BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Transcriptional gene silencing of kallikrein 5 and kallikrein 7 using siRNA prevents epithelial cell detachment induced by alkaline shock in an in vitro model of eczema.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Publication date
    2012-04
    Author
    Britland, Stephen T.
    Hoyle, Milli
    Keyword
    siRNA; Eczema; HaCaT; Kallikrein; Corneodesmosomes; Transcriptional gene silencing; Epithelial cells; Eczema
    Peer-Reviewed
    yes
    
    Metadata
    Show full item record
    Abstract
    Eczema is widely considered to be an exacerbation of alkaline stress to the skin. Epidermal barrier dysfunction is a feature of eczema pathology, which predisposes affected individuals to distressing morbid symptoms. At least two serine proteases, stratum corneum chymotryptic enzyme (kallikrein 7 [KLK7]) and stratum corneum tryptic enzyme (kallikrien 5 [KLK5]), have increased activity levels in eczematous lesions and both have been implicated in the destruction of corneodesomosomes, which are crucial to epidermal integrity. The present in vitro study investigated whether transcriptional gene silencing after siRNA transfection could influence the activity of these signature enzymes in an in vitro model of eczema induced by alkaline shock. HaCaT epithelial cells were subjected to alkaline stress by the addition of 1,1,3,3-tetramethyl guanidine “superbase” (TMG) to the culture media. The culture media were subsequently tested for chymotryspin, trypsin, plasmin, and urokinase activity using colorimetric peptide assays and for reactive oxygen species using WST1 cell viability reagent. Cells that had been transfected with small interfering ribonucleic acid (siRNA) against KLK5 and KLK7 for 24 h before alkaline shock did not exhibit the increase in serine protease levels observed in untreated controls. Moreover, an endpoint MTT assay (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) confirmed that detachment of cells from the culture substrate observed in alkaline-stressed cells did not occur in siRNA-treated cells. This in vitro study has established the proof-of-principle that siRNA therapy appears to mitigate the consequences of alkaline shock to the serine protease-associated fragility of epithelial cells that is characteristic of eczema.
    URI
    http://hdl.handle.net/10454/7440
    Version
    No full-text available in the repository
    Citation
    Britland S and Hoyle M (2012) Transcriptional gene-silencing of kallikreins 5 and 7 using siRNA prevents epithelial cell detachment induced by alkaline shock in an in vitro model of eczema. Biotechnology Progress, 28 (2): 485–489.
    Link to publisher’s version
    http://dx.doi.org/10.1002/btpr.736
    Type
    Article
    Collections
    Life Sciences Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.