BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Enhancement of Natural Convection Heat Transfer within Closed Enclosure Using Parallel Fins

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    Farog-Hussain-Qi-2015.pdf (391.0Kb)
    Download
    Publication date
    2015-03
    Author
    Gdhaidh, Farouq A.S.
    Hussain, Khalid
    Qi, Hong Sheng
    Keyword
    Chips limit temperature, Closed enclosure, Natural convection, Parallel plate, Single phase liquid, Heat transfer
    Rights
    © 2015 WASET. Reproduced in accordance with the publisher's self-archiving policy. This work is licensed under a Creative Commons Attribution Licence (http://creativecommons.org/licenses/by/3.0/)
    Peer-Reviewed
    yes
    
    Metadata
    Show full item record
    Abstract
    A numerical study of natural convection heat transfer in water filled cavity has been examined in 3-D for single phase liquid cooling system by using an array of parallel plate fins mounted to one wall of a cavity. The heat generated by a heat source represents a computer CPU with dimensions of 37.5∗37.5mm mounted on substrate. A cold plate is used as a heat sink installed on the opposite vertical end of the enclosure. The air flow inside the computer case is created by an exhaust fan. A turbulent air flow is assumed and k-ε model is applied. The fins are installed on the substrate to enhance the heat transfer. The applied power energy range used is between 15 - 40W. In order to determine the thermal behaviour of the cooling system, the effect of the heat input and the number of the parallel plate fins are investigated. The results illustrate that as the fin number increases the maximum heat source temperature decreases. However, when the fin number increases to critical value the temperature start to increase due to the fins are too closely spaced and that cause the obstruction of water flow. The introduction of parallel plate fins reduces the maximum heat source temperature by 10% compared to the case without fins. The cooling system maintains the maximum chip temperature at 64.68°C when the heat input was at 40W that is much lower than the recommended computer chips limit temperature of no more than 85°C and hence the performance of the CPU is enhanced.
    URI
    http://hdl.handle.net/10454/7920
    Version
    published version paper
    Citation
    Gdhaidh FA, Hussain K and Qi HS (2015) Enhancement of Natural Convection Heat Transfer within Closed Enclosure Using Parallel Fins. International Journal of Mechanical, Aerospace, Industrial and Mechatronics Engineering, 9 (3): 355-360.
    Link to publisher’s version
    http://scholar.waset.org/1999.8/10000695
    Type
    Article
    Collections
    Engineering and Informatics Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.