Behaviour of continuous concrete slabs reinforced with FRP bars. Experimental and computational investigations on the use of basalt and carbon fibre reinforced polymer bars in continuous concrete slabs.
View/ Open
My THESIS (08011696).pdf (2.705Mb)
Download
Publication date
2014-05-07Author
Mahroug, Mohamed E.M.Keyword
ConcreteSlabs
Carbon fibre reinforced polymer (CFRP) bars
Basalt fibre reinforced polymer (BFRP) bars
Reinforced concrete slabs
Rights
The University of Bradford theses are licenced under a Creative Commons Licence.
Institution
University of BradfordDepartment
School of Engineering, Design and Technology (EDT)Awarded
2013
Metadata
Show full item recordAbstract
An investigation on the application of basalt fibre reinforced polymer (BFRP) and carbon fibre reinforced polymer (CFRP) bars as longitudinal reinforcement for simple and continuous concrete slabs is presented. Eight continuously and four simply concrete slabs were constructed and tested to failure. Two continuously supported steel reinforced concrete slabs were also tested for comparison purposes. The slabs were classified into two groups according to the type of FRP bars. All slabs tested were 500 mm in width and 150 mm in depth. The simply supported slabs had a span of 2000 mm, whereas the continuous slabs had two equal spans, each of 2000 mm. Different combinations of under and over FRP (BFRP/CFRP) reinforcement at the top and bottom layers of slabs were investigated. The continuously supported BFRP and CFRP reinforced concrete slabs exhibited larger deflections and wider cracks than the counterpart reinforced with steel. The experimental results showed that increasing the bottom mid-span FRP reinforcement of continuous slabs is more effective than the top over middle support FRP reinforcement in improving the load capacity and reducing mid-span deflections. Design guidelines have been validated against experimental results of FRP reinforced concrete slabs tested. ISIS¿M03¿07 and CSA S806-06 equations reasonably predicted the deflections of the slabs tested. However, ACI 440¿1R-06 underestimated the deflections, overestimated the moment capacities at mid-span and over support sections, and reasonably predicted the load capacity of the continuous slabs tested. On the analytical side, a numerical technique consisting of sectional and longitudinal analyses has been developed to predict the moment¿curvature relationship, moment capacity and load-deflection of FRP reinforced concrete members. The numerical technique has been validated against the experimental test results obtained from the current research and those reported in the literature. A parametric study using the numerical technique developed has also been conducted to examine the influence of FRP reinforcement ratio, concrete compressive strength and type of reinforcement on the performance of continuous FRP reinforced concrete slabs. Increasing the concrete compressive strength decreased the curvature of the reinforced section with FRP bars. Moreover, in the simple and continuous FRP reinforced concrete slabs, increasing the FRP reinforcement at the bottom layer fairly reduced and controlled deflections.Type
ThesisQualification name
PhDCollections
Related items
Showing items related by title, author, creator and subject.
-
Dynamic soil-structure interaction of reinforced concrete buried structures under the effect of dynamic loads using soil reinforcement new technologies. Soil-structure interaction of buried rigid and flexible pipes under geogrid-reinforced soil subjected to cyclic loadsMohamed, Mostafa H.A.; Sheehan, Therese; Elshesheny, Ahmed (University of BradfordFaculty of Engineering and Informatics University of Bradford, 2019)Recent developments in constructions have heightened the need for protecting existing buried infrastructure. New roads and buildings may be constructed over already existing buried infrastructures e.g. buried utility pipes, leading to excessive loads threatening their stability and longevity. Additionally applied loads over water mains led to catastrophic damage, which result in severe damage to the infrastructure surrounding these mains. Therefore, providing protection to these existing buried infrastructure against increased loads due to new constructions is important and necessary. In this research, a solution was proposed and assessed, where the protection concept would be achieved through the inclusion process of geogrid-reinforcing layers in the soil cover above the buried infrastructure. The controlling parameters for the inclusion of geogrid-reinforcing layers was assessed experimentally and numerically. Twenty-three laboratory tests were conducted on buried flexible and rigid pipes under unreinforced and geogrid-reinforced sand beds. All the investigated systems were subjected to incrementally increasing cyclic loading, where the contribution of varying the burial depth of the pipe and the number of the geogrid-reinforcing layers on the overall behaviour of the systems was investigated. To further investigate the contribution of the controlling parameters in the pipe-soil systems performance, thirty-five numerical models were performed using Abaqus software. The contribution of increasing the amplitude of the applied cyclic loading, the number of the geogrid-reinforcing layers, the burial depth of the pipe and the unit-weight of the backfill soil was investigated numerically. The inclusion of the geogrid-reinforcing layers in the investigated pipe-soil systems had a significant influence on decreasing the transferred pressure to the crown of the pipe, generated strains along its crown, invert and spring-line, and its deformation, where reinforcing-layers sustained tensile strains. Concerning rigid pipes, the inclusion of the reinforcing-layers controlled the rebound that occurred in their invert deformation. With respect to the numerical investigation, increasing the number of the reinforcing-layers, the burial depth of the pipe and the unit-weight of the backfill soil had positive effect in decreasing the generated deformations, stresses and strains in the system, until reaching an optimum value for each parameter. Increasing the amplitude of the applied loading profile resulted in remarkable increase in the deformations, stresses and strains generated in the system. Moreover, the location of the maximum tensile strain generated in the soil was varied, as well as the reinforcing-layer, which suffered the maximum tensile strain.
-
Tests of Continuous Concrete Slabs Reinforced with Carbon Fibre Reinforced Polymer BarsMahroug, Mohamed E.M.; Ashour, Ashraf; Lam, Dennis (2013)
-
Tests of continuous concrete slabs reinforced with basalt fibre reinforced plastic barsKara, Ilker F.; Köroğlu, Mehmet A.; Ashour, Ashraf (2017)This paper presents experimental results of three continuously supported concrete slabs reinforced with basalt-fibre-reinforced polymer (BFRP) bars. Three different BFRP reinforcement combinations of over and under reinforcement ratios were applied at the top and bottom layers of continuous concrete slabs tested. One additional concrete continuous slab reinforced with steel bars and two simply supported slabs reinforced with under and over BFRP reinforcements were also tested for comparison purposes. All slabs sections tested had the same width and depth but different amounts of BFRP reinforcement. The experimental results were used to validate the existing design guidance for the predictions of moment and shear capacities, and deflections of continuous concrete elements reinforced with BFRP bars. The continuously supported BFRP reinforced concrete slabs illustrated wider cracks and larger deflections than the control steel reinforced concrete slab. All continuous BFRP reinforced concrete slabs exhibited a combined shear–flexure failure mode. ACI 440-1R-15 equations give reasonable predictions for the deflections of continuous slabs (after first cracking) but stiffer behaviour for the simply supported slabs, whereas CNR DT203 reasonably predicted the deflections of all BFRP slabs tested. On the other hand, ISIS-M03-07 provided the most accurate shear capacity prediction for continuously supported BFRP reinforced concrete slabs among the current shear design equations.