BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Analysis and solutions for RFID tag and RFID reader deployment in wireless communications applications. Simulation and measurement of linear and circular polarised RFID tag and reader antennas and analysing the tags radiation efficiency when operated close to the human body.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    Majid_thesis_RAArev 18th March.pdf (18.63Mb)
    Download
    Publication date
    2014-05-07
    Author
    Al Khambashi, Majid S.
    Supervisor
    Rajamani, Haile S.
    Abd-Alhameed, Raed A.
    Keyword
    Radio Frequency Identification (RFID)
    Sensor antennas
    Genetic Algorithms (GA)
    Antennas
    Antenna polarisation
    Radiation pattern
    Finite-Difference Time-Domain (FDTD)
    Method of Moments (MoM)
    Balun
    Rights
    Creative Commons License
    The University of Bradford theses are licenced under a Creative Commons Licence.
    Institution
    University of Bradford
    Department
    School of Engineering, Design and Technology
    Awarded
    2012
    
    Metadata
    Show full item record
    Abstract
    The aim of this study is to analysis, investigate and find out the solutions for the problems associated with the implementations of antennas RFID Reader and Tag for various applications. In particular, the efficiency of the RFID reader antenna and the detection range of the RFID tag antenna, subject to a small and compact antenna¿s design configuration have been studied. The present work has been addressed directly to reduce the cost, size and increase the detection range and communication reliability of the RFID framework antennas. Furthermore, the modelling concept of RFID passive tags mounted on various materials including the novel design of RFID reader antenna using Genetic Algorithm (GA) are considered and discussed to maintain reliable and efficient antenna radiation performances. The main benefit of applying GA is to provide fast, accurate and reliable solutions of antenna¿s structure. Therefore, the GA has been successfully employed to design examples: meander-line, two linear cross elements and compact Helical- Spiral antennas. In addition, a hybrid method to model the human body interaction with RFID tag antenna operating at 900MHz has been studied. The near field distribution and the radiation pattern together with the statistical distribution of the radiation efficiency and the absorbed power in terms of cumulative distribution functions for different orientation and location of RFID¿s tag antenna on the human body have been demonstrated. Several tag antennas wi th symmetrical and unsymmetrical structure configurations operating in the European UHF band 850-950 MHz have been fabricated and tested. . The measured and simulated results have been found to be in a good agreement with reasonable impedance matching to the typical input impedance of an RFID integrated circuit chip and nominal power gain and radiation patterns.
    URI
    http://hdl.handle.net/10454/6340
    Type
    Thesis
    Qualification name
    PhD
    Collections
    Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.