Show simple item record

dc.contributor.authorVourdas, Apostolos*
dc.date.accessioned2016-01-11T14:29:00Z
dc.date.available2016-01-11T14:29:00Z
dc.date.issued2014-08-12
dc.identifier.citationVourdas A (2014) Lower and upper probabilities in the distributive lattice of subsystems. Journal of Physics A: Mathematical and Theoretical. 47(34): 345203.en_US
dc.identifier.urihttp://hdl.handle.net/10454/7660
dc.descriptionyesen_US
dc.description.abstractThe set of subsystems ∑ (m) of a finite quantum system ∑(n) (with variables in Ζ(n)) together with logical connectives, is a distributive lattice. With regard to this lattice, the ℓ(m | ρn) = Tr (𝔓(m) ρn ) (where 𝔓(m) is the projector to ∑(m)) obeys a supermodularity inequality, and it is interpreted as a lower probability in the sense of the Dempster–Shafer theory, and not as a Kolmogorov probability. It is shown that the basic concepts of the Dempster–Shafer theory (lower and upper probabilities and the Dempster multivaluedness) are pertinent to the quantum formalism of finite systems.
dc.language.isoenen_US
dc.relation.isreferencedbyhttp://dx.doi.org/10.1088/1751-8113/47/34/345203en_US
dc.rights© 2014 IOP Publishing. Reproduced in accordance with the publisher's self-archiving policy.en_US
dc.subjectProbabilities; Lower and upper probabilities; Distributive lattice; Subsystems; Quantum systemsen_US
dc.titleLower and upper probabilities in the distributive lattice of subsystemsen_US
dc.status.refereedYesen_US
dc.date.Accepted2014-07-07
dc.typeArticleen_US
dc.type.versionAccepted Manuscripten_US
refterms.dateFOA2018-07-25T13:21:13Z


Item file(s)

Thumbnail
Name:
JPA2014.pdf
Size:
272.2Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record