BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Basic evidence for epidermal H2O2/ONOO--mediated oxidation/nitration in segmental vitiligo is supported by repigmentation of skin and eyelashes after reduction of epidermal H2O2 with topical NB-UVB-activated pseudocatalase PC-KUS

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Publication date
    2013-08
    Author
    Schallreuter, Karin U.
    Salem, Mohamed M.A.
    Holtz, Sarah
    Panske, Angela
    Keyword
    FT-Raman spectroscopy; ROS; RNS; MSRA; MSRB; Thioredoxin reductase; Depigmentation; Human skin colour; H2O2/ONOO− oxidation; Pseudocatalase PC-KUS
    Peer-Reviewed
    yes
    
    Metadata
    Show full item record
    Abstract
    Nonsegmental vitiligo (NSV) is characterized by loss of inherited skin color. The cause of the disease is still unknown despite accumulating in vivo and in vitro evidence of massive epidermal oxidative stress via H2O2 and peroxynitrite (ONOO−) in affected individuals. The most favored hypothesis is based on autoimmune mechanisms. Strictly segmental vitiligo (SSV) with dermatomal distribution is a rare entity, often associated with stable outcome. Recently, it was documented that this form can be associated with NSV (mixed vitiligo). We here asked the question whether ROS and possibly ONOO− could be players in the pathogenesis of SSV. Our in situ results demonstrate for the first time epidermal biopterin accumulation together with significantly decreased epidermal catalase, thioredoxin/thioreoxin reductase, and MSRA/MSRB expression. Moreover, we show epidermal ONOO− accumulation. In vivo FT-Raman spectroscopy reveals the presence of H2O2, methionine sulfoxide, and tryptophan metabolites; i.e., N-formylkynurenine and kynurenine, implying Fenton chemistry in the cascade (n=10). Validation of the basic data stems from successful repigmentation of skin and eyelashes in affected individuals, regardless of SSV or segmental vitiligo in association with NSV after reduction of epidermal H2O2 (n=5). Taken together, our contribution strongly supports H2O2/ONOO-mediated stress in the pathogenesis of SSV. Our findings offer new treatment intervention for lost skin and hair color.—Schallreuter, K. U., Salem, M. A. E. L., Holtz, S., Panske, A. Basic evidence for epidermal H2O2/ONOO−-mediated oxidation/nitration in segmental vitiligo is supported by repigmentation of skin and eyelashes after reduction of epidermal H2O2 with topical NB-UVB-activated pseudocatalase PC-KUS.
    URI
    http://hdl.handle.net/10454/7243
    Version
    No full-text available in the repository
    Citation
    Schallreuter KU, Salem MA, Holtz S and Panske A (2013) Basic evidence for epidermal H2O2/ONOO--mediated oxidation/nitration in segmental vitiligo is supported by repigmentation of skin and eyelashes after reduction of epidermal H2O2 with topical NB-UVB-activated pseudocatalase PC-KUS. FASEB Journal, 27 (8): 3113-3122.
    Link to publisher’s version
    http://dx.doi.org/10.1096/fj.12-226779
    Type
    Article
    Collections
    Life Sciences Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.