• T-type Ca2+ channel regulation by CO: a mechanism for control of cell proliferation

      Duckles, H.; Al-Owais, M.M.; Elies, Jacobo; Johnson, E.; Boycott, H.E.; Dallas, M.L.; Porter, K.E.; Boyle, J.P.; Scragg, J.L.; Peers, C. (2015)
      T-type Ca2+ channels regulate proliferation in a number of tissue types, including vascular smooth muscle and various cancers. In such tissues, up-regulation of the inducible enzyme heme oxygenase-1 (HO-1) is often observed, and hypoxia is a key factor in its induction. HO-1 degrades heme to generate carbon monoxide (CO) along with Fe2+ and biliverdin. Since CO is increasingly recognized as a regulator of ion channels (Peers et al. 2015), we have explored the possibility that it may regulate proliferation via modulation of T-type Ca2+ channels. Whole-cell patch-clamp recordings revealed that CO (applied as the dissolved gas or via CORM donors) inhibited all 3 isoforms of T-type Ca2+ channels (Cav3.1-3.3) when expressed in HEK293 cells with similar IC50 values, and induction of HO-1 expression also suppressed T-type currents (Boycott et al. 2013). CO/HO-1 induction also suppressed the elevated basal [Ca2+ ]i in cells expressing these channels and reduced their proliferative rate to levels seen in non-transfected control cells (Duckles et al. 2015). Proliferation of vascular smooth muscle cells (both A7r5 and human saphenous vein cells) was also suppressed either by T-type Ca2+ channel inhibitors (mibefradil and NNC 55-0396), HO-1 induction or application of CO. Effects of these blockers and CO were non additive. Although L-type Ca2+ channels were also sensitive to CO (Scragg et al. 2008), they did not influence proliferation. Our data suggest that HO-1 acts to control proliferation via CO modulation of T-type Ca2+ channels.
    • Tablet fragmentation without a disintegrant: A novel design approach for accelerating disintegration and drug release from 3D printed cellulosic tablets

      Arafat, B.; Wojsz, M.; Isreb, A.; Forbes, R.T.; Isreb, Mohammad; Ahmed, W.; Arafat, T.; Alhnan, M.A. (2018-06-15)
      Fused deposition modelling (FDM) 3D printing has shown the most immediate potential for on-demand dose personalisation to suit particular patient's needs. However, FDM 3D printing often involves employing a relatively large molecular weight thermoplastic polymer and results in extended release pattern. It is therefore essential to fast-track drug release from the 3D printed objects. This work employed an innovative design approach of tablets with unique built-in gaps (Gaplets) with the aim of accelerating drug release. The novel tablet design is composed of 9 repeating units (blocks) connected with 3 bridges to allow the generation of 8 gaps. The impact of size of the block, the number of bridges and the spacing between different blocks was investigated. Increasing the inter-block space reduced mechanical resistance of the unit, however, tablets continued to meet pharmacopeial standards for friability. Upon introduction into gastric medium, the 1 mm spaces gaplet broke into mini-structures within 4 min and met the USP criteria of immediate release products (86.7% drug release at 30 min). Real-time ultraviolet (UV) imaging indicated that the cellulosic matrix expanded due to swelling of hydroxypropyl cellulose (HPC) upon introduction to the dissolution medium. This was followed by a steady erosion of the polymeric matrix at a rate of 8 μm/min. The design approach was more efficient than a comparison conventional formulation approach of adding disintegrants to accelerate tablet disintegration and drug release. This work provides a novel example where computer-aided design was instrumental at modifying the performance of solid dosage forms. Such an example may serve as the foundation for a new generation of dosage forms with complicated geometric structures to achieve functionality that is usually achieved by a sophisticated formulation approach.
    • Tallow Hill Cemetery, Worcester: The Importance of Detailed Study of Post-Mediaeval Graveyards

      Ogden, Alan R.; Boylston, Anthea; Vaughan, T. (2003)
      From the Proceedings of the Fifth Annual Conference of the British Association for Biological Anthropology and Osteoarchaeology held in Southampton, England in 2003... (6) - Tallow Hill Cemetery, Worcester: The importance of detailed study of post-mediaeval graveyards (Alan R. Ogden, Anthea Boylston and Tom Vaughan).
    • Taphonomic changes to the buried body in arid environments: an experimental case study in Peru

      Janaway, Robert C.; Wilson, Andrew S.; Carpio Díaz, G.; Guillen, S. (2009)
      Despite an increasing literature on the decomposition of buried and exposed human remains it is important to recognise that specific microenviron-ments will either trigger, or delay the rate of decomposition. Recent casework in arid regions of the world has indicated a need for a more detailed understanding of the effects of burial over relatively short timescales. The decomposition of buried human remains in the coastal desert of Peru was investigated using pig cadavers (Sus scrofa) as body analogues. The project aims were to specifically examine the early phases of natural mummification and contrast the effects of direct burial in ground with burial in a tomb structure (i.e. with an air void). Temperature was logged at hourly intervals from both the surface, grave fill and core body throughout the experiment. In addition, air temperature and humidity were measured within the air void of the tomb. After two years all three pig graves were excavated, the temperature and humidity data downloaded and the pig carcasses dissected on site to evaluate condition. The results demonstrate that: (1) there were distinct differences in the nature/rate of decomposition according to burial mode; (2) after two years burial the carcasses had been subject to considerable desiccation of the outer tissues while remaining moist in the core; (3) the body had undergone putrefactive change and collapsed leading to slumping of soil within the grave fill following the curvature of the pig's back, although this was not evident from the surface; (4) there was a specific plume of body decomposition products that wicked both horizontally and also vertically from the head wounds in the sandy desert soil. These observations have widespread application for prospection techniques, investigation of clandestine burial, time since deposition and in understanding changes within the burial microenvironment under arid conditions.
    • Tapping the Vast Potential of the Data Deluge in Small-scale Food-Animal Production Businesses: Challenges to Near Real-time Data Analysis and Interpretation

      Vial, F.; Tedder, Andrew (2017-09-06)
      Food-animal production businesses are part of a data-driven ecosystem shaped by stringent requirements for traceability along the value chain and the expanding capabilities of connected products. Within this sector, the generation of animal health intelligence, in particular, in terms of antimicrobial usage, is hindered by the lack of a centralized framework for data storage and usage. In this Perspective, we delimit the 11 processes required for evidence-based decisions and explore processes 3 (digital data acquisition) to 10 (communication to decision-makers) in more depth. We argue that small agribusinesses disproportionally face challenges related to economies of scale given the high price of equipment and services. There are two main areas of concern regarding the collection and usage of digital farm data. First, recording platforms must be developed with the needs and constraints of small businesses in mind and move away from local data storage, which hinders data accessibility and interoperability. Second, such data are unstructured and exhibit properties that can prove challenging to its near real-time preprocessing and analysis in a sector that is largely lagging behind others in terms of computing infrastructure and buying into digital technologies. To complete the digital transformation of this sector, investment in rural digital infrastructure is required alongside the development of new business models to empower small businesses to commit to near real-time data capture. This approach will deliver critical information to fill gaps in our understanding of emerging diseases and antimicrobial resistance in production animals, eventually leading to effective evidence-based policies.
    • Targeted long-read sequencing of a locus under long-term balancing selection in Capsella

      Bachmann, J.A.; Tedder, Andrew; Laenen, B.; Steige, K.A.; Slotte, T. (2018-04)
      Rapid advances in short-read DNA sequencing technologies have revolutionized population genomic studies, but there are genomic regions where this technology reaches its limits. Limitations mostly arise due to the difficulties in assembly or alignment to genomic regions of high sequence divergence and high repeat content, which are typical characteristics for loci under strong long-term balancing selection. Studying genetic diversity at such loci therefore remains challenging. Here, we investigate the feasibility and error rates associated with targeted long-read sequencing of a locus under balancing selection. For this purpose, we generated bacterial artificial chromosomes (BACs) containing the Brassicaceae S-locus, a region under strong negative frequency-dependent selection which has previously proven difficult to assemble in its entirety using short reads. We sequence S-locus BACs with single-molecule long-read sequencing technology and conduct de novo assembly of these S-locus haplotypes. By comparing repeated assemblies resulting from independent long-read sequencing runs on the same BAC clone we do not detect any structural errors, suggesting that reliable assemblies are generated, but we estimate an indel error rate of 5.7×10−5. A similar error rate was estimated based on comparison of Illumina short-read sequences and BAC assemblies. Our results show that, until de novo assembly of multiple individuals using long-read sequencing becomes feasible, targeted long-read sequencing of loci under balancing selection is a viable option with low error rates for single nucleotide polymorphisms or structural variation. We further find that short-read sequencing is a valuable complement, allowing correction of the relatively high rate of indel errors that result from this approach.
    • Targeting HOX transcription factors in prostate cancer

      Morgan, Richard; Boxall, A.; Harrington, K.J.; Simpson, G.R.; Michael, A.; Pandha, H.S. (2014-12)
      Background: The HOX genes are a family of transcription factors that help to determine cell and tissue identity during early development, and which are also over-expressed in a number of malignancies where they have been shown to promote cell proliferation and survival. The purpose of this study was to evaluate the expression of HOX genes in prostate cancer and to establish whether prostate cancer cells are sensitive to killing by HXR9, an inhibitor of HOX function. Methods: HOX function was inhibited using the HXR9 peptide. HOX gene expression was assessed by RNA extraction from cells or tissues followed by quantitative PCR, and siRNA was used to block the expression of the HOX target gene, cFos. In vivo modelling involved a mouse flank tumour induced by inoculation with LNCaP cells. Results: In this study we show that the expression of HOX genes in prostate tumours is greatly increased with respect to normal prostate tissue. Targeting the interaction between HOX proteins and their PBX cofactor induces apoptosis in the prostate cancer derived cell lines PC3, DU145 and LNCaP, through a mechanism that involves a rapid increase in the expression of cFos, an oncogenic transcription factor. Furthermore, disrupting HOX/PBX binding using the HXR9 antagonist blocks the growth of LNCaP tumours in a xenograft model over an extended period. Conclusion: Many HOX genes are highly over-expressed in prostate cancer, and prostate cancer cells are sensitive to killing by HXR9 both in vitro and in vivo. The HOX genes are therefore a potential therapeutic target in prostate cancer.
    • Targeting HOX-PBX interactions causes death in oral potentially malignant and squamous carcinoma cells but not normal oral keratinocytes

      Platais, C.; Radhakrishnan, R.; Ebensberger, S.N.; Morgan, Richard; Lambert, D.W.; Hunter, K.D. (2018-07)
      Background: High HOX gene expression has been described in many cancers, including oral squamous cell carcinoma and the functional roles of these genes are gradually being understood. The pattern of overexpression suggests that inhibition may be useful therapeutically. Inhibition of HOX protein binding to PBX cofactors by the use of synthetic peptides, such as HXR9, results in apoptosis in multiple cancers. Methods: Activity of the HOX-PBX inhibiting peptide HXR9 was tested in immortalised normal oral (NOK), potentially-malignant (PMOL) and squamous cell carcinoma (OSCC) cells, compared to the inactive peptide CXR9. Cytotoxicity was assessed by LDH assay. Expression of PBX1/2 and c-Fos was assessed by qPCR and western blotting. Apoptosis was assessed by Annexin-V assay. Results: PMOL and OSCC cells expressed PBX1/2. HOX-PBX inhibition by HXR9 caused death of PMOL and OSCC cells, but not NOKs. HXR9 treatment resulted in apoptosis and increased expression of c-Fos in some cells, whereas CXR9 did not. A correlation was observed between HOX expression and resistance to HXR9. Conclusion: Inhibition of HOX-PBX interactions causes selective apoptosis of OSCC/PMOL, indicating selective toxicity that may be useful clinically.
    • Targeting HOX/PBX dimers in cancer

      Morgan, Richard; El-Tanani, Mohamed; Hunter, K.D.; Harrington, K.J.; Pandha, H.S. (2017-03-07)
      The HOX and PBX gene families encode transcription factors that have key roles in establishing the identity of cells and tissues in early development. Over the last 20 years it has become apparent that they are also dysregulated in a wide range of solid and haematological malignancies and have a predominantly pro-oncogenic function. A key mode of transcriptional regulation by HOX and PBX proteins is through their interaction as a heterodimer or larger complex that enhances their binding affinity and specificity for DNA, and there is growing evidence that this interaction is a potential therapeutic target in malignancies that include prostate, breast, renal, ovarian and lung cancer, melanoma, myeloma, and acute myeloid leukaemia. This review summarizes the roles of HOX and PBX genes in cancer and assesses the therapeutic potential of HOX/PBX dimer inhibition, including the availability of biomarkers for its application in precision medicine.
    • Targeting of Hypoxia in AQ4N-treated Tumour Xenografts by MALDI-Ion Mobility Separation-Mass Spectrometry Imaging

      Djidja, M-C.; Francese, S.; Claude, E.; Loadman, Paul M.; Sutton, Chris W.; Shnyder, Steven D.; Cooper, Patricia A.; Patterson, Laurence H.; Carolan, V.A.; Clench, M.R. (2013-04-01)
      Hypoxia is a common feature observed in solid tumours. It is a target of interest in oncology as it has been found to be closely associated with tumour progression, metastasis and aggressiveness and confers resistance to a variety of chemotherapeutic agents as well as radiotherapy. AQ4N, also known as banoxatrone or 1,4-bis-[2-(dimethylamino-Noxide) ethyl]amino-5,8-dihydroxyanthracene-9,10-dione is a very promising bioreductive prodrug. This paper, describes an application of MALDI-MSI combined with ion mobility separation and an "on-tissue" bottom up proteomic strategy to obtain proteomic data from AQ4N dosed tumour xenograft tissue sections. These data are then correlated with the drug distribution determined also using MALDI-ion mobility separation-mass spectrometry imaging (MALDI-IMS-MSI). PCA-DA and OPLS-DA have been used to compare treated and untreated xenografts and of note is the marked increase in expression of Histone H3.
    • Targeting the mesolithic: Interdisciplinary approaches to archaeological prospection inthe Brown Bank area, southern North Sea

      Missiaen, T.; Fitch, Simon; Muru, Merle; Harding, Rachel; Fraser, Andy; De Clercq, M.; Garcia Moreno, David; Versteeg, W.; Gaffney, Vincent L. (2020)
      This paper describes some results of the research undertaken over the Brown Bank area during recent (2018/2019) geoarchaeological surveys in the North Sea which included seismic imaging, shallow (vibro)coring and dredging. It examines the benefits of simultaneous high-resolution (0.5 – 1m) and ultra-high-resolution (10 – 20cm) seismic survey techniques and a staged approach to resolving the submerged Holocene landscape in the highest possible detail for the purpose of targeted prospecting for archaeological material from the Mesolithic landscape of Doggerland. The materials recovered from such surveys offer significantly greater information due to an enhanced understanding of the context in which they were recovered. The importance of this information cannot be understated archaeologically, as few locations on land provide the opportunity to recover archaeological finds in situ within preserved landscapes. Moreover, it allows offshore areas of potential human activity to be prospected with some certainty of success.
    • Tattoo ink nanoparticles in skin tissue and fibroblasts

      Grant, Colin A.; Twigg, Peter C.; Baker, Richard; Tobin, Desmond J. (2015-05-20)
      Tattooing has long been practised in various societies all around the world and is becoming increasingly common and widespread in the West. Tattoo ink suspensions unquestionably contain pigments composed of nanoparticles, i.e., particles of sub-100 nm dimensions. It is widely acknowledged that nanoparticles have higher levels of chemical activity than their larger particle equivalents. However, assessment of the toxicity of tattoo inks has been the subject of little research and ink manufacturers are not obliged to disclose the exact composition of their products. This study examines tattoo ink particles in two fundamental skin components at the nanometre level. We use atomic force microscopy and light microscopy to examine cryosections of tattooed skin, exploring the collagen fibril networks in the dermis that contain ink nanoparticles. Further, we culture fibroblasts in diluted tattoo ink to explore both the immediate impact of ink pigment on cell viability and also to observe the interaction between particles and the cells.
    • Tea phenols in bulk and nanoparticle form modify DNA damage in human lymphocytes from colon cancer patients and healthy individuals treated in vitro with platinum-based chemotherapeutic drugs

      Alotaibi, Amal; Bhatnagar, P.; Najafzadeh, Mojgan; Gupta, K.C.; Anderson, Diana (2013)
      Tea catechin epigallocatechin-3-gallate (EGCG) and other polyphenols, such as theaflavins (TFs), are increasingly proving useful as chemopreventives in a number of human cancers. They can also affect normal cells. The polyphenols in tea are known to have antioxidant properties that can quench free radical species, and pro-oxidant activities that appear to be responsible for the induction of apoptosis in tumor cells. The bioavailability of these natural compounds is an important factor that determines their efficacy. Nanoparticle (NP)-mediated delivery techniques of EGCG and TFs have been found to improve their bioavailability to a level that could benefit their effectiveness as chemopreventives. AIM: The present study was conducted to compare the effects of TFs and EGCG, when used in the bulk form and in the polymer (poly[lactic-co-glycolic acid])-based NP form, in oxaliplatin- and satraplatin-treated lymphocytes as surrogate cells from colorectal cancer patients and healthy volunteers. NPs were examined for their size distribution, surface morphology, entrapment efficiency and release profile. Lymphocytes were treated in the Comet assay with oxaliplatin and satraplatin, washed and treated with bulk or NP forms of tea phenols, washed and then treated with hydrogen peroxide to determine single-strand breaks after crosslinking. The results of DNA damage measurements by the Comet assay revealed opposite trends in bulk and NP forms of TFs, as well as EGCG. Both the compounds in the bulk form produced statistically significant concentration-dependent reductions in DNA damage in oxaliplatin- or satraplatin-treated lymphocytes. In contrast, when used in the NP form both TFs and EGCG, although initially causing a reduction, produced a concentration-dependent statistically significant increase in DNA damage in the lymphocytes. These observations support the notion that TFs and EGCG act as both antioxidants and pro-oxidants, depending on the form in which they are administered under the conditions of investigation.
    • Team-based learning in pharmacy: The faculty experience

      Tweddell, Simon; Clark, D.; Nelson, M. (2016)
      Aim To assess faculty perceptions and experiences when implementing team-based learning (TBL) across a pharmacy curriculum. Study design A total of 19 faculty members participated in a series of individual semi-structured interviews that allowed freedom of discussion within a structured framework of inquiry. Data were transcribed, coded using NVivo, and analyzed to establish common themes. Participant quotations were chosen to reinforce the themes and give a voice to the participants. Findings and discussion The benefits of TBL were perceived to be enhanced student engagement, peer learning, increased faculty enjoyment of teaching, and student development of transferable skills. Challenges included increased initial workload, writing effective application exercises, and facilitating learner-centered classes. TBL may be useful in optimizing course content to ensure outcomes and activities focus on important concepts. Peer learning appears to benefit student learning. TBL may help equip students with valuable transferable skills. TBL requires an initial upfront investment in faculty development and time to prepare resources. A student-centered approach to learning may be daunting for faculty and require new skill sets. Conclusions Faculty described their support for TBL concluding that the pedagogical benefits of engaging students in active learning, the development of transferable skills for the workplace, and the personal satisfaction felt after a TBL class, outweigh the initial challenges of transitioning to TBL.
    • Team-based Learning: Engaging learners and creating team accountability

      de Vries, J.; Tweddell, Simon; McCarter, Rebecca (2018-06)
      Team-based Learning (TBL) is a new teaching strategy that may take small group learning to a new level of effectiveness. TBL shifts the focus from content delivery by teachers to the application of course content by student teams. Teams work on authentic problems, make collaborative decisions, and develop problem-solving skills required in their future workplace. Prior to redesigning the MPharm programme according to TBL principles, several pilots were set up to research how students responded to this new way of teaching. One pilot focussed on the introduction of TBL as a phenomena and aimed to find out if and how TBL engaged students, how students were held accountable by their teams, and more importantly how that affected their lifeworld. Ashworth’s lifeworld contingencies provided the theoretical framework as it ranges from students’ selfhood, embodiment and social interactions to their ability to carry out tasks they are committed to and regard as essential (Ashworth, 2003).
    • Technical note: reliability of Suchey-Brooks and Buckberry-Chamberlain methods on 3D visualizations from CT and laser scans.

      Villa, C.; Buckberry, Jo; Cattaneo, C.; Lynnerup, N. (2013)
      Previous studies have reported that the ageing method of Suchey-Brooks (pubic bone) and some of the features applied by Lovejoy et al. and Buckberry-Chamberlain (auricular surface) can be confidently performed on 3D visualizations from CT-scans. In this study, seven observers applied the Suchey-Brooks and the Buckberry-Chamberlain methods on 3D visualizations based on CT-scans and, for the first time, on 3D visualizations from laser scans. We examined how the bone features can be evaluated on 3D visualizations and whether the different modalities (direct observations of bones, 3D visualization from CT-scan and from laser scans) are alike to different observers. We found the best inter-observer agreement for the bones versus 3D visualizations, with the highest values for the auricular surface. Between the 3D modalities, less variability was obtained for the 3D laser visualizations. Fair inter-observer agreement was obtained in the evaluation of the pubic bone in all modalities. In 3D visualizations of the auricular surfaces, transverse organization and apical changes could be evaluated, although with high inter-observer variability; micro-, macroporosity and surface texture were very difficult to score. In conclusion, these methods were developed for dry bones, where they perform best. The Suchey-Brooks method can be applied on 3D visualizations from CT or laser, but with less accuracy than on dry bone. The Buckberry-Chamberlain method should be modified before application on 3D visualizations. Future investigation should focus on a different approach and different features: 3D laser scans could be analyzed with mathematical approaches and sub-surface features should be explored on CT-scans
    • Techniques for identifying the age and sex of children at death

      Buckberry, Jo (2018-05)
      The skeletal remains of infants and children are a poignant reminder of the perilous nature of childhood in the past, yet they offer valuable insight into the life histories of individuals and into the health of populations. Many osteoarchaeological and bioarchaeological analyses are dependent on two vital pieces of information: the age-at-death and sex of the individual(s) under study. This chapter will outline how age-at-death and sex can be estimated from the skeletal remains and dental development of non-adults, and how these are easier or more difficult to determine than for adults, and will discuss the complexities and controversies surrounding different methods.