Min or Max value for the specific descriptor. What we found are significant 

differences between calculated values for the same descriptor presented by ACD and 

Pallas. In some cases, for example for endpoint Trout LC50, the maximum values for 

LogP are 8.6 (Pallas) and 13.6 (ACD) and for OralQuail LD50 are and 8.1 (Pallas) 
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and 13.6 (ACD). This is almost double from one to another and flags out a significant 

warning, since information provided for this descriptor identifies compound solubility 

in water and ability to cross cell membranes and is therefore of high importance for 

toxicity prediction models.  

Model Performances: descriptor value differences also create doubts of reliability. 

This problem applies to all descriptors and for all endpoints in DEMETRA datasets. 

In this chapter the accuracy of models using various algorithms for classification is 

compared: values for the first experiment, which was model development based on 

training set using eight algorithms (see above) and validation against original testing 

set. The performance in general presents better results for data values generated by 

program ACD. Mean Square Error and Root Mean Absolute Error have been used to 

measure the errors of classification accuracy (not displayed here) are lower for models 

related to ACD data. This shows better correlations between ACD descriptors values 

and the toxicity output. Performance of the models has also improved with swapping 

descriptor between two dataset from ACD and Pallas. 

Range Margins’ IDs: ID numbers for chemical compounds defining Min and Max 

value for same descriptor were also considered. If a chemical compound with specific 

ID number has the Min value for a specific descriptor in one data file, the same 

chemical compound should possess the same parameter property for all source files. 

For instance for endpoint Trout, the ID of compound, which has the minimum value 

for LogP (Pallas) is 346 but generated by ACD is 143. 

Min-Max value difference between two columns (value for the same descriptor, one 

generated by ACD and one by Pallas) in the same row considerably vary (ex: for 

Trout LC50 endpoint vary by up to 8.1 unsigned numerical value) [60]. 

4.3 A new algorithm for data quality assessment process 

 

Based on the findings presented in previous chapter we have defined number of 

criteria and also a procedural framework in order to assess data quality in predictive 

toxicology.   

4.3.1 Proposed Criteria for Data Quality in Predictive Toxicology 

 

Figure54 shows values variation for LogP between the two programs (data for 

OralQuail LD50 endpoint). There are number of big peaks in the graph for values 

calculated by both programs which clearly identify the presence of outliers. As it 
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shown the values follow same pattern but in different proportion. This again depends 

on the computer program calculation default values setup, which is not the same in 

two programs.  
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Figure54: Comparison of LogP variation values presented by ACD and Pallas for OralQuail. 

 

 

Table48: Calculated variance for OralQuail 

 

 

 

 

 

 

From this experiment we propose as property for data quality the definition domain 

for each variable (a value range for each descriptor) and decide that we just accept the 

values in this range and categorized the peaks outside the range as outliers so they 

could be studied separately. This bias could be proposed as metric for every descriptor 

considering the measurements of every descriptors confidence interval for each 

endpoint and acceptance of the values within this range. Later we need to define a 

method to describe how the outliers could be modelled separately and how we can 

combine these models with the results of the training the rest of the data. 

Table 48 shows the variance VARP calculated for descriptor values obtained by using 

ACD and Pallas for OralQuail LD50 endpoint according to formula: 

n

xx∑ − 2
)(

where x is a sample Mean and n is a sample size. The variance values are 

greater for values produced by Pallas, which shows bigger distribution with a negative 

impact on the model development. The descriptor variance qualifies as a meaningful 

property of the source values. 

OralQuail  LogP  LogDpH3  LogDpH5  

VARP (ACD) 4.83210 5.52960 5.62856 

VARP(Pallas) 4.87138 7.21954 7.29682 

 LogDpH7  LogDpH7.4  LogDpH9  

VARP (ACD) 6.18880 6.26632 6.23918 

VARP(Pallas) 7.51035 7.51433 7.37912 
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Noise in data identified by rows with the same values in each column could be 

another measurement for signalling wrong data inputs. These rows should be 

eliminated or recalculated. If they are produced by program, there should be further 

confidence and reliability issues in using that program. 

A correlation of the margins (Min and Max values) for each descriptor as calculated 

by different software represents a quality flag variable as well. If these extreme values 

(generated by various sources) for each endpoint do not belong to the same 

compound, then that particular descriptor needs further study. This is especially 

requires further consideration for descriptors (i.e. LogP) that are likely to be included 

as inputs for models based on feature extraction algorithms.  

Descriptor swap (LogP) increased the classification accuracy. This showed the change 

of input balanced the model, which also can be used in defining bias for descriptors 

min and max values. 

Apart from these quality criteria proposed based on the DEMETRA data other quality 

issues that have been discussed in previous chapters in other domains such as: data 

source reputation, consistency and integrity could also be added to our framework 

which all depends on the users of the system and their preferences.  

 

 
Figure55: Data quality assessment procedure 
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4.3.2 Quality Processing Flow Chart for Proposed Metrics 

 

Based on empirical results obtained from studying the five toxicity datasets, we 

propose a data quality assessment process. Figure 68 shows this necessary process to 

prepare data for further modelling based on highlighted defects in out experimental 

work at this stage. Note that investigation was carried out on internal data and the 

proposed process has been based on discovered results. 

 

4.3.3 A New Quality Assessment Algorithm for Data Quality 

 

In Figure 69, we propose a quality check and assessment algorithm for the above 

procedure. The proposed algorithm could be improved and extended to provide 

further quality checks. At this stage the main aim was to direct our attention to first 

stage, error identification defects and propose possible ways of discovering and 

overcoming these in toxicology data.  

Considering data quality parameters and criteria identified by our study and the 

experimental work presented above, some issues related to data quality have been 

highlighted, which indicate the need for a framework for quality assessment and 

measurements. The experimental work has identified some deficiencies related to data 

values and presentation. All highlighted data defects have direct effect on QSAR 

model performances, which are used for toxicity prediction of untested chemicals. 

The importance of models requires use of high quality data [66] [67] [68]. 
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Double data source 

Input: Ds: Data Source, Ro: Result Output (data processed, ready for 
modelling), Rw: Instance(compound, row), Dc: Descriptor(column), 
result: Rs (final model), Quality Metrics : Q1=missing values in 
rows, Q2=column values are same in one row, Q3=values for the 

descriptor in each row is out of range Minv�Maxv, Q4=flag if Min and 
Max value for same descriptor in two files do not belong to the same 
compound, Q5=bias for value difference between same descriptor value 
for same compound in Ds1, Ds2, Dsn…Please note in our example data 
sources are ACD and Pallas. 
 

Clean the data 

//check for rows with missing values and eliminate 
//check for rows with same value in each column and eliminate 
//compare if value for each descriptor (column) and every row falls  
 
Within bias (value range) 
Start: SearchSheet (ACD & Pallas) 

Foreach (Result as sheet�Ro) 
For (i=0; i<count (Rw); i++) 
If (Rw = (Q1)) 
Delete Rw else 
For (j=0; j<count (Dc); j++) 
If (Dc= (Q2)) 
Flag (error): “disguised data” else 
If not Rw= (Q3) & Dc= (Q3) 
Flag (error): “suspicious values” else 
If not Rw= (Q4) & Dc= (Q4) 
Flag (error): “Min, Max do not belong to same compound” else 
Display Ro 
End 
Generate model 

//check similar fields; if value difference for same descriptor 
(logP) and for same compound is high, then train model, produce 
result, swap logP, train again. 
 Input: Ro + added new column which shows the difference between two 
values (logPPallas-LogPACD=Dsw), LogP descriptor=DLogP 
//generate model with cleaned data 
Start: generate model (ACD, Pallas) 
//swap logP and generate again 

Foreach (Result as sheet�Rsw) 
For (j=0; j<count (Dc); j++) 
If (Rsw = Q5) 
Swap (DLogP) 
Display Rsw 
Generate model 

End 
Figure56: Data quality assessment algorithm 
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4.4 Summary and Conclusions 

 

In this chapter we have shown the results of our investigations on online toxicity 

databases and highlighted the inconsistencies in values presentation and also the 

structural differences from source to source. We have provided the results of our 

detailed investigation and experimental work on Demetra data. We studied two 

different file presented by two programs ACD and Pallas for same chemical 

compound and same species. The global values (min, max, average, standard 

deviation) have been measured and presented and also difference between values for 

same compounds generated by two programs highlighted. Based on these values we 

have selected number of descriptors to swap between two files for same species in 

order to see how variation in values could affect the model performance. The idea was 

to show that the good model is purely depend on how the descriptors have been 

generated and by what tool which directly affect the data quality. We have also tried 

to understand the data characteristics and insight view of the relations between 

descriptors. The results of this investigation have led us to identifying a general 

framework for data quality. We have provided the quality flow chart which shows the 

quality check of the data in steps with five identified criteria. An algorithm has also 

been proposed in details which explain how data is assessed and processed before 

modeling. These criteria are related purely to data values and can be added to other 

quality criteria which have been proposed in previous chapters to form a complete 

quality framework. Identifying these issues is great help in knowing our data before 

further modeling. One can assess data considering these criteria before training. Since 

reliability of the models purely depends on quality of the data, our algorithm shows 

how data can be validated before any models are constructed.  
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5. A NEW ALGORITHM FOR MISSING VALUE GENERATION IN 

TOXICITY DATASETS  
 

For chemical compounds in toxicity databases, missing values problem is also a big 

issue. It might appear in two forms, absence of affect of chemical compounds toxicity 

on specific species and environment or missing values of chemical compounds 

properties and attributes. The reason behind the first issue apart from the experimental 

procedure has not been taken place in some environment nor on some species, is the 

idea of the effect not being detected even after the testing. To resolve this problem 

there are some guidelines that have been provided by the Environmental Protection 

Agency (EPA) [69]. In some datasets the toxicity values have been calculated but 

there may still be a large number of empty rows for chemical compounds attributes.  

Since these datasets are used for data analysis and modelling using data mining and 

machine learning tools for prediction of toxicity of untested chemicals generating 

QSAR (Quantity Structure Activity Relationship)[70] models, it is very important to 

find an efficient way to overcome the problem of missing values. For the first 

problem (missing toxicity values) we present below the approach suggested by EPA. 

For the second type of missing values we propose a framework in the coming 

sections. 

5.1 Toxicology Approach for Missing Values at the Collection Stage (EPA) 

 

The Environmental Protection Agency has developed the data quality assessment 

process as an important tool for environmental scientist in order to assure the quality, 

quantity, collection and analysis of the environmental data has been satisfied. It 

provides solutions to overcome the problem of missing values relate to values below 

detection limits for chemical analysis. These are the cases where measurement data 

are described as not detected; the concentration of the chemical is unknown although 

it is between zero and the detection limit (DL). For this problem the following 

guidance table has been produced [69].  

Table49: Missing values percentage categories 

Percentage of non- detects Statistical analysis method 

<15% Replace non-detects with DL/2 or a very small number 

15%-50% Cohen’s adjustment, Trimmed mean, Winsorized mean and standard 

deviation 

>50%-90% Use test for proportions 
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A) Less than 15% non-detects-substitution methods: if there are small portion of the 

data is missing, we can replace it with a small number, usually the detection limit 

divided by 2.  

B.1) Between 15-50% non-detects: Cohen’s method provides adjusted estimates of 

the sample mean and standard deviation that is used for data below the detection 

level. This method is based on statistical techniques of maximum possibility 

estimation of the mean and variance so the prediction for values for non-detects may 

not be zero.  

B.2) Trimmed mean: this method discards the data in the tails of a dataset to develop 

an unbiased estimate of the population mean. For environmental data, missing values 

normally occur in the left tail of the data, so trimming the data can account for 

estimation of the mean value.  

B.3) Winsorized mean and standard deviation: this method replaces data in the tails of 

a dataset with the next most extreme value. This also can adjust the dataset for non-

detect value, which would help for calculation of mean and standard deviation 

parameters. 

C) Greater than 50% non-detects-test of proportion: if more than 50% of the data are 

below the detection limit but at least 10% of the observations are quantified, tests of 

proportion may be used to test hypotheses using the data.  

All of these methods help to find estimation for mean and standard deviation values 

when part of the data is missing and the exact parameters cannot be calculated. In the 

environmental testing these parameters are the most important statistical elements that 

need to be identified.  

But even with these methods, still the second issue of recovering missing values 

remains unresolved. In the followings sections we propose a framework to recover 

missing values and the implementation of the defined methods in this framework on a 

number of toxicity datasets produced by two different applications with the help of 

statistical methods and measurements. Also we show how the generation of artificial 

data with the use of this framework can affect model performance. 
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5.2 Data Recovery: Proposed Framework 

 

This framework uses objective measures based on statistical strengths or properties of 

data [71] to recover missing values in two circumstances. First when there are two 

versions of same datasets provided for the data with the same parameters and second 

when there is just one single dataset to be considered with missing values appearing 

for number of attributes. In the case of existence of multiple (historical or prototype) 

versions of the dataset, the missing values appear for all attributes for a specific field 

but in the case of considering just one version of the dataset, missing values might 

appear for just a number of attributes but not all. In worst case scenario we produce a 

method to recover data when for a field just one attribute value has been presented 

and the rest are missing. 

If we consider the data in the form of M*N table with Mk columns and Nk rows then 

the missing values in datasets appear in the following form:  

Table50. The structure of missing values in a dataset 

  M1 M2 … Mk 

 N1 m1n1 m2n1 … mkn1 
First case N2   ? ? ? ? 
Second 

case 
N3  m1n3 ? ? ? 

  : : : : : 

 Nk  m1nk m2nk … mknk 

 

5.2.1 Paired Datasets (Least Square Method) 

Given two datasets (MN, AB) for the same data, which contain the same attributes, 

but with two sets of values (i.e.: depend on data generators applications or historical 

sources), we can find the relationship between column M from the file MN and 

column A from the file AB (provided they represent the same attribute).  

M1: correlated _with: A1,   M2: correlated _with: A2  …… Mk: correlated with : Ak 

 

Table51: The structure of missing values in multiple versions of the same dataset  

 M1 M2 … Mk   A1 A2 … Ak 

N1 m1n1 m2n1 … mkn1  B1 a1b1 a2b1 … akb1 

N2 m1n2 m2n2 … mkn2  B2 ? ? ? ? 

N3 ? ? ? ?  B3 a1b3 a2b3 … akb3 
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In this case we have a number of rows with missing values in each file. Considering 

our dataset with its special characteristics, if there exists strong relationships globally 

and locally between attributes, with the use of Least Square Method for regression 

line [72] we can calculate the missing values based on the following formula 

(considering the straight-line model): 

5.1 εββ ++= xy 10  

 

The least square method involves the determination of β0, β1  to minimize Q and they 

are treated as the variables in the optimization and the predictor variable values, x1, 

x2, .. , xn are treated as coefficients. 

For this model the least squares estimations of the parameters are computed by: 
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5.2.2 Single Dataset (First Serial Correlation) 

This scenario is for when there is just one version of the dataset and the value for at 

least one attribute has been provided so we can calculate the value for the whole row 

of data based on the first value. In this situation we need to examine the correlation 

between descriptors themselves with the use of First Serial Correlation [72], which 

investigates the dependencies of the variables.  

We consider the relationship between attributes as follows:  

(M1, M2),  (M2, M3)… (Mk-1, Mk) 

 

M1: correlated _with: M2,   M2: correlated with: M3  …… Mk-1: correlated _with : Mk 

 
Table52: The structure of the missing values in a single version of the dataset 

 M1 M2 … Mk 

N1 m1n1 m2n1 … mkn1 

N2 m1n2 ? ? ? 

 : : : : : 
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5.3 Experimental Work 

Extensive experimental work has been carried out in order to examine the framework 

for a number of toxicity datasets to recover missing values. With the consideration of 

the datasets possessing the special characteristics requirements, these methods have 

been tested and the results are as follows. 

5.3.1 Background 

Given the current facilities available for complex calculations, it seems that high 

confidence is implicitly awarded to data downloaded from online resources. The same 

applies to data generated by specialist software. We used the opportunity to study the 

DEMETRA data sets on some issues on data quality for large databases. We started 

with identification of descriptors sharing the same name and duplicated as generated 

by various software used by research laboratories involved in the project.  

Data on five toxicity endpoints are provided by the DEMETRA project for four 

different species: Bee, Daphnia, Trout, OralQuail and DietaryQuail. For each dataset, 

values for six compound descriptors calculated by two specialist programs: ACD and 

Pallas, have been considered. Our aim was to highlight the variation of values for 

each descriptor produced from one program to another and also to compare any 

further quantitative differences between specific descriptors calculated by one 

program with the value for the same descriptor and chemical compound generated by 

the other one. Then we compared the accuracy of basic classification model using 

input data presented for each endpoint by descriptors calculated by ACD and Pallas.  

5.3.2 Data Preparation 

For each dataset the same number of compounds has been selected. Data cleaning has 

also been performed in the form of eliminating rows with missing values. Six 

common descriptors have been selected from both datasets. These are as follows: 

LogP, LogDpH3, LogDpH5, LogDpH7, LogDpH7.4 and LogDpH9. The data have 

been divided into training set and testing set based on predefined rules (85% training, 

15% testing) by DEMETRA project. Weka data mining tool has been used to develop 

models. The data format has also been changed for modelling into Weka compatible 

format (arff). The conditions of experiments for each endpoint containing two datasets 
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(i.e. the same running parameters for algorithms, identical host machine etc.) were 

identical in order to assure an accurate comparison.  

5.4 Methods Implementation for Toxicity Datasets 

 

For all the experiments the data has been cleaned in the mean of omitting empty rows 

with missing values. Table 53 shows the proportion of missing values in each dataset: 

T for Trout, D for Daphnia, B for Bee, OQ for OralQuail and DQ for DietaryQuail. 

First row of the table shows the number of chemical compounds for each endpoint in 

each dataset. Second row presents number of compounds after the data cleaning. The 

other four rows show the proportion of lost data after cleaning and also the proportion 

of empty rows before cleaning.  

As it shown in some cases for accuracy and identically of the experiments (all our 

experiments were based on value comparisons between ACD and Pallas files) for 

specific endpoint in both datasets (ACD, Pallas) the exact same chemicals had to be 

selected so the proportion of the lost data after cleaning is even more than the 

proportion before cleaning. For example for Trout endpoint in ACD file empty rows 

are 5.3% of the whole dataset originally but after cleaning this increases to 7.09%. As 

it shown in the table in some cases such as DietaryQuail, 8.9% of the data is missing 

in files produced by ACD application.  

Table53: The proportion of missing values in each dataset after and before cleaning 
 T D B OQ DQ 

Number of original compounds 282 264 105 116 123 

Number of compounds after cleaning 262 244 95 104 107 

Lost data after cleaning (%) 7.09 7.5 10.5 10.3 13.0 
Empty rows before cleaning (%) 

ACD Pallas 

T D B OQ DQ T D B OQ DQ 

5.3 6.0 6.6 8.6 8.9 2 2 3 1.7 4.3 

 

5.4.1 Test of the Methods Requirements (Existence of the Relationship) 

 

In toxicity datasets the missing values are in the form of whole row (first case) or in 

the case of ACD data sets only the value for LogP exists and other values are missing 

(second case). To test the relations between attributes, a number of tasks were 

performed using statistical tools. Firstly, correlation between one descriptor from one 

dataset with exact descriptor from the second dataset has been measured.  

Figure57 shows the LogP value variation for DietaryQuail endpoint presented by 

ACD and Pallas. The yellow line on the graph shows the difference between the two 
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values. As the graph shows although the values are different but they follow the same 

pattern so there exists a correlation between them, which can be measured.  
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Figure57: LogP variation for DietaryQuail endpoint presented by ACD and Pallas 

 

Figure58 shows the regression line for LogP value in two files (ACD, PALLAS) for 

four endpoints. Since there is strong relationship between two attributes we can 

calculate missing values if the value for same compound exists in either file, based on 

regression line equation. Table54 shows the statistical parameters measured for the 

relationship between two LogP calculated by ACD and Pallas for DietaryQuail 

endpoint. On the left side of table we produced the parameters based on X variable 

considered as LogP Pallas or PALLAS001 and Y variable as LogP ACD or ACD001. 

 
Figure58: Correlation between two LogP values for four endpoints 
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The regression line is also based on calculating dependent variable Y based on 

independent value X. On the right hand side of the table we calculated the regression 

based on ACD001 considered as X variable (in the cases when the value for an 

attribute LogP for a chemical compound is missing in dataset produced by PALLAS) 

and on the left the regression function is calculated based on PALLAS001 as X 

variable (in the cases when the value for same attribute is missing in the dataset 

produced by ACD). These functions have been produced by our statistical tool. 

We should also note that in each case the value for X exist so the value for Y need to 

be calculated based on the function. Also the values for confidence intervals and 

standard deviation are very close. 

Table54: The statistical parameters show the relationship between two LogP for DietaryQuail 

Regression line   

x variable: PALLAS001 

y variable: ACD001 

The equation of the regression line of y on x 

is: y = 0.365234 + 0.893078x   

Regression line   

x variable: ACD001 

y variable: PALLAS001 

The equation of the regression line of y on x 

is: Y = 0.190893 + 0.951051x  

Confidence interval for  PALLAS001 

Mean 3.57315 

Standard deviation 2.14349 

95% confidence interval:  

3.167 to 3.9793 

Confidence interval for  ACD001 

Mean 3.55633 

Standard deviation 2.07714 

95% confidence interval:  

3.16276 3.94991  

Since the missing values in datasets appear in the whole row for a number of 

compounds, the same procedure can be repeated for all pair variables to fill the empty 

cells. As it has been specified in earlier sections the assumption is for every row of the 

missing values (Y parameter), related to a specific chemical compound there are 

existing values (X parameter) for the corresponding compound in the paired file 

(either ACD or PALLAS).  

5.4.2 Recovering Missing Values (Multiple Datasets) 

 

For this task based on regression function measured for every pair attribute (i.e.: LogP 

from ACD and LogP from PALLAS) and statistical analysis, explained in previous 

section, the missing values in each file for DietaryQuail endpoint have been replaced 

with calculated values (the same procedure has been repeated for other five pair 

attribute in both files). Recovered data then was trained using the same algorithms as 

in previous experiments in Weka. Table55 shows the results for this experiment for 

DietaryQuail. 
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Table55: The results for modelling original dataset (with omitted rows) and with recovered data using 

regression for DietaryQuail endpoint 

  BN MLP IBK CVR J48 JRip ZeroR LMT Average Increase (%) 

DQ_P  30.34 25.84 31.46 34.83 32.58 29.21 32.58 32.58 31.18  

DQ_P_R 26.42 33.96 32.08 41.51 35.85 35.85 28.30 35.85 33.73 2.55 

%diff -3.92 8.12 0.61 6.68 3.26 6.64 -4.28 3.26   

DQ_A  31.46 33.71 25.84 29.21 31.46 29.21 32.58 28.09 30.20  

DQ_A_R 29.25 34.91 35.85 32.08 29.25 29.25 29.25 33.96 31.72 1.53 

%diff -2.22 1.20 10.01 2.86 -2.22 0.03 -3.34 5.87   

 

DQ_P shows the classification accuracy for dataset produced by Pallas program when 

the rows with missing values have been omitted. DQ_P_R: shows the results for the 

same experiment after data has been recovered. The value for the row “diff” shows 

the difference between the two results. Last three rows of the table show the results 

for files produced by ACD program. As it shown in the table, recovered data had 

dramatic affect on the results especially in the case of MLP and CVR algorithm for 

Pallas dataset and LMT and IBK algorithms for ACD dataset.  

5.4.3 Recovering Missing Values for DietaryQuail Endpoint (Single Dataset) 

 

In DietaryQuail dataset presented by ACD there were values for LogP descriptors 

and then the values for other descriptors were missing. These missing values have 

been estimated based on First Serial Correlation. The data has been trained 

afterwards using the same algorithms. The results of this experiment are listed in 

Table56. 

Table56: The results for modelling original dataset (with omitted rows DQ_ACD) and with recovered 

data (DQ_LogP_corr_ACD) for DietaryQuail endpoint 

Endpoint BN MLP IBK CVR J48 JRip ZeroR LMT Average Increase (%) 

DQ _ACD 31.77 29.90 30.84 25.23 29.91 28.97 32.71 35.51 30.61  

DQ_LogP_corr_ACD 29.52 32.38 31.43 26.67 22.86 21.90 29.52 31.43 28.21 -2.39 

5.5 Increasing the Model Performance with Generation of Artificial Data Using 

LSM Method 

As shown in Table57, the performance of models (in the case of single dataset) has 

improved with some algorithm and decrease with others. But in general models are 

not better with recovered data. In order to have better models we propose the 

generation of artificial data. Since the correlation of descriptors is depending on the 

values variation produced by two source programs, the existence of outliers has a 

direct effect on the models. The results of second experiment on DietaryQuail in 
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Table56 shows that the methods have caused the effect on reducing the classification 

accuracy since the recovered values in some cases may belong to an outlier.  

For this reason to balance the data we used the same method and procedure described 

in section 6.2 but this time we performed the task on the outliers which have been 

separated and used as training set. With Least Square Methods (1, 2, 3) we calculated 

the correlation between the descriptors (as we did for paired datasets). Then we 

generated artificial row (or compound) into the dataset. 

With this method we balanced the data around outliers in both datasets (ACD and 

Pallas) in order to include the outliers into the regression. The experiment has been 

tested for three endpoints: Bee, OralQuail and Daphnia (see Table57 for the results). 

Table57:The results for modelling original dataset and data with generated artificial values 

Endpoint BN MLP IBK CVR J48 JRip ZeroR LMT Average Increase (%) 

OralQuail (ACD) 55.77 52.88 34.62 50.00 53.85 55.77 55.77 54.81 51.68   

OQ_ACD_outlier+arti 57.76 51.72 47.41 56.03 56.90 57.76 57.76 56.90 55.28 3.60 

OralQuail (Pallas) 55.77 49.04 31.73 52.88 51.92 54.81 55.77 52.88 50.60   

OQ_P_outlier+arti 57.76 52.59 37.07 56.03 55.17 57.76 57.76 56.90 53.88 3.28 

Daphnia (ACD) 45.90 44.67 41.39 51.64 43.85 46.72 43.85 48.36 45.80   

D_ACD_outlier2+arti 44.15 52.45 43.02 49.06 42.26 49.43 44.91 46.79 46.51 0.71 

Daphnia (Pallas) 42.62 41.39 37.70 37.70 51.23 45.90 43.85 47.95 43.55   

D_P_outlier+arti 44.53 48.30 39.62 45.66 46.79 46.42 44.91 43.77 45.00 1.45 

Bee (ACD) 37.89 27.36 38.95 33.68 33.68 37.89 40.00 36.84 35.79   

B_ACD_outlier+arti 37.50 34.62 50.00 35.58 34.62 40.38 42.31 38.46 39.18 3.39 

Bee (Pallas) 40.00 32.63 30.53 44.21 32.63 40.00 40.00 40.00 37.50   

B_P_outlier+arti 40.38 34.62 30.77 41.35 29.81 41.35 42.31 44.23 38.10 0.60 

 

5.6 Algorithm for Generation of Missing Values 

As a result of our study and special characteristics of our data, the following 

procedure can be proposed for recovery of the missing values: 

 

Single dataset MN : M*N(if M1: exist) 
1.Read file (MN)  
2.Calculate correlation using (formula: 1,2,3) 
3.If correlation false exit, else 

4.Sort data, based on toxicity (high →low) 
5.Locate missing value  
6.Locate first value in first cell 
7.Consider value as X 
8.Using the function calculated in step 2, calculate Y 
9.Fill the value for next descriptor by calculated value (Y) 
10.Repeat step 6, 7, 8, 9 until row is recovered 
11.Repeat step 5, 6, 7, 8, 9 
12.Repeat until 5 is empty 
13.End 

 
Paired dataset (MN: M*N & AB: A*B) 

1.Read files (MN & AB) 

2.Sort data based on toxicity (high →low) in both files 
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3.Calculate correlation using (formula: 1,2 & 3): If M1: correlated 
_with: A1, M2: correlated _with: A2  …… Mk: correlated_with: Ak True 
then 
4.Locate missing value (cell) in MN, When Y=YMN & X=XAB 
5.Calculate mn when Y=YMN 

6.Calculate Mn+1 → Mk+1 when Y=YMN 
7.Do until data is estimated in entire row 
8.Locate the next row with missing values 
9.Repeat steps 4-8 until step 8 is empty 
10.Calculate correlation using (formula: 1,2 & 3): If A1: correlated 
_with: M1, A2: correlated _with: M2  … Ak: correlated_with: Mk True 
then 
11.Locate missing value (cell) in AB, When Y=YAB& X=XMN 
12.Calculate ab when Y=YAB 

13.Calculate Ab+1 → Ak+1 when Y=YAB 
14.Do until data is estimated in entire row 
15.Locate the next row with missing values 
16.Repeat steps 11-15 until step 15 is empty 
17.End  

Figure59: Missing Values Recovery algorithm 

 

5.7 Summary and Conclusions 

In this chapter, the problem of missing values in datasets has been addressed specially 

in toxicology domain. The toxicology approach have been discussed that deal with the 

problem at the collection stage. Least Square Method for paired dataset and Serial 

Correlation for single dataset provided the solution for the problem in two different 

situations. An algorithm using these two methods has been proposed in order to 

overcome the problem of missing values. The proposed algorithm has been tested on 

number of DEMETR datasets to test the effectiveness on the outcome model after 

recovery of missing values. Also the Least Square Method has been used to generate 

artificial data around outliers to improve model performance. The implementation of 

the proposed algorithm requires the existence of the high correlation between 

descriptors (attributes) in the dataset. 
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6. ARTIFICIAL DATA GENERATION, DATA CHARACTERISTICS 

AND MODEL PERFORMANCE 

 
Improving the learner performance over imbalanced and multidimensional datasets 

raises a challenging task for the machine learning community as well as for the data 

user. Although a salient characteristic in data modelling is the amount of data 

provided for the learner, the proportional distribution of that data in each class has 

also direct relationship with the classifier performance. In imbalanced datasets when 

data is distributed into different classes, various in size, understanding of data 

structure and characteristics plays an important role in improving the learner 

accuracy.  

In this chapter we introduce a new approach that combines the information gained 

from traditional classification algorithms, confusion matrix parameters and density-

based clustering to generate artificial data in order to increase the learner 

performance. First a classification algorithm is run on training data. Then the 

confusion matrix is studied and the True Positive (TP) rate of each class is measured. 

The class with the lowest TP rate is selected. Using density-based clustering we 

identify the centroid of the class and measure the samples distribution in 

multidimensional space in the next step. With the values gained from Probability 

Density Function estimations for clusters, extra samples are generated and added to 

the original dataset to rebalance the class proportion and the weight of different 

classes in the whole training set. Our method has been evaluated in terms of TP, F-

Measure and also overall accuracy against a number of Demetra and UCI datasets. 

We also report evaluation of the performance of other classifiers, trained on the 

expanded datasets (datasets with added artificial data using our method) at the later 

stage. Our method provides an insight view of the data structure and characteristics in 

order to identify how much and where the data need to be added for increasing the 

classification accuracy of the learner. 

6.1 Introduction 

In data mining, classification learning is a supervised learning scheme that uses 

knowledge gained through the training process of classified instances for 

classification of unseen examples. One of the main issues for classifier during this 
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process is the samples distribution of classes or class balance. Imbalanced or skewed 

[51] dataset, affect the performance of classification algorithms. The over represented 

classes provide enough information for training the classifier because of their 

sufficient number of samples against the under represented class. Real world scientific 

applications often face this problem for a number of reasons [52]. 

For instance, in toxicology domain this problem is severe. When the chemical 

compounds need to be tested on different species, high toxicity chemicals cannot be 

sampled as many as low toxicity compounds. In these datasets the important task of 

classification has to focus on high toxic chemical compounds since misclassification 

of high toxic chemicals may lead to disastrous consequences. 

We propose a new approach, which combines the supervised classification task with 

unsupervised clustering in order to maximize the knowledge gained from the data 

characteristics. Firstly selected datasets from Demetra project and UCI repository are 

trained using a classification algorithm. At the second stage the poorly classified 

samples are identified by studying the produced confusion matrix of classification 

task. Then TP rate for these samples is measured and compared with other samples 

belonging to classes with higher classification accuracy or TP. The class with lowest 

prediction accuracy produced on its samples is separated and used for the density-

based clustering task study. This task is performed on the selected class in order to 

identify the samples distribution density inside its clusters.  The cluster, which 

contains more samples or with higher prior probability would be identified as the 

representative set.  

Based on the class population and also cluster density, artificial data are generated. 

The generated data are added to the original dataset and a new training dataset is 

constructed. With this method we increase the classification accuracy of the less 

represented class and in most cases with effect on learner accuracy on other classes 

and also the overall prediction accuracy. 

6.2 Related Work 

Various approaches and methods have been proposed to tackle imbalanced data 

problem. One of these methods is one-sided selection [73] in which the 

borderline/negative examples or the ones overlapping in two class dimensional space 

are removed. 
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Another method is DataBoost-IM approach [74]. According to this method the hard 

examples from minority and majority class are identified. Then the synthetic samples 

are generated using the hard samples and added to the original dataset. The class 

distribution and the total weights of the different classes in the new training set are re-

balanced at the last stage. 

Guided re-sampling technique [75] is another solution which first determines the 

subcomponents within each class. The element in each subcomponent is re-sampled 

until each subcomponent has the same number of examples as biggest subcomponent. 

Then the between-class imbalance is eliminated by randomly selecting and 

duplicating members of the minority class. 

SMOTEBoost [76] is another method which increases the learner performance in 

classification of minority class with creating synthetic instances by operating in the 

feature space rather than data space.  Using this method a new minority class sample 

is created in the neighbourhood of the minority class target. 

There are also some methods which down-size the majority class in order to equalize 

the distribution of two classes [77][78]. All these methods concentrate on the two-

class problem with minority and majority class: either over-sampling or under-

sampling presentation by overlooking the distribution of the class subcomponents 

[75]. The statistical relationship between these elements is not addressed in detail. 

This could be very important in terms of how the new samples are generated in order 

to improve this relationship and help the learner in the classification process. 

6.3 Density-based Class-Boost Algorithm (DCBA) 

The Density-based Class-Boost Algorithm applies to multi-class domain problem and 

is based on insight view of class characteristics in order to determine the distribution 

density of class samples. The idea is based on boosting the core of the hard 

recognizable class in order to highlight class influence zones [79] or boundaries. The 

algorithm is presented in Figure61. 

6.3.1 Probability Density Clustering 

 

Clustering is based on a statistical model called finite mixture. A mixture is a set of k 

probability distributions of k clusters. The distribution gives the probability that an 

instance has a certain set of attribute values if it was identified to be a member of that 

cluster [80]. 
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With Probability Density Clustering there are few parameters measured for each 

attribute in the data set and also each cluster within a class. For each attribute, mean, 

standard deviation and sampling probability are produced. For each cluster S with 

mean ( Sµ ) and a standard deviation ( Sσ ), if the classification is already determined 

for each sample then: 

Mean (average):  
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Sampling Probability for the class (S): 

P(S) = the estimation of the number of instances belonging to the class. 

With these parameters already identified: The probabilities that instance X belonging 

to cluster S is: 

 

6.3 
P (s| x ) = 

)(

)()|(

xp

spsxp
 

 

Where P (s|x) is the density function for:  

6.4  

2

2

2

)(

,
2

1
);(, S

Sx

S

SS exfS
σ

µ

πσ
σµ

−−

=  

 

Finally the joint probability of an instance is calculated as a sum of the probabilities 

of all its attributes which is produced as prior probability of instances distribution for 

each cluster [80] [81]. 

Figure60 shows the Density-based clustering for class3 in Demetra Trout dataset. The 

class is divided into two clusters: 0 and 1 with cluster 0 with more members and 

higher prior probability. 
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6.3.2 ROC analysis/Evaluation Measures 

 

In this work we used a number of measures which are produced by confusion matrix 

during classification process. A brief description is provided below. Although in the 

results table of the experiments we have produced values for ROC curves as they have 

been produced by confusion matrix but our emphasis is on values produced for True 

Positives. The reason is that ROC diagram presents the binary data information.  

- Confusion Matrix: in a dataset when the classification is performed the prediction 

for each sample has four possible outcomes: True Positive, False Positive, True 

Negative and False Negative. They are produced in the form of Confusion Matrix. 

6.5 Overall Accuracy = (TP+TN)/(TP+TN+FP+FN) 

 

- True Positives are the members of the class that have been predicted correctly for 

which the predicted and actual value for class membership are equal. 

6.6 True Positive Rate = (TP)/(TP+FN) = Recall 

 

- Recall: shows the proportional relationship between TP and FN rate. 

- Precision: shows the proportional relationship between TP and FP. 

6.7 Precision =(TP)/(TP+FP) 

 

- F-Measure: this statistical figure simply produces the relationship between Precision 

and Recall as follows: 

6.8 F = (2PR)/(R+P) 

 

 

6.3.3 Artificial Data Generation 

 

As the weak class is identified after first training with the classifier (the class with 

lowest TP rate), unsupervised Density-based Clustering is performed. 

For every single attribute, mean, standard deviation and sampling prior probability are 

calculated. The determining facts for the size of additional artificial data are: 

-The whole class proportion (the number of samples in target class). 
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In some cases the target class members are as little as four in OralQuail data set. In 

order to affect the learner performance, enough artificial data need to be generated. 

Table58 shows the number of classes and also samples in each class in all data sets. 

-The cluster size inside the class (the number of samples in the cluster). 

After performing Density-based Clustering task, the class is divided into two clusters 

with different proportion. When the original class member’s size is small, 

consequently the constructed clusters would be smaller. For every cluster the 

following formula is applied to determine the cluster size: S(x) = S1(x) + S2(x) when 

cluster S(x) consists of cluster S1(x) and cluster S2(x) and x means clusters’ member 

set. 

-The effect that the additional data is caused (increase in the classification accuracy). 

The data (numerical values) is generated based on the normal distribution/mean 

values of each attribute based on following: if the frequency distribution has k 

attributes/features intervals with midpoints: m1, m2,..., mk and corresponding 

frequencies f1,f2,...,fk, then:  
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In general in our work the added artificial data size is between 10 to 100 percent. 

 

Table58: Datasets class distribution;  

Datasets No. of Classes Class1 Class2 Class3 Class4 Class5 Class6 

Wine 3 51 79 48    

Iris 3 50 50 50    

Vehicle 4 199 217 212 218   

Ecolio 5 143 77 52 35 20  

Glass 6 70 76 17            13 9 29 

Trout 4 117 84 34 27   

Daphnia 4 107 64 50 23   

OralQuail 4 4 21 21 58   

Bee 5 14 19 12 38 12  

DietaryQuail 5 8 35 32 22 10  

 

Table 58 shows the distributions of the members in each class.  In Glass dataset class4 

had no samples and it has been deleted. The label for other classes has been shifted 

accordingly. 

If the constructed training data set (data set with added artificial data) is identified as 

Tnm and artificial training data as Tm then: 
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6.10 Tnm = Tn U Tm 

 

 

Then the artificial data are added to the class. This resized class would replace the 

original class in the training data set and the new training set is constructed and 

retrained. The stopping point for generation of more artificial data is when the 

classification accuracy start decreasing and also no more than the original set size. 

 

Cluster 0: Prior probability: 0.7353 

Cluster1:  Prior probability: 0.2647 

 

 

 

 

Figure60: Density-based clustering on class 3 in Trout dataset: x shows the number of instances in the 

class against y which is the value for an attribute ACD1 (-0.57 to 6.99)} 

 

 

6.3.4 Algorithm Description 

 

Firstly using a Meta learner classification algorithm [81][82] in the accuracy for each 

class is measured (Figure61 steps 1 and 2). The confusion matrix is presented after the 

process, the class with lowest TP rate is selected as target class (Figure61 step 3). 

Sometimes there are two classes with the same TP rate and both are targeted.  

The targeted class or classes are then analyzed and with the help of unsupervised 

Density-based Clustering (Figure61 steps 4 and 5) the prior probability of each cluster 

is measured. Then within that class, the cluster with highest prior probability is 

selected (Figure61 step 6). At this stage the value of normal distribution mean of each 

attribute within the cluster and the frequency of the midpoint value for the samples 

(Figure61 step 7) are used for generating artificial data. Proportion or sample size in 

each cluster determines how much data need to be added. The numerical data is 

generated in a way that satisfies the cluster mean. For instance if the mean value for 

an attribute is about 0.7, with highest frequency distribution of 0.5-0.6 then the 

generated numerical values would fall in this range. 
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The generated data are added to the cluster in target class and finally to the original 

data set and the new training set is constructed (Figure61 step 8). The training data is 

balanced and weights are updated (step 9). The error of classification is calculated. 

This computed error is used to update the weights distribution of the samples 

(Figure61 steps 10, 11). The data is retrained using the same classification algorithm 

and result is presented (Output). The stopping criteria for adding more artificial data 

would be determined by overall classification accuracy of the whole training set in the 

consequent modelling. 

TP rates of all classes are measured at every step of modelling since our experimental 

work proves that sometimes the increase in TP rate of one class affects the decrease of 

the same statistical measure in another class. Although initially the less representative 

class with lowest TP rate is targeted, the performance of the classification algorithm 

on all the other classes is also measured and watched in order to assure the 

effectiveness of the method. 

The experimental results show that the implementation of the method (adding data to 

one class) highlights the boundaries and border lines of the other classes which causes 

the increase in the overall classification accuracy and also each individual class (in 

most cases). 

6.4 Method Evaluation 

 

As it has been mentioned in abstract for the purpose of the evaluation, we have chosen 

Trout, Bee, Daphnia, DietaryQuail and OralQuail data sets from real-world 

applications provided by Demetra project. We have also selected Glass, Iris, Wine, 

Ecolio and Vehicle from UCI Repository. All these datasets are multi-class and 

imbalanced (Table58) except Iris which is multi-class but balanced dataset. The 

results of experiment show that the method has been effective in all data sets in terms 

of increase in overall classification accuracy. In the case of Iris data set although the 

data set is not imbalanced but the original classification accuracy (on original data set 

with no artificial data) for class2 was much lower than other classes, so we tested the 

method to see if it is effective in order to increase the TP rate for this class which was 

successful.  

As the results show for Demetra data sets (Table59) and for UCI data sets (Table60) 

the method not only increased the classification accuracy for the target class and the 
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overall accuracy of classification but also TP rate, F-Measure and ROC area of other 

classes as well (in most cases). 

 

 

Density-based Class Boost Algorithm 

Input:  
n

Τ  set of n examples 
1

x = (
1

1
x ,

1

2
x , …,

1

m
x ), x

2
= (

2

1
x ,

2

2
x , …,

2

m
x ), 

2
x  

=  

n
x
1

( ,
n

x
2
, …,

n

m
x ), with labels c

i
∈C * 

-
i

m  , midpoint of distribution of class/cluster intervals (attribute values) 

-
i
f  , corresponding frequencies 

- L  , number of iterations (1) 

 

For l = 1 to L (2) 

1. Initialize distribution weights on samples: 
i

D (
i

x ) = 
n

1
 for all 

i
x ∈

n
T  

2. Train data with meta learner 

3. Identify target class 
i

S if TP (
i

S ) = TP  min  

4. Calculate P (s| x ) = 
)(

)()|(

xp

spsxp
 

5. Produce: ),;(, ssxfS σµ  = 
sπσ2

1
 e  

s

sx

2
2

)(
2

σ

µ−−
  in which 

6. Calculate: maxmin )|()|()|()|( xspxspxswherePxsP +=  

 

7. For generatexsp ,)|( max mT = )}...1(,{ miix =  when x = 
n

fm
k

i

ii∑
=1   

8. Add artificial data mT  to original data set:  nT  U mT = nmT  

9. Balance training data and update weights  

10. Train given the distribution ),(, lll DTlearnerSD =  

11. Set )1/( lll εεβ −= where lε  error of LS  is: =llS ε,
iyixlSTix ≠∈

∑
)(,

 )( il xD  

 

Output: maxarg)(*

Yy

xS
∈

=  ∑
= yxSl l )(: lβ

1
log  

 
Figure61: DCBA Algorithm 
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Table59: Classification Accuracy for Demetra Datasets; target classes are in bold 

Dataset Class1 Class2 Class3 Class4 Class5 

Bee           

TP 0.286 0.053 0 0.684 0.167 

F-Measure 0.286 0.071 0 0.52 0.2 

ROC area 0.765 0.511 0.494 0.605 0.702 

Bee+artificial           

TP 0.571 0.105 0.375 0.658 0.25 

F-Measure 0.516 0.143 0.462 0.543 0.286 

ROC area 0.863 0.559 0.571 0.635 0.788 

DietaryQuail           

TP 0.1 0.457 0.375 0.273 0.1 

F-Measure 0.2 0.41 0.353 0.267 0.154 

ROC area 0.487 0.543 0.581 0.569 0.656 

DQ+artificial           

TP 0.417 0.457 0.406 0.409 0.286 

F-Measure 0.476 0.421 0.366 0.439 0.381 

ROC area 0.668 0.604 0.536 0.695 0.719 

Trout           

TP 0.615 0.595 0.147 0.593   

F-Measure 0.643 0.549 0.172 0.533   

ROC area 0.71 0.72 0.702 0.847   

Trout+artificial data           

TP 0.667 0.583 0.295 0.556   

F-Measure 0.69 0.547 0.329 0.5   

ROC area 0.741 0.737 0.751 0.825   

Daphnia           

TP 0.664 0.313 0.38 0.261   

F-Measure 0.617 0.336 0.376 0.316   

ROC area 0.723 0.656 0.71 0.852   

Daphnia+artificial data           

TP 0.682 0.281 0.38 0.407   

F-Measure 0.635 0.324 0.365 0.431   

ROC area 0.7 0.659 0.699 0.878   

OralQuail           

TP 0 0.048 0 0.931   

F-Measure 0 0.074 0 0.701   

ROC area 0.463 0.456 0.41 0.482   

OQ+artificial           

TP 0.143 0.16 0.276 0.931   

F-Measure 0.2 0.235 0.41 0.697   

ROC area 0.695 0.62 0.546 0.669   

 

In the case of Glass, Bee, DietaryQuail (Figure 3:graphical representation) and Iris 

data sets after adding artificial data TP, F-Measure and ROC area increased for all the 

classes. In the Vehicle data set all the statistical measured for all the classes have 
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improved except there is a slight decrease in TP rate of class4 after addition of 

artificial data. For Daphnia data set although decrease in values of TP rate and F-

Measure for class2 and class3 occurred all the other statistical measures have 

improved. In OralQuail except the decrease in F-Measure for class4 after addition of 

artificial data the other measures show good improvement. 

Table60: Classification Accuracy for UCI Datasets; target classes are in bold 

Dataset Class1 Class2 Class3 Class4 Class5 Class6 

Glass             
TP 0.786 0.737 0.118 0.769 0.667 0.828 

F-Measure 0.738 0.723 0.19 0.769 0.6 0.842 

ROC area 0.891 0.867 0.832 0.939 0.99 0.919 

Glass+artificial data             

TP 0.814 0.737 0.56 0.769 0.889 0.828 

F-Measure 0.792 0.737 0.636 0.741 0.727 0.873 

ROC area 0.921 0.87 0.929 0.942 0.989 0.938 

Ecolio             

TP 0.986 0.831 0.788 0.514 0.75   

F-Measure 0.956 0.8 0.837 0.554 0.833   

ROC area 0.979 0.95 0.942 0.912 0.985   

Ecolio+artificial data             

TP 0.972 0.87 0.788 0.745 0.7   

F-Measure 0.949 0.832 0.82 0.792 0.778   

ROC area 0.978 0.952 0.923 0.953 0.979   

Vehicle             

TP 0.94 0.507 0.481 0.963     

F-Measure 0.874 0.525 0.523 0.923     

ROC area 0.986 0.839 0.864 0.982     

Vehicle+artificial data             

TP 0.945 0.512 0.575 0.959     

F-Measure 0.87 0.534 0.605 0.937     

ROC area 0.988 0.845 0.878 0.992     

Wine             

TP 0.966 0.915 0.979       

F-Measure 0.958 0.935 0.959       

ROC area 0.991 0.982 0.997       

Wine+artificial data             

TP 0.949 0.938 0.979       

F-Measure 0.949 0.943 0.969       

ROC area 0.997 0.991 0.998       

Iris             

TP 0.917 0.793 0.923       

F-Measure 0.88 0.821 0.911       

ROC area 0.923 0.908 0.986       

Iris+artificial data             

TP 1 0.96 1       

F-Measure 1 0.98 0.96       

ROC area 1 0.997 0.995       
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As it is shown in the result table (Table59) for this data set, the class1 and class3 in 

the first run classification had zero TP rate. None of the samples belonging to these 

two classes have been classified correctly. The method shows good implication for 

such data sets. In the case of Wine data set all the parameters have improved except 

the TP rate and F-Measure in class1. For Ecolio data set the effect is different. For 

class1 and class5 the result is not satisfactory also for class3 the F-Measure and ROC 

area shows decrease but all other parameters for the rest of the data set is good. 

Table61: Classification Accuracy for all data sets after testing models 

Datasets Cross-Validation: Overall Accuracy (%) 

  Original Data added to class 3 (model1) 

Trout 54.6 57 

Tested with model1 75.5   
    Data added to class 4 (model1) 

Daphnia 47.54 49 

Tested with model1 73   
    Data added to class1&5  (model1) 

DietaryQuail 33.6 41 

Tested with model1 63.5   
   Data added to class1&3  (model1) 

OralQuail 52.8 56.3 

Tested with model1 68.2   
   Data added to class3  (model1) 

Bee 34.7 45.45 

Tested with model1 61   

   Data added to class 2 (model1) 

Iris 87.5 98.5 

Tested with model1 96.2   
    Data added to class3  (model1) 

Vehicle 71.9 74.04 

Tested with model1 91.72   

   Data added to class4 (model1) 

Ecolio 85.3 87.17 

 Tested with model 1 89.9   

     Data added to class3 (model1) 

Glass 71.49 76 

 Tested with model 1 86.4   

    Data added to class2 (model1) 

Wine 94 95.2 

 Tested with model 1 96.06   

 

The process of adding artificial data to datasets has been done in one iteration. The 

method can be applied and data can be added until the overall classification start 

decreasing. The confusion matrix has to be studied after every iteration, in order to 

target classes with lowest TP rate. 
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Although the application of the method show decrease in few parameters(TP, F-

Measure or ROC area) in some cases, the overall result is promising and the method is 

very effective in severe imbalanced data sets such as Bee and OralQuail. 

TP, F-Measure and ROC area for DietaryQuail dataset before and 

after adding artificial data
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Figure62: TP, F-Measure and ROC area for DietaryQuail dataset before and after adding artificial data 

 

Table61 shows the result of the testing gained models (from added artificial data) on 

the original data sets (using Cross-Validation). There is a good increase in 

classification accuracy after this process. There are three values for each dataset in 

this table. For examples in the case of Trout dataset the first value (54.6) is the overall 

classification accuracy for the original dataset with no artificial data. After adding 

artificial data to class3 the accuracy increased to (57). Then the dataset with artificial 

data was tested against the original dataset which caused the improvement in 

classification accuracy to (75.5). To ensure the effectiveness of our model, we trained 

a number of other classifiers to evaluate the performance. Table62 shows the results 

of this experiment. First the original dataset with no artificial data was trained. The 

first row of the table shows the classification accuracy for this procedure. Second time 

the dataset with added artificial data was trained. The second row of the table shows 

the result. There is an increase of the performance on the expanded datasets in 

majority of the cases. In very few cases with number of classifiers the performance is 

either the same or decreased in very low margin. The method proves to be effective 

with other classifiers as well. 

6.5 Summary and Conclusions 

 

In this chapter, we proposed a hybrid algorithm for generation of artificial data. We 

combined the supervised classification process with unsupervised clustering in order 
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to get insight view of the classes’ internal components and characteristics. We 

focused our study and implementation of our method on imbalanced and multi-class 

data sets in which the severe class samples distribution exists. 

We have shown that as long as we understand how class members are constructed in 

dimensional space in each cluster we can reform the distribution and provide more 

knowledge domain for classifier. Our results are promising and show the affect of the 

method even in special cases such as Demetra data sets where data is highly 

imbalanced with very low overall classification accuracy. Our process of data 

generation and the way the numerical values are produced proved to be effective [83]. 

Table62: Classification Accuracy for all data sets trained with other classifiers 

Classification Accuracy % (Cross-Validation) 

Datasets BN MLP J48 JRip Ridor NB SMO NNge IBK 

Trout 53.8 51.1 58.3 54.5 48.8 50.7 43.8 49.6 52 

Trout+artificial data 55 54 58 55 50.3 54.4 45.5 52.2 52 

                

Daphnia 45.9 44.6 43.8 46.7 45.9 40.5 45.9 45 41.3 

Daphnia+artificial data 46 54 46 50 48 45.1 47.3 48 50 

                    

DietaryQuail 31.7 29.9 29.9 28.9 34.5 25.2 31.7 33.6 30.8 

DQ+artificial 33.9 47.8 33.9 29.0 38 34 35 34 33.9 

                    

OralQuail 55.7 52.8 53.8 55 42 29 55.7 47 34 

OQ+artificial 60 54 58.2 56.5 45.5 31 58 49 49.5 

                    

Bee 37.8 27.3 33.6 37.8 34.7 22 40 33.6 38.9 

Bee+artificial 38 29.2 34 38 34.9 30.3 40 41.4 48.5 

                    

Iris 92.5 91.2 87.5 87.5 91.2 91.2 93.7 93.7 91 

Iris+artificial data 97 98.5 95.5 95.5 97 97.1 94 98.5 95.5 

                    

Vehicle 61.5 81 73 68.6 71.1 45 74.5 64 69.6 

Vehicle+artificial data 61.5 83 75 71 72 45.8 74.9 67.5 72 

                    

Ecolio 85.9 86.2 83.4 83.1 83.1 87 84 84.7 82.2 

Ecolio+artificial data 85.9 86.2 84.2 84.2 84.8 87.4 87.7 87.7 82.2 

                    

Glass 74.7 67.2 65.8 69.6 68.6 49.5 57.4 66.8 70.5 

Glass+artificial data 74.8 67.2 68.4 65.7 71.1 45.8 54.9 71.5 73 

                    

Wine 99.3 95.4 92.8 88.9 91.5 96.7 98.7 93.5 94.8 

Wine+artificial data 98.9 97.2 93 90.7 92.3 97.2 98.8 96.1 95.6 
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7. CONCLUSIONS 

 
The research work was based on various data collections, available publicly or for 

restricted users. We had detailed investigation and study on the toxicity data available 

on online sources and also on confidential Demetra data collections. We have also 

studied and used benchmark data for our experiments. We have shown that the 

toxicity data is unreliable and possess low quality for number of reasons. Its 

presentation is also not consistent throughout different sources and that makes the 

interpretability and accessibility of the information difficult.  The toxicity data have 

different dimensions. The chemical compounds have a number of properties 

(descriptors), which relate to their biological activities. This relationship can be 

modelled by QSARs, which are used for toxicity prediction of untested chemicals. 

There are standard procedural steps to build QSARs. Data quality and descriptor 

selection play important roles in this process. Data quality and QSARs are two 

fundamental elements in toxicology studies.  

Data quality is an important issue in scientific domains. We have studied number of 

proposed approaches for tackling the problem for predictive toxicology domain. 

Naumman introduces an information quality framework based on the user, 

information and the process of accessing this information. Another example is 

Fusionplex, which is a system that integrates information from multiple sources and 

also resolves data inconsistencies by use of fusion methods. COLUMBA is another 

system that performs the quality check by data cleansing procedures. The Information 

Quality Assessment Methodology introduced by Richard Y. Wang, overcome quality 

issue by defining number of criteria in its components. The methodology for 

establishing and maintaining quality in data context is another strategy, which assess 

the data at different levels. Helma also introduces some methods for measuring 

quality in predictive toxicology. Data cleaning is also used to enhance the quality of 

the data. There is also an issue of missing values in datasets, which reduces the 

quality and reliability of the data. There are some methods in use to overcome this 

problem. Some of these methods are such as: omit records, calculate average, single 

imputation, multiple imputations and expectation maximisation.  

Another issue is modelling this data which raises the problem of how subcomponents 

of this data have been structured that identifis the data as balanced or imbalanced. The 
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imbalanced data affect the performance of classifiers during the classification process. 

Number of methods has been proposed to overcome imbalanced data problem such 

as; re-sampling, DataBoost-IM and SMOTEBoost. 

During our study, we have also designed and implemented a prototype for data 

storage and representation for internal use. For this purpose three main stages have 

been processed: analysis, design and implementation. Through analysis stage, issues 

relate to user requirement have been considered such as system usability. Tasks chart 

also has been designed to show the graphical view of the whole system. There are 

some design issues from human computer interaction point of view, such as simple 

navigation, consistent layout and help feature which have been considered at this 

stage. The tools and application used for implementation were MySql database and 

PHP. These applications have been chosen for their simplicity of implementation and 

process and ease of run on any server and platform. The prototype is accessible 

internally and externally. The motivation behind this stage of the project was to 

implement an integration system which collects processes and evaluates data from 

different sources and stores internally. The whole system design chart has been 

produced in Appendix 1. 

Another stage of the project was to investigate online toxicity databases in order to 

highlight the inconsistencies in values presentation and also the structural differences 

from source to source. We have also provided the results of our detailed investigation 

and experimental work on Demetra data. We studied two different file presented by 

two programs ACD and Pallas for same chemical compound and same species. The 

global values (min, max, average, standard deviation) have been measured and 

presented and also difference between values for same compounds generated by two 

programs highlighted. Based on these values we have selected number of descriptors 

to swap between two files for same species in order to see how variation in values 

could affect the model performance. The idea was to show that the good model is 

purely depend on how the descriptors have been generated and by what tool which 

directly affect the data quality. We have also tried to understand the data 

characteristics and insight view of the relations between descriptors. The results of 

this investigation have led us to identify a general framework for data quality and also 

clearer path for further study. 

At the later stage based on our findings, experiments and the results obtained from 

previous work, number of data quality criteria has been identified in order to provide 
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a solution for valuation of the data in toxicology domain. We have also provided the 

quality flow chart which shows the quality check of the data in steps with five 

identified criteria. An algorithm has also been proposed in details which explain how 

data is assessed and processed before modelling. These criteria are related purely to 

data values and can be added to other quality criteria which have been proposed in 

previous chapters to form a complete quality framework. 

The problem of missing values in datasets has been addressed specially in toxicology 

domain. The toxicology approach has been discussed that deals with the problem at 

the collection stage. Least Square Method for paired dataset and Serial Correlation for 

single dataset provided the solution for the problem in two different situations. An 

algorithm using these two methods has been proposed in order to overcome the 

problem of missing values. The proposed algorithm has been tested on number of 

Demetra datasets to test the effectiveness on the outcome model after recovery of 

missing values. Also the Least Square Method has been used to generate artificial data 

around outliers to improve model performance. The implementation of the proposed 

procedural algorithm requires the existence of the high correlation between 

descriptors (attributes) in the dataset. 

Producing better modelling results based on generation of artificial data and affect of 

this process on data characteristics, we proposed a hybrid algorithm but from different 

point of view. We combined the supervised classification process with unsupervised 

clustering in order to get insight view of the class’s internal components and 

characteristics. We focused our study and experiments on imbalanced and multi-class 

data sets in which the severe class samples distribution exists. 

We have shown that as long as we understand how class members are constructed in 

dimensional space in each cluster we can reform the distribution and provide more 

knowledge domain for classifiers. Our results are promising and show the affect of the 

method even in special cases such as Demetra data sets where data is highly 

imbalanced with very low overall classification accuracy. Our process of data 

generation and the way the numerical values are produced proved to be effective. 

7.1 Future Work 

 

The project at this stage can take different routes. Three main elements: data and its 

components, classifiers and their performance and also statistical measures can be 

further studied from different aspects to highlight more relations.  
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One of the possible routes can focus on evaluation measures of our algorithm before 

and after addition of artificial data in order to see how the additional data could affect 

the whole data set characteristics not only the target classes. The number of artificial 

samples added to the set can also be considered [83]. Another suggestion could focus 

on classifiers performance. On our work we just used number of classifiers provided 

by Weka but using different data mining tools, more classifiers can be trained in order 

to highlight which classifier can perform better in artificial data domain. 

Considering elements relate to data properties, nominal attributes can be studied as 

well as numerical values. We can concentrate the whole process of the artificial data 

generation with emphasis on nominal attributes. This can be implemented in the 

domains where these values affect the performance of the classifiers. We can also 

investigate the correlation between chemical compounds and generated data in order 

to assure how much the artificial data values could be close to the real values. All of 

these possible routes can start a new project in data mining and knowledge discovery.  

7.2 Original Contributions 

 

� Research on “online toxicity databases (ex: DssTox)” and their drawbacks. 

Chapter 2 discusses our detailed investigation on this issue. Some of these 

results have been produced in first and second paper presented to the 

University of Bradford workshop [7][27]. 

� Study Data Quality Assessment methods. The study on these methods is 

detailed in chapter 3.  

� Detailed investigation on internal data: Demetra. The results of our 

experimental work on the issue are discussed in chapter 5. 

� Detailed investigation on quality assessment methods and our data: Demetra 

dataset included in chapter 5. 

� Identify data deficiencies and effects on QSAR models are also discussed in 

chapter 5. The results of this work have been summarized and presented at the 

UKCI international conference [66].  

� Define a framework for model processing using the results of the 

investigation. The results of this work are discussed in chapter 6. 

� Investigate on data quality criteria description based on mathematical concepts 

also included in chapter 6. 



 120 

� Define data presentation and quality issues in predictive toxicology in chapter 

6. 

� Defining detailed “Data Quality Assessment Framework” in chapter 6. The 

results of the work are published and presented in AAIA international 

conference, also the extended version with the result of more experimental 

work has been published in TQ (Task Quarterly) computer science Polish 

national journal [67][68]. 

� Define method and algorithms for calculation of missing values which 

discussed and proposed in chapter 7. 

� Define framework via generation of artificial data for improvement of model 

performance using defined method. It has also been proposed in chapter 7. 

� Investigate the relationship between model performance and distribution of 

classes of compounds. This topic is discussed in chapter 8. 

� Define algorithm to generate artificial data in imbalanced multidimensional 

datasets and improve model performance. The algorithm has been proposed in 

chapter 8. The results of this work have been published in ICDM international 

conference [83]. 
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GLOSSARY OF TERMS  

Predictive Toxicology: predicting the toxic properties of chemicals based on the 

knowledge of their structures. 

Descriptor: an element that describes a specific property of the compound. 

Chemical compound:  is a substance formed from two or more elements, with a 

fixed ratio that determines its composition. 

Endpoints: a biological effect used as an index of the effect of a chemical on an 

organism. 

CAS Identifier: Chemical Abstract Service Registry number 

In silico: analysis performed using computers in conjunction with informatics 

capabilities. 

In Vitro: testing or action outside an organism (e.g. inside a test tube or culture dish.)  

In Vivo: testing or action inside an organism.  

MOA (Mechanism of Action/Mode): the way a chemical compound interacts with a 

living system.   

Dose: a measured amount of a chemical compound. Dose is often expressed in 

milligrams per kilogram (mg/kg) or parts per million (ppm).  

LD50: the amount of a chemical that is lethal to one-half (50%) of the experimental 

animals exposed to it. LD50s are usually expressed as the weight of the chemical per 

unit of body weight (mg/kg).  

LC50: the amount of a chemical that is lethal to one-half (50%) of the experimental 

animals exposed to it. LD50s are usually expressed as the weight of the chemical per 

unit of body weight (mg/kg) for aquatic species 

Acute (short term): the short-term effects of a one-time exposure to a chemical 

substance. 

Sub-chronic (mid-term): intermediate between acute and chronic toxicities; 

Chronic (long-term): toxic effects resulting generally from long term exposure at 

low doses 

Acrolein: unsaturated aldehyde, formula CH 2 CHCHO, formed as an oxidation 

product of butadiene, which is a common emission from automobiles. 

ACD: Advanced Chemistry Development, Inc., (ACD/Labs) is a chemistry software 

company offering solutions that integrate chemical structures with analytical 

chemistry information. 

PALLAS: software predicting pKa,logP, logD values and metabolites based on 

structural formulae of compounds. 

Q(SAR): Quantitative structure activity relationship. A mathematical relationship 

between biological activity of a compound and computed (or measured) properties 

that depend on the molecular structure.  

Data Quality: refers to the features and characteristics that ensure data are accurate 

and complete and that they convey the intended meaning. 

Multidimensional Database: a multidimensional database (MDB) is a type of 

database that is optimized for data warehouse and online analytical processing OLAP 

applications 

Toxnet: The National Library of Medicine's (NLM's) TOXNET provides access to a 

cluster of databases on toxicology, hazardous chemicals, and related areas. 

DSSTox: Distributed Structure-Searchable Toxicity (DSSTox) Public Database 

Network 
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IRIS: EPA's Integrated Risk Information System, an electronic data base containing 

the Agency's latest descriptive and quantitative regulatory information on chemical 

constituents. UCI:  

DEMETRA: is a project funded by the European Commission to address the eco-

toxicity evaluation of pesticides in a way suitable for the Directive 91/414 on 

pesticides. 

Pesticide: Substances intended to repel, kill, or control any species designated a 

"pest" including weeds, insects, rodents, fungi, bacteria, or other organisms. The 

family of pesticides includes herbicides, insecticides, rodenticides, fungicides, and 

bactericides. 

TOPKAT: is a toxicity prediction program. TOPKAT uses Kier & Hall 

electrotopological states (E-states) as well as shape, symmetry, MW, and logP as 

descriptors to build statistically robust Quantitative Structure Toxicity Relationship 

(QSTR) models for over 18 endpoints. 

DEREK: is an expert knowledge base system that predicts whether a chemical is 

toxic in humans, other mammals and bacteria. 

OASIS: laboratory of mathematical chemistry is a tool for predicting toxicity of 

chemicals resulting from their metabolic activation.  

Good Laboratory Practice (GLP): written codes of practice designed to reduce to a 

minimum the chance of procedural or instrument problems which could adversely 

affect a research project or other laboratory work. 

LogP: the logarithm of the partition coefficient. 

LogD: the logarithm of the distribution coefficient. 

Data integration: is the problem of combining data residing at different sources and 

providing the user with a unified view of these data. 

Data fusion: is generally defined as the use of techniques that combine data from 

multiple sources and gather that information in order to achieve inferences, which will 

be more efficient and potentially more accurate than if they were achieved by means 

of a single source. Data fusion is integration followed by reduction or replacement. 

PHP: an open-source, server-side scripting language used to create dynamic web 

pages. 

MySQL: a database management system which is available for both Linux and 

Windows. 

HTML: short for HyperText Markup Language, the authoring language used to 

create documents on the World Wide Web. 

Risk Assessment: the overall process of using available information to predict how 

often hazards or specified events may occur and the magnitude of their consequences. 

ITER: International Toxicity Estimated for Risk is a free Internet database of human 

health risk values and cancer classifications for over 600 chemicals of environmental 

concern from multiple organizations worldwide. 

HSDB: Hazardous Substances Data System is HSDB is a factual database focusing 

on the toxicology of potentially hazardous chemicals. 

ECOTOX: ECOTOXicology database provides single chemical toxicity information 

for aquatic and terrestrial life. 

USGS: is the acute toxicity database which summarizes the results from aquatic acute 

toxicity tests conducted by the USGS CERC located in Columbia, Missouri.  

Winsorized mean: involves the calculation of the mean after replacing given parts of 

a probability distribution or sample at the high and low end with the most extreme 

remaining values. 
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Weka: is a collection of machine learning algorithms for data mining tasks. Weka 

contains tools for data pre-processing, classification, regression, clustering, 

association rules and visualization. 
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APPENDIX1 
 

1. DATA STORAGE AND ACCESS PROTOTYPE 
 

The motivation behind the design and implementation of this prototype was to 

provide a sample data integration system for toxicity data. Since the variation in data 

representation on different sources causes data accessibility and processing problem, 

our prototype would encourage unifying structure and representation throughout. 

The solution developed for the system involves using a PHP5 [35] and HTML front 

end connected to MySQL Server (database) both which run on the university server. 

These two tools provide environment and all the facilities needed to perform various 

tasks in the system. Functionalities for the system are implemented in the front-end 

supported by back-end database. This implies that the following core objectives have 

been achieved: 

� Selection of the suitable methods of analysis and design, database and a 

programming application. 

� Identifying the system requirements for the system. 

� Design and implement the database. 

� Design and implement an interactive user interface considering human computer 

interaction issues that supports the user and administrative functions. 

� Design and implement the code to store retrieve and manipulate data in the 

database. 

� Test completed application using an appropriate testing strategy. 

The program has been uploaded to the web space assigned for this work on the server 

and also is accessible from external sources. Following table shows the server 

specifications, which supports and run the project.  

 

Table1: Server specification for the implemented system 

System  Linux linux2  

Server API  Apache 2.0 Handler  

Apache Version  Apache/2.0.45 (Unix) PHP/5.0.0  

Hostname: Port  linux2.inf.brad.ac.uk:0  

HTTP_HOST  linux2.inf.brad.ac.uk:59333  

SERVER_NAME  linux2.inf.brad.ac.uk  

SERVER_ADDR  143.53.28.29  
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1.1 System Analysis 

The objective of this phase is to confirm that the requirements specification is feasible 

in terms of being implemental. Requirements of the system have been gathered 

through research in order to identify the application goals and the scope of the 

information retrieval and management system. This is the first prototype designed and 

implemented.  

1.1.1 Goals of Information Retrieval and Management System 

Based on the initial research and discussion on the matter and considering the existing 

systems, the application’s goals were identified as following: 

-Provide functionalities for administration of the database through interface. 

-Generating connection to MySql server and display updated database details to the 

user through interface. 

-Providing interface for the user to connect to external databases. 

-Provide functionalities in order to collect feedback from the user and sent to 

administrator through email. 

-Provide help facilities through connection to technical manual. 

-Provide search facilities in order to carry out search on the internal database. 

-Provide site map in the system for usability (considering easy navigation and 

usability issues). 

These goals and the scope of the system were identified in terms of the requirements 

(for this stage). The requirements listed below are the assumptions we made through 

discussion within the project. Some of these have been discussed with the customer at 

Central Science Laboratory. These requirements can be considered in three general 

categories: 

A. Usability requirements: specify the acceptable level of user performance and 

satisfaction with the system. 

B. System requirements: represent behaviour of the system in terms of what the 

system has to be capable of doing. It is directly interacted with user actions. 

C. Data requirements: specify the structure of the system and the data that must be 

available for processing to be successful [36]. 

Task Analysis: is part of usability requirement process. The tasks associated with the 

system can be performed by employees and managements. These tasks can be 
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categorised in three modules: Master Maintenance, Files and Data Maintenance and 

System Maintenance. 

 

Figure63: The menu chart showing the structure of the system 

 

-Master Maintenance: all data pertaining to “files” and “users” should be stored and 

maintained. The maintenance module should provide for addition, modification, 

viewing and deletion of these two databases information. Administration can perform 

addition, modification, deletion and viewing through application’s main user 

interfaces. Employees are not authorised to edit any existing data in the related tables. 

These tasks are performed only through administration window by authorizing the 

user first. The files and any toxicity data stored in the system should be updated 

frequently to store authority and validity. Information on the system should be 

checked regularly to make sure the system quality and integrity. Administration is 

also responsible for updating the interfaces if anything needed updating. He is also the 

recipient of the user’s feedback, which should be checked and dealt with regularly. 

-Files and data maintenance: specific authorised users (main members of the project 

or managements) are responsible to provide the files and make sure of the files 

integrity. 

-System Maintenance: includes backing up and restoring the data. Management and 

administrator operate all the related tasks. Employees are not authorized to perform 

these tasks. 

 

1.2 System Design 

 
This chapter focuses on system design issues related to front end design, screens or 

forms and database design and tables in terms of the input and presentation method 
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and structure. Since designing and implementing an interactive user interfaces that 

supports the users and administrative tasks was one of the core objectives for this 

project, the need for designing the interfaces for any user type even for those 

unfamiliar with the computers, became apparent.  

1.2.1 Database Design 

The database for the system was built on MySql server database, which runs on the 

university of Bradford Linux server. The database consists of two tables at the 

moment: “Users” table:  which consist of information about the users of the system. 

This table is hypothetical and is for experimental purposes. The details stored in this 

table are the details of some members of the project.  

“Files” table: this table contains information about number of Excel files stored on the 

server. These files contain toxicity data, which are provided by CSL.  

A. Description of the Entities 

Followings are the entities created in each table: 

Type Attributes Null Default Action 

 ID  smallint(5)  UNSIGNED No  auto_increment  Change  Drop  Primary  Index  Unique  Fulltext  

 FileName  varchar(55)   No    Change  Drop  Primary  Index  Unique  Fulltext  

 FileAuthor  varchar(35)   No    Change  Drop  Primary  Index  Unique  Fulltext  

 CreationDate  varchar(35)   No    Change  Drop  Primary  Index  Unique  Fulltext  

 Comments  mediumtext   No    Change  Drop  Primary  Index  Unique  Fulltext  

 
Keyname Type Cardinality Action Field 

PRIMARY PRIMARY 6  Drop Edit ID  

FileName  INDEX  None  Drop Edit FileName  

 

Type Attributes Null Default Action 

 rowID  smallint(5)  UNSIGNED No  auto_increment  Change  Drop  Primary  Index  Unique  Fulltext  

 lastname  varchar(35)   No    Change  Drop  Primary  Index  Unique  Fulltext  

 firstname  varchar(35)   No    Change  Drop  Primary  Index  Unique  Fulltext  

 email  varchar(55)   No    Change  Drop  Primary  Index  Unique  Fulltext  

 company  varchar(100)   No    Change  Drop  Primary  Index  Unique  Fulltext 

 
Keyname Type Cardinality Action Field 

PRIMARY PRIMARY 5  Drop Edit rowID  

email  UNIQUE  5  Drop Edit email  

lastname  

lastname  INDEX  None  Drop Edit 
firstname 

Figure64: All tables designed in SQL 
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1.2.2 Front End Design Issues 

Ease of use of the system and simplicity has been considered as main issues in 

designing the interfaces. Followings are the main elements of the design considered 

for the system:  

-Simple navigation is one of the important design elements. When running an 

application, the user should be able to navigate to the desired screen through main 

menu options. For that purpose the main options menu is implemented in all pages. 

Site map has also been implemented to provide quick accessibility to all the existing 

pages on the system.  

-Consistent layout is another design element. Layout of the screens is consistent 

throughout. Different attributes in each page have been grouped in sections with 

relevant headings for easier recognition. The heading’s font is also bigger than the 

item’s font in each section. In each screen the size of the text boxes is same 

throughout, and they have same alignment. The background colour of all the pages is 

consistent. Each page has a guidance description about itself to help the user to 

understand what sort of tasks he can perform and what type of functionality the page 

provides. All the pages contain same header, which explains the system.  

-Help and explanatory features have also been created to help user in case of 

confusion.  

-Minimal Input: to prevent user errors, the number of inputs in different screens has 

been very limited. Most of the information is displayed by the system through table 

display or selection menu.  Minimizing inputs also helps to ease memorising different 

elements on the screen. All together make the design easy to learn and understand.  

1.2.3 Forms/Screens 

There are eight main screens designed for this system to perform the various tasks for 

information management and retrieval. These are discussed below: 

Home page: this page contains information about the whole system and also provides 

links to following pages: View File Details, Online Databases and Pesticides 

Information Resources, Search Internal Databases of Files and Users, Access to 

Administration Page, Feedback Form, Help and Site map. 

View Files Details: displays a table of files details, which is created in MySql server 

database. 

Online Databases and Pesticide Information Resources: provides links to five online 

and public databases as follow: ITER (International Toxicity Estimated for Risk), 



 132 

IRIS (Integrated Risk Information System), HSDB (Hazardous Substances Data 

System), All Databases (search on all the above databases) and Liaison which is a 

database provided by CSL and subscription needed for access to the data. 

Search Internal Databases of Files and Users: this page provides links to two other 

screens: Search Users Database and Search Files Database. These pages perform 

search on these two databases. 

Access to Administration Page: provides links to three other pages: Add a new record, 

Modify record and Delete a record. The administration has access to these pages since 

access is through authentication. 

Feedback Form: provides an input screen for the user to write his feed back about the 

system. This form would be sent to the administration through email. 

Help: provides link to technical report. 

Sitemap: provides a map of all the pages on the site and show the site structure with 

the link to each individual page.  

Followings are the few screenshots of the main screens of the prototype. 

 

Figure65: Home page of the prototype 
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Figure66: Onlinedatabases page of the prototype 

 

 

Figure67: Searchinternal page of the prototype 
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Figure68: Loginform page of the prototype 

 

1.3 System Implementation 

 
This chapter explains the type of the architecture, techniques and development tools 

that have been used to implement the system and also evaluating these tools and 

techniques in terms of their appropriation for this project.  

1.3.1 Architecture 

The information retrieval and management system is consisting of a front-end 

application, which is created, in PHP5 and a back end database created in MySQL 

[37] server. The system architecture is Client-Server. 

-Client-Server Architecture: consists of one or more client applications 

communicating requests to another application, which is designated as the server [38].  

-Database Management System Architecture: this architecture is the best way to 

support multi-user environment. Database Management System is a software system 

that enables users to define, create and maintain the database and provides controlled 

access to this database. It allows users to specify the data type and structures and the 

constraints on the data to be stored in the database [39]. 

1.3.2 Development Tools 

Developments tools that have been used to implement the system are consisting of 

front-end interfaces for employees and managements and back-end database 
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accessible by management. The summary of these tools specifications and their users 

supporting features are discussed below: 

-Front-End Application: front-end interfaces were created using PHP5 and HTML.  

PHP5 is very powerful programming language specially running on the server.  

-Back-End Database: back-end database for this system was implemented in MySql 

server that is one of the leading database management systems available. It runs on 

the university server, which makes it easier to work parallel with PHP.  

1.3.3 Testing Strategy 

The main purpose of the testing strategy for this system was to confirm that 

executable code exactly meet its objectives and validate what has been completed is 

what the system goals specified. The followings are the main steps taken to check the 

implementation for conformance with the system specification: 

1) Unit Testing: each individual component has been tested to verify they operated as 

it is specified in the system design. In this respect following components have been 

tested:  

-Testing Forms: all the links and forms have been tested. At this moment the main 

functionality lays on administration tasks and also searches Excel files (which is 

implemented on local host). Due to the nature of the development with PHP and 

HTML, each page is run in the browser to assure the correct coding.  

2) System Testing: the whole system functionality has been tested to make sure all the 

forms and database display and update accurate data accordingly. To satisfy this 

purpose, database was loaded with appropriate data, each form was tested to make 

sure this data can be “displayed”, “updated” and “deleted” also this data is imported 

properly and that each of the controls was bound to the proper database field. 

1.4 Summary and Conclusions 

 

The motivation behind the design and implementation of this prototype was to 

provide a sample data integration system for toxicity data. Since the variation in data 

representation on different sources causes data accessibility and processing problem. 

For this prototype three main stages have been processed: analysis, design and 

implementation. Through analysis stage, issues relate to user requirement have been 

considered such as system usability. Tasks chart also has been designed to show the 

graphical view of the whole system. There are some designs issues form human 

computer interaction point of view, such as simple navigation, consistent layout and 
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help feature which have been considered at this stage. The tools and application used 

for implementation were MySql database and PHP. These applications have been 

chosen for their simplicity of implementation and process and ease of run on any 

server and platform. The prototype is accessible internally and externally. 
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