Performance and Security Trade-offs in High-Speed Networks. An investigation into the performance and security modelling and evaluation of high-speed networks based on the quantitative analysis and experimentation of queueing networks and generalised stochastic Petri nets.

View/ Open
Phd-Final_27-11-2013.pdf (2.805Mb)
Download
Publication date
2014-05-30Author
Miskeen, Guzlan M.A.Supervisor
Kouvatsos, Demetres D.Keyword
PerformanceSecurity
High-speed network
Queueing network
Generalised stochastic
Petri net
Network security
Rights

The University of Bradford theses are licenced under a Creative Commons Licence.
Institution
University of BradfordDepartment
Department of ComputingAwarded
2013
Metadata
Show full item recordAbstract
Most used security mechanisms in high-speed networks have been adopted without adequate quantification of their impact on performance degradation. Appropriate quantitative network models may be employed for the evaluation and prediction of ¿optimal¿ performance vs. security trade-offs. Several quantitative models introduced in the literature are based on queueing networks (QNs) and generalised stochastic Petri nets (GSPNs). However, these models do not take into consideration Performance Engineering Principles (PEPs) and the adverse impact of traffic burstiness and security protocols on performance. The contributions of this thesis are based on the development of an effective quantitative methodology for the analysis of arbitrary QN models and GSPNs through discrete-event simulation (DES) and extended applications into performance vs. security trade-offs involving infrastructure and infrastructure-less high-speed networks under bursty traffic conditions. Specifically, investigations are carried out focusing, for illustration purposes, on high-speed network routers subject to Access Control List (ACL) and also Robotic Ad Hoc Networks (RANETs) with Wired Equivalent Privacy (WEP) and Selective Security (SS) protocols, respectively. The Generalised Exponential (GE) distribution is used to model inter-arrival and service times at each node in order to capture the traffic burstiness of the network and predict pessimistic ¿upper bounds¿ of network performance. In the context of a router with ACL mechanism representing an infrastructure network node, performance degradation is caused due to high-speed incoming traffic in conjunction with ACL security computations making the router a bottleneck in the network. To quantify and predict the trade-off of this degradation, the proposed quantitative methodology employs a suitable QN model consisting of two queues connected in a tandem configuration. These queues have single or quad-core CPUs with multiple-classes and correspond to a security processing node and a transmission forwarding node. First-Come-First-Served (FCFS) and Head-of-the-Line (HoL) are the adopted service disciplines together with Complete Buffer Sharing (CBS) and Partial Buffer Sharing (PBS) buffer management schemes. The mean response time and packet loss probability at each queue are employed as typical performance metrics. Numerical experiments are carried out, based on DES, in order to establish a balanced trade-off between security and performance towards the design and development of efficient router architectures under bursty traffic conditions. The proposed methodology is also applied into the evaluation of performance vs. security trade-offs of robotic ad hoc networks (RANETs) with mobility subject to Wired Equivalent Privacy (WEP) and Selective Security (SS) protocols. WEP protocol is engaged to provide confidentiality and integrity to exchanged data amongst robotic nodes of a RANET and thus, to prevent data capturing by unauthorised users. WEP security mechanisms in RANETs, as infrastructure-less networks, are performed at each individual robotic node subject to traffic burstiness as well as nodal mobility. In this context, the proposed quantitative methodology is extended to incorporate an open QN model of a RANET with Gated queues (G-Queues), arbitrary topology and multiple classes of data packets with FCFS and HoL disciplines under bursty arrival traffic flows characterised by an Interrupted Compound Poisson Process (ICPP). SS is included in the Gated-QN (G-QN) model in order to establish an ¿optimal¿ performance vs. security trade-off. For this purpose, PEPs, such as the provision of multiple classes with HoL priorities and the availability of dual CPUs, are complemented by the inclusion of robot¿s mobility, enabling realistic decisions in mitigating the performance of mobile robotic nodes in the presence of security. The mean marginal end-to-end delay was adopted as the performance metric that gives indication on the security improvement. The proposed quantitative methodology is further enhanced by formulating an advanced hybrid framework for capturing ¿optimal¿ performance vs. security trade-offs for each node of a RANET by taking more explicitly into consideration security control and battery life. Specifically, each robotic node is represented by a hybrid Gated GSPN (G-GSPN) and a QN model. In this context, the G-GSPN incorporates bursty multiple class traffic flows, nodal mobility, security processing and control whilst the QN model has, generally, an arbitrary configuration with finite capacity channel queues reflecting ¿intra¿-robot (component-to-component) communication and ¿inter¿-robot transmissions. Two theoretical case studies from the literature are adapted to illustrate the utility of the QN towards modelling ¿intra¿ and ¿inter¿ robot communications. Extensions of the combined performance and security metrics (CPSMs) proposed in the literature are suggested to facilitate investigating and optimising RANET¿s performance vs. security trade-offs. This framework has a promising potential modelling more meaningfully and explicitly the behaviour of security processing and control mechanisms as well as capturing the robot¿s heterogeneity (in terms of the robot architecture and application/task context) in the near future (c.f. [1]. Moreover, this framework should enable testing robot¿s configurations during design and development stages of RANETs as well as modifying and tuning existing configurations of RANETs towards enhanced ¿optimal¿ performance and security trade-offs.Type
ThesisQualification name
PhDCollections
Related items
Showing items related by title, author, creator and subject.
-
Network Coding for Multihop Wireless Networks: Joint Random Linear Network Coding and Forward Error Correction with Interleaving for Multihop Wireless NetworksHu, Yim Fun; Pillai, Prashant; Susanto, Misfa (University of BradfordFaculty of Engineering and Informatics. School of Electrical Engineering and Computer Science, 2015)Optimising the throughput performance for wireless networks is one of the challenging tasks in the objectives of communication engineering, since wireless channels are prone to errors due to path losses, random noise, and fading phenomena. The transmission errors will be worse in a multihop scenario due to its accumulative effects. Network Coding (NC) is an elegant technique to improve the throughput performance of a communication network. There is the fact that the bit error rates over one modulation symbol of 16- and higher order- Quadrature Amplitude Modulation (QAM) scheme follow a certain pattern. The Scattered Random Network Coding (SRNC) system was proposed in the literature to exploit the error pattern of 16-QAM by using bit-scattering to improve the throughput of multihop network to which is being applied the Random Linear Network Coding (RLNC). This thesis aims to improve further the SRNC system by using Forward Error Correction (FEC) code; the proposed system is called Joint RLNC and FEC with interleaving. The first proposed system (System-I) uses Convolutional Code (CC) FEC. The performances analysis of System-I with various CC rates of 1/2, 1/3, 1/4, 1/6, and 1/8 was carried out using the developed simulation tools in MATLAB and compared to two benchmark systems: SRNC system (System-II) and RLNC system (System- III). The second proposed system (System-IV) uses Reed-Solomon (RS) FEC code. Performance evaluation of System IV was carried out and compared to three systems; System-I with 1/2 CC rate, System-II, and System-III. All simulations were carried out over three possible channel environments: 1) AWGN channel, 2) a Rayleigh fading channel, and 3) a Rician fading channel, where both fading channels are in series with the AWGN channel. The simulation results show that the proposed system improves the SRNC system. How much improvement gain can be achieved depends on the FEC type used and the channel environment.
-
An Exposition of Performance-Security Trade-offs in RANETs Based on Quantitative Network ModelsMiskeen, Guzlan M.A.; Kouvatsos, Demetres D.; Habib Zadeh, Esmaeil (2013)Security mechanisms, such as encryption and authentication protocols, require extra computing resources and therefore, have an adverse effect upon the performance of robotic mobile wireless ad hoc networks (RANETs). Thus, an optimal performance and security trade-off should be one of the main aspects that should be taken into consideration during the design, development, tuning and upgrading of such networks. In this context, an exposition is initially undertaken on the applicability of Petri nets (PNs) and queueing networks (QNs) in conjunction with their generalisations and hybrid integrations as robust quantitative modelling tools for the performance analysis of discrete flow systems, such as computer systems, communication networks and manufacturing systems. To overcome some of the inherent limitations of these models, a novel hybrid modelling framework is explored for the quantitative evaluation of RANETs, where each robotic node is represented by an abstract open hybrid G-GSPN_QN model with head-of-line priorities, subject to combined performance and security metrics (CPSMs). The proposed model focuses on security processing and state-based control and it is based on an open generalised stochastic PN (GSPN) with a gated multi-class 'On-Off' traffic and mobility model. Moreover, it employs a power consumption model and is linked in tandem with an arbitrary QN consisting of finite capacity channel queues with blocking for 'intra' robot component-to-component communication and 'inter' robot-to-robot transmission. Conclusions and future research directions are included.
-
Performance modelling and analysis of congestion control mechanisms for communication networks with quality of service constraints. An investigation into new methods of controlling congestion and mean delay in communication networks with both short range dependent and long range dependent traffic.Woodward, Mike E.; Fares, Rasha H.A. (University of BradfordDepartment of Computing, School of Computing, Informatics and Media, 2012-05-24)Active Queue Management (AQM) schemes are used for ensuring the Quality of Service (QoS) in telecommunication networks. However, they are sensitive to parameter settings and have weaknesses in detecting and controlling congestion under dynamically changing network situations. Another drawback for the AQM algorithms is that they have been applied only on the Markovian models which are considered as Short Range Dependent (SRD) traffic models. However, traffic measurements from communication networks have shown that network traffic can exhibit self-similar as well as Long Range Dependent (LRD) properties. Therefore, it is important to design new algorithms not only to control congestion but also to have the ability to predict the onset of congestion within a network. An aim of this research is to devise some new congestion control methods for communication networks that make use of various traffic characteristics, such as LRD, which has not previously been employed in congestion control methods currently used in the Internet. A queueing model with a number of ON/OFF sources has been used and this incorporates a novel congestion prediction algorithm for AQM. The simulation results have shown that applying the algorithm can provide better performance than an equivalent system without the prediction. Modifying the algorithm by the inclusion of a sliding window mechanism has been shown to further improve the performance in terms of controlling the total number of packets within the system and improving the throughput. Also considered is the important problem of maintaining QoS constraints, such as mean delay, which is crucially important in providing satisfactory transmission of real-time services over multi-service networks like the Internet and which were not originally designed for this purpose. An algorithm has been developed to provide a control strategy that operates on a buffer which incorporates a moveable threshold. The algorithm has been developed to control the mean delay by dynamically adjusting the threshold, which, in turn, controls the effective arrival rate by randomly dropping packets. This work has been carried out using a mixture of computer simulation and analytical modelling. The performance of the new methods that have