BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Energy, exergy and environmental analyses of conventional, steam and CO2-enhanced rice straw gasification

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    mujtaba_energy_exergy.pdf (1.058Mb)
    Download
    Publication date
    2016-01-01
    Author
    Parvez, A.M.
    Mujtaba, Iqbal M.
    Wu, T.
    Keyword
    CO2-enhanced gasification; Conventional gasification; Energy analysis; Exergy analysis; Environmental analysis; Biomass
    Rights
    © 2016 Elsevier Ltd. Full-text reproduced in accordance with the publisher’s self-archiving policy. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
    Peer-Reviewed
    Yes
    
    Metadata
    Show full item record
    Abstract
    In this study, air, steam and CO2-enhanced gasification of rice straw was simulated using Aspen PlusTM simulator and compared in terms of their energy, exergy and environmental impacts. It was found that the addition of CO2 had less impact on syngas yield compared with gasification temperature. At lower CO2/Biomass ratios (below 0.25), gasification system efficiency (GSE) for both conventional and CO2-enhanced gasification was below 22.1%, and CO2-enhanced gasification showed a lower GSE than conventional gasification. However at higher CO2/Biomass ratios, CO2-enhanced gasification demonstrated higher GSE than conventional gasification. For CO2-enhanced gasification, GSE continued to increase to 58.8% when CO2/Biomass was raised to 0.87. In addition, it was found that syngas exergy increases with CO2 addition, which was mainly due to the increase in physical exergy. Chemical exergy was 2.05 to 4.85 times higher than physical exergy. The maximum exergy efficiency occurred within the temperature range of 800 oC to 900 oC because syngas exergy peaked in this range. For CO2-enhanced gasification, exergy efficiency was found to be more sensitive to temperature than CO2/Biomass ratios. In addition, the preliminary environmental analysis showed that CO2-enhanced gasification resulted in significant environmental benefits compared with stream gasification. However improved assessment methodologies are still needed to better evaluate the advantages of CO2 utilization.
    URI
    http://hdl.handle.net/10454/7931
    Version
    Accepted Manuscript
    Citation
    Parvez AM, Mujtaba IM and Wu T (2016) Energy, exergy and environmental analyses of conventional, steam and CO2-enhanced rice straw gasification. Energy. 94: 579-588.
    Link to publisher’s version
    http://dx.doi.org/10.1016/j.energy.2015.11.022
    Type
    Article
    Collections
    Engineering and Informatics Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.