Now showing items 1-20 of 2310

    • Deep Quantile Regression for Unsupervised Anomaly Detection in Time-Series

      Tambuwal, Ahmad I.; Neague, Daniel (Springer, 2021-09-30)
      Time-series anomaly detection receives increasing research interest given the growing number of data-rich application domains. Recent additions to anomaly detection methods in research literature include deep neural networks (DNNs: e.g., RNN, CNN, and Autoencoder). The nature and performance of these algorithms in sequence analysis enable them to learn hierarchical discriminative features and time-series temporal nature. However, their performance is affected by usually assuming a Gaussian distribution on the prediction error, which is either ranked, or threshold to label data instances as anomalous or not. An exact parametric distribution is often not directly relevant in many applications though. This will potentially produce faulty decisions from false anomaly predictions due to high variations in data interpretation. The expectations are to produce outputs characterized by a level of confidence. Thus, implementations need the Prediction Interval (PI) that quantify the level of uncertainty associated with the DNN point forecasts, which helps in making better-informed decision and mitigates against false anomaly alerts. An effort has been made in reducing false anomaly alerts through the use of quantile regression for identification of anomalies, but it is limited to the use of quantile interval to identify uncertainties in the data. In this paper, an improve time-series anomaly detection method called deep quantile regression anomaly detection (DQR-AD) is proposed. The proposed method go further to used quantile interval (QI) as anomaly score and compare it with threshold to identify anomalous points in time-series data. The tests run of the proposed method on publicly available anomaly benchmark datasets demonstrate its effective performance over other methods that assumed Gaussian distribution on the prediction or reconstruction cost for detection of anomalies. This shows that our method is potentially less sensitive to data distribution than existing approaches.
    • Energy Efficient RF for UDNs

      Abdulkhaleq, Ahmed M.; Sajedin, M.; Al-Yasir, Yasir I.A.; Mejillones, S.C.; Parchin, N.O.; Rayit, A.; Elfergani, Issa T.; Rodriguez, J.; Abd-Alhameed, Raed A.; Oldoni, M.; et al. (Springer, 2021-11)
      Multi-standard RF front-end is a critical part of legacy and future emerging mobile architectures, where the size, the efficiency, and the integration of the elements in the RF front-end will affect the network key performance indicators (KPIs). This chapter discusses power amplifier design for both handset and base station applications for 5G and beyond. Also, this chapter deals with filter-antenna design for 5G applications that include a synthesis-based approach, differentially driven reconfigurable planar filter-antenna, and an insensitive phased array antenna with air-filled slot-loop resonators.
    • A new fractional-order chaotic system with its analysis, synchronization, and circuit realization for secure communication applications

      Rahman, Z.S.A.; Jasim, B.H.; Al-Yasir, Yasir I.A.; Hu, Yim Fun; Abd-Alhameed, Raed A.; Alhasnawi, B.N. (2021-10-15)
      This article presents a novel four-dimensional autonomous fractional-order chaotic system (FOCS) with multi-nonlinearity terms. Several dynamics, such as the chaotic attractors, equilibrium points, fractal dimension, Lyapunov exponent, and bifurcation diagrams of this new FOCS, are studied analytically and numerically. Adaptive control laws are derived based on Lyapunov theory to achieve chaos synchronization between two identical new FOCSs with an uncertain parameter. For these two identical FOCSs, one represents the master and the other is the slave. The uncertain parameter in the slave side was estimated corresponding to the equivalent master parameter. Next, this FOCS and its synchronization were realized by a feasible electronic circuit and tested using Multisim software. In addition, a microcontroller (Arduino Due) was used to implement the sug-gested system and the developed synchronization technique to demonstrate its digital applicability in real-world applications. Furthermore, based on the developed synchronization mechanism, a secure communication scheme was constructed. Finally, the security analysis metric tests were investigated through histograms and spectrograms analysis to confirm the security strength of the employed communication system. Numerical simulations demonstrate the validity and possibility of using this new FOCS in high-level security communication systems. Furthermore, the secure communication system is highly resistant to pirate attacks. A good agreement between simulation and experimental results is obtained, showing that the new FOCS can be used in real-world applications.
    • Directional and Isolated UWB-MIMO Antenna Based Uniplanar UWB-FSS Array and T-strip for Bi-static Microwave Imaging: Baggage-Scanner

      Abdulhasan, R.A.; Alias, R.; Ramli, K.N.; Seman, F.C.; Abd-Alhameed, Raed A.; Jawhar, Y.A. (Wiley, 2021)
      This article presented a novel compact multi-input-multi-output (MIMO) hexagonal monopole antenna with a uniplanar compact frequency-selective-surface (FSS) array for microwave imaging (MWI). The ultra-wideband (UWB) dual-element linear MIMO antenna was designed on the FR4 substrate with 50 Ω coplanar waveguide feed, T-strip isolation, novel numerical calculation, and equivalent circuit analyses. The main issues of realising high-resolution images based on planer UWB antenna for MWI are the low gain, omnidirectional pattern, design size, and mutual coupling of MIMO design. A novel technique was proposed to solve a hybrid issue (mutual coupling) of the MIMO reflected-waves from the FSS array and direct-wave. The uniplanar UWB-FSS unit cell was compacted by combining a square-loop and cross-dipole with a size of 0.095λ×0.095λ. The novel isolated UWB-MIMO antenna and UWB-FSS array (IMAF) were integrated, after investigating the distance between the antenna and FSS. The fabricated IMAF with a stable gain improvement of 4.5 dBi higher than the antenna without FSS, directional radiation pattern, size of 30×73.8×21.6 mm3 observed that a low mutual coupling of -27 dB, and operation bandwidth of 3.0-11.7 GHz. Moreover, a handbag was scanned experimentally via the bi-static approach to detect a small concealed object. The MWI system based on the MIMO antenna with FSS was displayed image resolution of 55% higher than that of MIMO antenna without FSS. The new baggage-scanner approach confirmed that the proposed MIMO antenna with FSS array can lead the humanity for healthy MWI applications.
    • Enhanced TOA Estimation Using OFDM over Wide-Band Transmission Based on a Simulated Model

      Obeidatat, H.A.; Ahmad, Imran; Rawashdeh, M.R.; Abdullah, Ali A.; Shuaieb, W.S.; Obeidat, O.A.; Abd-Alhameed, Raed A. (2021)
      This paper presents the advantages of using a wideband spectrum adopting multi-carrier to improve targets localization within a simulated indoor environment using the Time of Arrival (TOA) technique. The study investigates the effect of using various spectrum bandwidths and a different number of carriers on localization accuracy. Also, the paper considers the influence of the transmitters’ positions in line-of-sight (LOS) and non-LOS propagation scenarios. It was found that the accuracy of the proposed method depends on the number of sub-carriers, the allocated bandwidth (BW), and the number of access points (AP). In the case of using large BW with a large number of subcarriers, the algorithm was effective to reduce localization errors compared to the conventional TOA technique. The performance degrades and becomes similar to the conventional TOA technique while using a small BW and a low number of subcarriers.
    • Simulated Annealing-based Multilink Selection Algorithm in SDN-enabled Avionic Networks

      Luong, Doanh K.; Ali, Muhammad; Li, Jian Ping; Asif, Rameez; Abdo, K. (IEEE, 2021-10-19)
      In this paper, a novel multilink selection framework is developed for different applications with various quality of service (QoS) requirements in avionic systems, based on the multi-attribute decisionmaking model. Two metaheuristic algorithms are proposed to solve this model while optimizing the multilink selection performances. Multilink configuration and multi-homing capabilities are generally required for aircrafts operating in a heterogeneous wireless network environment. The first algorithm, called Analytic Hierarchy Process and Simulated Annealing (AHP-SA), utilises a two-phase process. In Phase one, an analytic hierarchy process (AHP) is used to choose the decision weight factors. Then, in Phase two, a simulated annealing process is applied to select suitable networks, for various service requests, based on the weights obtained from first phase. Further, to improve customer satisfaction, Simulated Annealing algorithm for Simultaneous Weights and Network Selection Optimisation (SA-SWNO) is developed, in which a simulated annealing algorithm is applied to dynamically optimise weight factors of objective functions and the request-to-network assignment matrix. Simulation results demonstrates that both proposed algorithms outperform the commonly used price-based or QoS-based network selection scheme with much higher averaged satisfaction degree and lower computational complexity.
    • MIMO Antenna System for Modern 5G Handheld Devices with Healthcare and High Rate Delivery

      Kiani, S.H.; Altaf, A.; Anjum, M.R.; Afridi, S.; Arain, Z.A.; Anwar, S.; Khan, S.; Alibakhshikenari, M.; Lalbakhsh, A.; Khan, M.A.; et al. (MDPI, 2021-11-08)
      In this work, a new prototype of the eight-element MIMO antenna system for 5G communications, internet of things, and networks has been proposed. This system is based on an H-shaped monopole antenna system that offers 200 MHz bandwidth ranges between 3.4-3.6GHz, and the isolation between any two elements is well below -12dB without using any decoupling structure. The proposed system is designed on a commercially available 0.8mm-thick FR4 substrate. One side of the chassis is used to place the radiating elements, while the copper from the other side is being removed to avoid short-circuiting with other components and devices. This also enables space for other systems, sub-systems, and components. A prototype is fabricated and excellent agreement is observed between the experimental and the computed results. It was found that ECC is 0.2 for any two radiating elements which is consistent with the desirable standards, and channel capacity is 38 bps/Hz which is 2.9 times higher than 4x4 MIMO configuration. In addition, single hand mode and dual hand mode analysis are conducted to understand the operation of the system under such operations and to identify losses and/or changes in the key performance parameters. Based on the results, the proposed antenna system will find its applications in modern 5G handheld devices and internet of things with healthcare and high rate delivery. Besides that, its design simplicity will make it applicable for mass production to be used in industrial demands.
    • High-isolation antenna array using SIW and realized with a graphene layer for sub-terahertz wireless applications

      Alibakhshikenari, M.; Virdee, B.S.; Salekzamankhani, S.; Aïssa, S.; Soin, N.; Fishlock, S.J.; Althuwayb, A.A.; Abd-Alhameed, Raed A.; Huynen, I.; McLaughlin, J.A.; et al. (2021-05-13)
      This paper presents the results of a study on developing an effective technique to increase the performance characteristics of antenna arrays for sub-THz integrated circuit applications. This is essential to compensate the limited power available from sub-THz sources. Although conventional array structures can provide a solution to enhance the radiation-gain performance however in the case of small-sized array structures the radiation properties can be adversely affected by mutual coupling that exists between the radiating elements. It is demonstrated here the effectiveness of using SIW technology to suppress surface wave propagations and near field mutual coupling effects. Prototype of 2 × 3 antenna arrays were designed and constructed on a polyimide dielectric substrate with thickness of 125 μm for operation across 0.19-0.20 THz. The dimensions of the array were 20 × 13.5 × 0.125 mm3. Metallization of the antenna was coated with 500 nm layer of Graphene. With the proposed technique the isolation between the radiating elements was improved on average by 22.5 dB compared to a reference array antenna with no SIW isolation. The performance of the array was enhanced by transforming the patch to exhibit metamaterial characteristics. This was achieved by embedding the patch antennas in the array with sub-wavelength slots. Compared to the reference array the metamaterial inspired structure exhibits improvement in isolation, radiation gain and efficiency on average by 28 dB, 6.3 dBi, and 34%, respectively. These results show the viability of proposed approach in developing antenna arrays for application in sub-THz integrated circuits.
    • Natural organic matter (NOM) and turbidity removal by plant-based coagulants: A review

      Okoro, B. U.; Sharifi, S.; Jesson, M. A.; Bridgeman, John (Elsevier, 2021)
      NOM deteriorates water quality by forming taste, clarification, colour, and odour problems. It also increases coagulant and chlorine consumption which can initiate disinfection by-products harmful to human health. The coagulation-flocculation (CF) technique is an established method commonly employed to remove NOM in water treatment. Plant-based coagulant products (PCPs) derived from plants like the Moringa oleifera (MO) Strychnos potatorum Linn and Opuntia ficus indica, have been studied and proposed as sustainable alternatives to chemical coagulant, like, aluminium sulphate due to their abundant availability, low cost, low sludge volume and disposal cost, and biodegradability. This review paper provides an overview of the most widely studied plant-based coagulants and discusses their NOM and turbidity removal. It investigates recent analytical tools applied in their characterisation and floc morphological studies. The paper also investigates the effects of operating parameters such as coagulant dose, temperature, and pH, on NOM and turbidity removal. It also reviews up-to-date PCPs biophysical properties and CF mechanism and examines the efficiency of their extraction methods in reducing NOM. Finally, it discusses and suggests ways to overcome commercialisation draw-back caused by nutrient addition.
    • Optimal Energy Resource Allocation in Isolated Micro Grid with Limited Supply Capacity

      Anuebunwa, Ugonna; Mokryani, Geev (IEEE, 2021-09)
      An isolated micro-grid network with limited generating capacity would most likely, end up having operational challenge either due to increasing number of customers, or introduction of new loads onto the network. This is in view of an observed scenario especially in developing countries whereby as load demand increases, installed PV capacity often do not receive commensurate expansion. So, in order to prevent network failure, each user can be allocated certain amount of limited power supply which should not be exceeded. These allotments are dynamic, and they vary at regular time intervals every day depending on their historic load profile data. This work is therefore based on managing power supply from a PV-source operating as an isolated micro-grid with storage capabilities. A power supply scheduling mechanism is introduced which allocates maximum power capacity for every user. Hence communities detached from the grid can enjoy electricity despite shortfalls in power supply capacity. The obtained results evaluated under three scenarios show that allocating energy limits to each user depends on the current capacity of the battery as well as the forecast load demand. This allotment is enforced using variable circuit breakers whose cut-off point is varied based on the prevailing energy demand and supply requirements.
    • Two-Stage Stochastic Model to Invest in Distributed Generation Considering the Long-Term Uncertainties

      Angarita-Márquez, Jorge L.; Mokryani, Geev; Martínez-Crespo, J. (MDPI, 2021-09)
      This paper used different risk management indicators applied to the investment optimization performed by consumers in Distributed Generation (DG). The objective function is the total cost incurred by the consumer including the energy and capacity payments, the savings, and the revenues from the installation of DG, alongside the operation and maintenance (O&M) and investment costs. Probability density function (PDF) was used to model the price volatility in the long-term. The mathematical model uses a two-stage stochastic approach: investment and operational stages. The investment decisions are included in the first stage and which do not change with the scenarios of the uncertainty. The operation variables are in the second stage and, therefore, take different values with every realization. Three risk indicators were used to assess the uncertainty risk: Value-at-Risk (VaR), Conditional Value-at-Risk (CVaR), and Expected Value (EV). The results showed the importance of migration from deterministic models to stochastic ones and, most importantly, the understanding of the ramifications of every risk indicator.
    • Active Distribution Networks Planning Considering Multi-DG Configurations and Contingency Analysis

      Amjad, Bilal; Al-Ja'afreh, Mohammad A.A.; Mokryani, Geev (2021-07-19)
      This paper proposes a novel method for planning active distribution networks (ADNs) with the integration of an active network management (ANM) scheme using coordinated voltage control (CVC) through on-load tap changer (OLTC) transformers. The method was formulated as a security-constrained optimal power flow (SCOPF) problem to minimize total operational costs, which maximizes the utilization of renewable distributed generators (DGs) over a planning horizon. The ANM scheme was applied using OLTC to ensure safe operation and reduce voltage violations in the network. To analyse the impact of ANM, the planning problem was examined both with and without the ANM scheme. Moreover, SCOPF, considering the N-1 line contingency analysis and multi-DG configuration, was implemented to analyse the feasibility of the proposed method and the advantages of ANM under contingency situations. The method was validated on a weakly-meshed 16-bus UK generic distribution system (UKGDS). The results showed that ANM can lower operational costs and maintain network voltage for operation in feasible conditions even in the case of a contingency. Moreover, the ANM scheme mitigated the voltage rise effect caused by DGs and maximized their utilization.
    • Voltage Unbalance Mitigation in Low Voltage Distribution Networks using Time Series Three-Phase Optimal Power Flow

      Al-Ja'afreh, M.A.A.; Mokryani, Geev (IEEE, 2021)
      Due to high penetration of single-phase Photovoltaic (PV) cells into low voltage (LV) distribution networks, several impacts such as voltage unbalance, voltage rise, power losses, reverse power flow arise which leads to operational constraints violation in the network. In this paper, a time series Three Phase Optimal Power Flow (TPOPF) method is proposed to minimize the voltage unbalance in LV distribution networks with high penetration of residential PVs. TPOPF problem is formulated using the current injection method in which the PVs are modelled via a time-varying PV power profile with active and reactive power control. The proposed method is validated on a real LV distribution feeder. The results show that the reactive power management of the PVs helps mitigate the voltage unbalance significantly. Moreover, the voltage unbalance index reduced significantly compared to the case without voltage unbalance minimisation.
    • Demountable connections of reinforced concrete structures: Review and future developments

      Figueira, Diogo; Ashour, Ashraf F.; Yildirim, G.; Aldemir, A.; Sahmaran, M. (Elsevier, 2021-12)
      In the current practice, at the end of life of a reinforced concrete structure, it is destructively demolished and the demolition waste is landfilled or recycled. This approach is clearly wasteful of energy, creating serious environmental pollution and at high cost. However, design for demountability/deconstruction (DfD) of reinforced concrete structures would facilitate the future reuse of structural elements at the end of their life, potentially achieving a significant reduction in embodied energy of structures as well as giving the clients the benefit of retaining the value of their assets. In this paper, recent research developments and practical applications of DfD of reinforced concrete structures are reviewed and key technical issues are discussed. The main focus was on connections that should be designed in such a way to allow demounting. The main achievements are outlined, for each type of dry and semi dry connections, along with the aspects that still need to be developed. It is concluded that only semi-dry connections are currently implemented but information available in the literature on dry connections between structural elements is still very scarce. The paper concludes with an outline of some future opportunities and challenges in the application of DfD in concrete construction.
    • Evaluation of bandwidth management technique using dynamic LSP tunnelling and LDP in MPLS for sustainable mobile wireless networks

      Mustapha, O.Z.; Hu, Yim Fun; Sheriff, Ray E.; Abd-Alhameed, Raed A.; Ali, M. (2020-03)
      Fairness in bandwidth resource allocation is highly significance to the advancement of the future generation mobile and wireless technologies. It is likely that restriction of bandwidth due to the employment of some scheduling scheme would not be an appropriate option for the future development of communication systems. However, there is need to consider an implementation that would lead to good network performance and avoid unguaranteed bandwidth delivery. This paper focusses on evaluating the performance of Bandwidth Allocation using Dynamic Label Switching Paths (LSPs) Tunnelling and Label Distribution Protocol (LDP) signalling in Multi-Protocol Label Switching (MPLS) network. This will make provision for bandwidth allocation and reservation possible. An appropriate bandwidth allocation would have a positive impact on throughput as well as the delay. The results of an IP (Internet Protocol) Network without MPLS enabled is compared with MPLS model network. Furthermore, implementation of dynamic and static LSPs models are presented with about 75% decrease in packet delay variation for dynamic LSP when compared from static LSP. In addition, the models of bandwidth estimation, bandwidth allocation, delay and jitter are provided. Performance metrics used in this respect for multimedia services (Voice and Video conferencing) confirm that the modified models are improved in comparison with the baseline, having highest throughput of about 51% increment, and packet delay variation decreases drastically.
    • Dual-Polarized Highly Folded Bowtie Antenna with Slotted Self-Grounded Structure for Sub-6 GHz 5G Applications

      Alibakhshikenari, M.; Virdee, B.S.; See, C.H.; Shukla, P.; Moghaddam, S.M.; Zaman, A.U.; Shafqaat, S.; Akinsolu, M.O.; Liu, B.; Yang, J.; et al. (IEEE, 2021)
      In this paper, a novel dual-polarized highly-folded self-grounded Bowtie antenna that is excited through I-shaped slots is proposed for applications in sub-6GHz 5G multiple-input-multiple-output (MIMO) antenna systems. The antenna consists of two pairs of folded radiation petals whose base is embedded in a double layer of FR-4 substrate with a common ground-plane which is sandwiched between the two substrate layers. The ground-plane is defected with two I-shaped slots located under the radiation elements. Each pair of radiation elements are excited through a microstrip line on the top layer with RF signal that is 180° out of phase with respect to each other. The RF signal is coupled to the pair of feedlines on the top layer through the I-shaped slots from the two microstrip feedlines on the underside of the second substrate. The proposed feed mechanism gets rid of the otherwise bulky balun. The Bowtie antenna is a compact solution with dimensions of 32×32×33.8 mm3. Measured results have verified that the antenna operates over a frequency range of 3.1–5 GHz and exhibits an average gain and antenna efficiency in the vertical and horizontal polarizations of 7.5 dBi and 82.6%, respectively.
    • Quantum ReLU activation for Convolutional Neural Networks to improve diagnosis of Parkinson’s disease and COVID-19

      Parisi, Luca; Neagu, Daniel; Ma, R.; Campean, I. Felician (Elsevier, 2022-01)
      This study introduces a quantum-inspired computational paradigm to address the unresolved problem of Convolutional Neural Networks (CNNs) using the Rectified Linear Unit (ReLU) activation function (AF), i.e., the ‘dying ReLU’. This problem impacts the accuracy and the reliability in image classification tasks for critical applications, such as in healthcare. The proposed approach builds on the classical ReLU and Leaky ReLU, applying the quantum principles of entanglement and superposition at a computational level to derive two novel AFs, respectively the ‘Quantum ReLU’ (QReLU) and the ‘modified-QReLU’ (m-QReLU). The proposed AFs were validated when coupled with a CNN using seven image datasets on classification tasks involving the detection of COVID-19 and Parkinson’s Disease (PD). The out-of-sample/test classification accuracy and reliability (precision, recall and F1-score) of the CNN were compared against those of the same classifier when using nine classical AFs, including ReLU-based variations. Findings indicate higher accuracy and reliability for the CNN when using either QReLU or m-QReLU on five of the seven datasets evaluated. Whilst retaining the best classification accuracy and reliability for handwritten digits recognition on the MNIST dataset (ACC = 99%, F1-score = 99%), avoiding the ‘dying ReLU’ problem via the proposed quantum AFs improved recognition of PD-related patterns from spiral drawings with the QReLU especially, which achieved the highest classification accuracy and reliability (ACC = 92%, F1-score = 93%). Therefore, with these increased accuracy and reliability, QReLU and m-QReLU can aid critical image classification tasks, such as diagnoses of COVID-19 and PD.
    • Estimation of structural steel and concrete stocks and flows at urban scale–towards a prospective circular economy

      Ajayebi, A.; Hopkinson, P.; Zhou, Kan; Lam, Dennis; Chen, H-M.; Wang, Y. (2021-11)
      Quantification of stocks and flows of construction materials is a key first stage in assessing the potential for creating higher value at end-of-life decisions compared to destructive demolition. Steel and concrete are amongst the most widely used construction materials primarily in structural components. Such components are highly variable in design, type, and dimensions. In the absence of urban-scale digitised models of structural components or building plans, accurate assessment relies on either onsite inspection or modelling by material intensity (MI) co-efficient which can vary by up to a factor of 100. In this study, we extend previous stock modelling approaches through the development of a method that relies on building archetypes and produces MI coefficients of steel and concrete that are representative of frame types, temporally explicit and disaggregated at product level. This is compared to the common existent method of calculating MI to demonstrate the capabilities of the proposed method. Coupled with a spatiotemporal model of urban buildings, the developed MI of both methods are applied to a case study in the UK. The total in-use stock of steel and concrete within multi-storey buildings is estimated at 81,000 tonnes and 655,000 m3 respectively. The stocks of steel and concrete are disaggregated based on their functions as products, for instance steel beams are distinguished from reinforcement steel. Subsequently, the embodied carbon of the in-use stock is calculated as 350 kt CO2eq. The results show the proposed method enables a more granular assessment of the embodied carbon of the structural material quantities.
    • New composite flooring system for the circular economy

      Lam, Dennis; Yang, Jie; Wang, Yong; Dai, Xianghe; Sheehan, Therese; Zhou, Kan (Techno-Press, 2021-09-10)
      Circular economy is an economic system aimed at minimizing wastes and making the most of the current resources. This regenerative approach contrasts with the traditional linear economy, which has been adopted by the construction industry. Developing new construction technologies for sustainable built environment is a top priority for the construction industry throughout the world. Much of the environmental impact from the construction industry is associated with the consumption of resources and generation of waste. The construction industry in Europe consumes over 70,000 million tonnes of materials each year and generates over 250 million tonnes of waste. Composite flooring formed by connecting the concrete slabs to the supporting steel beams has been widely used for many years and is well established as one of the most efficient floor systems in multi storey steel frame building structures. However, shear connectors are welded through the steel decking to the steel beams and cast into the concrete; this made deconstruction and reuse of these components almost impossible. A new composite flooring system which allows for the reuse of the steel beams and composite floor slabs is developed and tested to assess its potential and suitability for reuse. This paper presents the results of a series of full scale beam tests and demonstrates the reusability of this new form of composite flooring systems. Simplified hand calculations are also provided and compared against beam tests
    • Toward full-stack in silico synthetic biology: integrating model specification, simulation, verification, and biological compilation

      Konur, Savas; Mierla, L.M.; Fellermann, H.; Ladroue, C.; Brown, B.; Wipat, A.; Twycross, J.; Dun, B.P.; Kalvala, S.; Gheorghe, Marian; et al. (2021-08-02)
      We present the Infobiotics Workbench (IBW), a user-friendly, scalable, and integrated computational environment for the computer-aided design of synthetic biological systems. It supports an iterative workflow that begins with specification of the desired synthetic system, followed by simulation and verification of the system in high- performance environments and ending with the eventual compilation of the system specification into suitable genetic constructs. IBW integrates modelling, simulation, verification and bicompilation features into a single software suite. This integration is achieved through a new domain-specific biological programming language, the Infobiotics Language (IBL), which tightly combines these different aspects of in silico synthetic biology into a full-stack integrated development environment. Unlike existing synthetic biology modelling or specification languages, IBL uniquely blends modelling, verification and biocompilation statements into a single file. This allows biologists to incorporate design constraints within the specification file rather than using decoupled and independent formalisms for different in silico analyses. This novel approach offers seamless interoperability across different tools as well as compatibility with SBOL and SBML frameworks and removes the burden of doing manual translations for standalone applications. We demonstrate the features, usability, and effectiveness of IBW and IBL using well-established synthetic biological circuits.