BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Blunted epidermal l-tryptophan metabolism in vitiligo affects immune response and ROS scavenging by Fenton chemistry, part 1: epidermal H2O2/ONOO−-mediated stress abrogates tryptophan hydroxylase and dopa decarboxylase activities, leading to low serotonin and melatonin levels.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Publication date
    2012-06
    Author
    Schallreuter, Karin U.
    Salem, Mohamed M.A.
    Gibbons, Nick C.
    Martinez, A.
    Slominski, Radomir
    Lüdemann, J.
    Rokos, Hartmut
    Keyword
    Vitiligo; Epidermal l-tryptophan metabolism; Melatonin; Immune response signaling; ROS scavenging; Hydrogen peroxide (H2O2); Fenton chemistry; Peroxynitrite; MITF; Calcium channel; DNA; Oxidative stress
    Peer-Reviewed
    yes
    
    Metadata
    Show full item record
    Abstract
    Vitiligo is characterized by a progressive loss of inherited skin color. The cause of the disease is still unknown. To date, there is accumulating in vivo and in vitro evidence for massive oxidative stress via hydrogen peroxide (H2O2) and peroxynitrite (ONOO−) in the skin of affected individuals. Autoimmune etiology is the favored theory. Since depletion of the essential amino acid l-tryptophan (Trp) affects immune response mechanisms, we here looked at epidermal Trp metabolism via tryptophan hydroxylase (TPH) with its downstream cascade, including serotonin and melatonin. Our in situ immunofluorescence and Western blot data reveal significantly lower TPH1 expression in patients with vitiligo. Expression is also low in melanocytes and keratinocytes under in vitro conditions. Although in vivo Fourier transform-Raman spectroscopy proves the presence of 5-hydroxytryptophan, epidermal TPH activity is completely absent. Regulation of TPH via microphthalmia-associated transcription factor and l-type calcium channels is severely affected. Moreover, dopa decarboxylase (DDC) expression is significantly lower, in association with decreased serotonin and melatonin levels. Computer simulation supports H2O2/ONOO−-mediated oxidation/nitration of TPH1 and DDC, affecting, in turn, enzyme functionality. Taken together, our data point to depletion of epidermal Trp by Fenton chemistry and exclude melatonin as a relevant contributor to epidermal redox balance and immune response in vitiligo.
    URI
    http://hdl.handle.net/10454/7436
    Version
    No full-text available in the repository
    Citation
    Schallreuter KU, Salem MA, Gibbons NC, Martinez A, Slominski R, Lüdemann J and Rokos H. Blunted epidermal L-tryptophan metabolism in vitiligo affects immune response and ROS scavenging by Fenton chemistry, part 1: Epidermal H2O2/ONOO(-)-mediated stress abrogates tryptophan hydroxylase and dopa decarboxylase activities, leading to low serotonin and melatonin levels, FASEB Journal, 26 (6): 2457-70.
    Link to publisher’s version
    http://dx.doi.org/10.1096/fj.11-197137
    Type
    Article
    Collections
    Life Sciences Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.