Fire performance of innovative steel-concrete composite columns using high strength steels
View/ Open
Main article (2.051Mb)
Download
Publication date
2016Keyword
Fire resistanceSteel-concrete composite sections
Concrete-filled steel tubular columns
Concrete-filled double steel columns
Embedded steel profiles
High strength steel
Rights
© 2016 Elsevier. Reproduced in accordance with the publisher's self-archiving policy. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Peer-Reviewed
YesOpen Access status
openAccessAccepted for publication
2016-04-14
Metadata
Show full item recordAbstract
This paper presents the results of a numerical investigation on strategies for enhancing the fire behaviour of concrete-filled steel tubular (CFST) columns by using inner steel profiles such as circular hollow sections (CHS), HEB profiles or embedded steel core profiles. A three-dimensional finite element model is developed for that purpose, which is capable for representing the various types of sections studied and the nonlinear behaviour of the materials at elevated temperatures. High strength steel is considered in the numerical model, as a possible way to lengthen the fire endurance. The numerical model is validated against experimental results available in the literature for various types of steel-concrete composite sections using inner steel profiles, obtaining satisfactory results. Based on the developed numerical model, parametric studies are conducted for investigating the influence of the cross-sectional geometry and the steel grade of the inner profiles on the fire performance of these composite columns, for eventually providing some practical recommendations.Version
Accepted manuscriptCitation
Espinos A, Romero ML and Lam D (2016) Fire performance of innovative steel-concrete composite columns using high strength steels. Thin Walled Structures. 106:113-128.Link to Version of Record
https://doi.org/10.1016/j.tws.2016.04.014Type
Articleae974a485f413a2113503eed53cd6c53
https://doi.org/10.1016/j.tws.2016.04.014
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
Corrosion of steel reinforcement in concrete. Corrosion of mild steel bars in concrete and its effect on steel-concrete bond strength.Ashour, Ashraf; Youseffi, Mansour; Abosrra, L.R. (University of BradfordSchool of Engineering, Design and Technology, 2012-04-19)This thesis reports on the research outcome of corrosion mechanism and corrosion rate of mild steel in different environments (saline, alkaline solutions and concrete media) using potentiodynamic polarization technique. The study also included the effect of corrosion on bond strength between reinforcing steel and concrete using pull-out test. Corrosion of mild steel and 316L stainless steel with different surface conditions in 1, 3 and 5% saline (NaCl + Distilled water) was investigated. Specimens ground with 200 and 600 grit silicon carbide grinding paper as well as 1¿m surface finish (polished with 1¿m diamond paste) were tested. In case of mild steel specimens, reduction in surface roughness caused increase in corrosion rate, while in 316L stainless steel corrosion rate decreased as the surface roughness improved. Metallographic examination of corroded specimens confirmed breakdown of passive region due to pitting corrosion. Corrosion of mild steel was also investigated in alkaline solution (saturated calcium hydroxide, pH =12.5) contaminated with 1, 3 and 5% saline. A series of corrosion experiments were also conducted to examine the efficiency of various concentrations of calcium nitrite (CN) on corrosion behaviour of both as-received and polished mild steel in alkaline solution containing 3% saline after 1 hour and 28 days of exposure. Corrosion rate was higher for the as-received than polished mild steel surface under the same testing conditions in NaCl alkaline solution with and without nitrites due to the effect of surface roughness. Morphology investigation of mild steel specimens in alkaline solution ii containing chlorides and nitrites showed localized pits even at nitrite concentration equal to chloride concentration. Corrosion of steel bars embedded in concrete having compressive strengths of 20, 30 and 46MPa was also investigated. The effect of 2 and 4% CN by weight of cement on corrosion behaviour of steel bar in low and high concrete strengths specimens were also studied. All reinforced concrete specimens were immersed in 3% saline solution for three different periods of 1, 7 and 15 days. In order to accelerate the chemical reactions, an external current of 0.4A was applied. Corrosion rate was measured by retrieving electrochemical information from polarization tests. Pull-out tests of reinforced concrete specimens were then conducted to assess the corroded steel/concrete bond characteristics. Experimental results showed that corrosion rate of steel bars and bond strength were dependent on concrete strength, amount of CN and acceleration corrosion period. As concrete strength increased from 20 to 46MPa, corrosion rate of embedded steel decreased. First day of corrosion acceleration showed a slight increase in steel/concrete bond strength, whereas severe corrosion due to 7 and 15 days corrosion acceleration significantly reduced steel/concrete bond strength. Addition of only 2% CN did not give corrosion protection for steel reinforcement in concrete with 20MPa strength at long time of exposure. However, the combination of good quality concrete and addition of CN appear to be a desirable approach to reduce the effect of chloride induced corrosion of steel reinforcement. At less time of exposure, specimens without CN showed higher bond strength in both concrete mixes than those with CN. After 7 days of corrosion acceleration, the higher concentration of CN gave higher bond strength in both concrete mixes. The same trend was observed at 15 days of corrosion acceleration except for the specimen with 20MPa compressive strength and 2% CN which recorded the highest deterioration in bond strength.
-
Experimental investigation on flexural performance of steel-UHPC composite beams with steel shear keysZhang, Z.; Ashour, Ashraf; Ge, W.; Ni, Z.; Jiang, H.; Li, S. (2024-08)Test results of steel-ultra high performance concrete (UHPC) composite beams with welded steel shear keys (SSKs) under four-point bending are presented in this paper. The objective of the investigation is to reduce the self-weight and manufacturing cost of large-span structures. The study investigates the effects of strength of concrete slab, type, spacing and size of SSK, and concrete slab height and width on flexural behavior of composite beams. The experimental results demonstrate that enhancing concrete strength, reducing SSK spacing, increasing concrete slab size, and using large-size SSK can all significantly enhance the flexural performance. The composite beams with welded SSK exhibit a maximum relative slip of less than 4 mm, while the counterpart with welded bolts has a maximum relative slip greater than 4 mm. The study shows that the welded SSK is more effective than welded bolts in improving the interface shear performance of composite beams and improving the stiffness and load capacity. Additionally, the study defines four failure modes of steel-UHPC composite beams, and the formulae for flexural capacity is developed based on the reasonable basic assumptions. The calculated results fit well with the tested results. The research findings can be provided as a technical support for the design and application of steel-UHPC composite beams.
-
Design and processing of low alloy high carbon steels by powder metallurgy. P/M processing and liquid phase sintering of newly designed low-alloy high carbon steels based on Fe-0.85Mo-C-Si-Mn with high toughness and strength.Wronski, Andrew S.; Abosbaia, Alhadi A.S. (University of BradfordSchool of Engineering, Design and Technology, 2011-03-31)The work presented has the ultimate aim to increase dynamic mechanical properties by improvements in density and optimisation of microstructure of ultra high carbon PM steels by careful selection of processes, i.e. mixing, binding, alloying, heating profile and intelligent heat treatment. ThermoCalc modelling was employed to predict liquid phase amounts for two different powder grades, Astaloy 85Mo or Astaloy CrL with additive elements such as (0.4-0.6wt%)Si, (1.2-1.4wt%)C and (1-1.5wt%)Mn, in the sintering temperature range 1285-1300ºC and such powder mixes were pressed and liquid phase sintered. In high-C steels carbide networks form at the prior particle boundaries, leading to brittleness, unless the steel is heat-treated. To assist the breaking up of these continuous carbide networks, 0.4-0.6% silicon, in the form of silicon carbide, was added. The water gas shift reaction (C + H2O = CO + H2, start from ~500ºC) and Boudouard reaction (from ~500ºC complete ~930ºC) form CO gas in the early part of sintering and can lead to large porosity, which lowers mechanical properties. With the use of careful powder drying, low dew point atmospheres and optimisation of heating profiles, densities in excess of 7.70g/cm3 were attained. The brittle microstructure, containing carbide networks and free of cracks, is transformed by intelligent heat treatment to a tougher one of ferrite plus sub-micron spheroidised carbides. This gives the potential for production of components, which are both tough and suitable for sizing to improve dimensional tolerance. Yield strengths up to 410 MPa, fracture strengths up to 950 MPa and strains of up to 16 % were attained. Forging experiments were subsequently carried out for spheroidised specimens of Fe-0.85Mo+06Si+1.4C, for different strain rates of 10-3, 10-2, 10-1 and 1sec-1 and heated in argon to 700¿C, density ~7.8g/cm3 and 769 MPa yield strength were obtained.