Strength and structure of granules produced in continuous granulators
Publication date
2013Keyword
REF 2014High shear granulator
Seeded granulation
Continuous granulator
Modulomix
Nica M6
Extrudomix
Open Access status
closedAccess
Metadata
Show full item recordAbstract
The effect of the operating conditions of three continuous high shear granulators on the internal structure and strength of granules has been investigated and the possibility of seeded granulation has been explored. In a recently concluded programme of research on the scale-up of a high shear granulator, Cyclomix (manufactured by Hosokawa Micron B.V., The Netherlands), a novel method of granulation called seeded granulation was introduced, where each granule contained, at its core, a large particle from the upper tail end of the feed particle size distribution. Seeded granulation is particularly useful for process control of continuous granulators as there is the potential to control granulation by the flow rate of the seed particles. Hence, the performance of three different types of continuous granulators in terms of granule strength and structure has been evaluated here; these are Extrudomix, Modulomix (manufactured by Hosokawa Micron, UK and The Netherlands, respectively) and the Nica M6 Turbine continuous granulator (manufactured by GEA, UK). Calcium carbonate (Durcal 65) powder was granulated using an aqueous solution of polyethylene glycol (PEG) as binder in the same ratio as used previously in our batch granulation, to allow comparison between the continuous and batch processes. The crushing strength was characterised by quasi-static side crushing between two platens using a mechanical testing machine. The internal structure and morphology were evaluated by scanning electron microscopy and the extent of seeding quantified. Granules produced in all the three continuous granulators were significantly weaker than those of the batch granulator tested previously. Among the continuous granulators only the Modulomix granulator produced some seeded granules. It is considered that longer residence time is necessary to produce seeded granules.Version
No full-text in the repositoryCitation
Rahmanian, N., Ghadiri, Mojtaba (2013) Strength and structure of granules produced in continuous granulators. Powder Technology, 233, 227-233.Link to Version of Record
https://doi.org/10.1016/j.powtec.2012.09.008Type
Articleae974a485f413a2113503eed53cd6c53
https://doi.org/10.1016/j.powtec.2012.09.008
Scopus Count
Collections
Related items
Showing items related by title, author, creator and subject.
-
Comparative analysis of granule properties in continuous granulatorsSekyi, Nana; Kelly, Adrian L.; Rahmanian, Nejat (2023-07)Several contributions in answering granulation challenges including the use of computer simulation and well thought out experimental analyses are being researched. Using a twin screw granulator (TSG) by design of experiments (DoE), comparisons on 1) equipment similarities i.e., continuous and 2) shear forces, are made to previous literature on continuous equipment and a Cyclomix. This study proposes that equipment specific DoE, better explains the contribution of parameters than investigating an identified parameter from the experimental findings from a specific equipment. Granule strength and structure are presented together with the contribution of process parameters, speed, temperature, and binder content. Seeded structures are present in all but the Extrudomix. Longer residence times within the Cyclomix facilitates seeded structures. Granule crushing strengths are higher in TSG than all other continuous equipment. Optimum condition for the formation of stronger granules with least variation is around 65.4 °C.
-
Influence of type of granulators on formation of seeded granulesKitching, V.R.; Rahmanian, Nejat; Jamaluddin, N.H.; Kelly, Adrian L.; CCIP grant (Collaboration, Capacity and IP Develop-ment) fund from the University of Bradford. (2020-08)It has been shown that seeded granules of calcium carbonate can be produced in commercial batch high shear granulators such as the Cyclomix high-shear impact mixer. Seeded granules are attractive to the pharmaceutical industry due to their high uniformity and good mechanical properties which can assist efficient tablet manufacture. In the current study, attempts to produce seeded granules of Durcal 65 and PEG 4000 binder using hot melt granulation are reported, in response to the recent shift towards continuous pharmaceutical manufacturing. Various screw configurations and rotation speeds were investigated in a series of experiments to determine the relationship between process conditions and granule properties. Particle size analysis, strength measurement and structural characterisation were used to quantify granule properties. It was found that using a series of kneading elements arranged at a 60° staggering angle located near to the feed section of the extruder screw generated strong, spherical granules. From structural characterisation approximately 5–15% of extruded granules were found to be seeded. Twin screw melt granulation is therefore considered to be a promising technique for continuous production of seeded granules, although a more detailed investigation is required to optimise yield and quality.
-
DEM simulation of a single screw granulator: The effect of liquid binder on granule propertiesArthur, Tony B.; Sekyi, Nana; Rahmanian, Nejat (2024-03)The Caleva UK single-screw Variable Density Extruder (VDE) is a continuous powder processing equipment known for spheronization and extrusion. Its suitability for granulation remains uncertain, a common challenge in powder processing industries that deal with granules, pellets, and tablets. This study investigates the VDE's potential for granulation, using 65 µm CaCO3 powder and PEG 4000 as a liquid binder. In order to replicate several experimental setups with varying binder concentrations and liquid-to-solid ratios (L/S) of 0.1 and 0.15, eight DEM simulations were run. Our results indicate that higher binder concentrations yield more consistent products with fewer fines, while lower concentrations result in inconsistent products with increased fines. Low L/S ratios produce fragile, fine-sized products with a broad particle size distribution (PSD). DEM simulations reveal a direct relationship between liquid binder content and contact forces. Analysis of bonds formed, and particle counts in simulations corroborates experimental observations of fines production. Additionally, granule strength appears to be directly proportional to contact force.