Publication date
2013Author
McIlhagga, William H.Open Access status
closedAccess
Metadata
Show full item recordAbstract
In visual search experiments, the subject looks for a target item in a display containing different distractor items. The reaction time (RT) to find the target is measured as a function of the number of distractors (set size). RT is either constant, or increases linearly, with set size. Here we suggest a two-stage model for search in which items are first selected and then recognized. The selection process is modeled by (a) grouping items into a hierarchical cluster tree, in which each cluster node contains a list of all the features of items in the cluster, called the object file, and (b) recursively searching the tree by comparing target features to the cluster object file to quickly determine whether the cluster could contain the target. This model is able to account for both constant and linear RT versus set size functions. In addition, it provides a simple and accurate account of conjunction searches (e.g., looking for a red N among red Os and green Ns), in particular the variation in search rate as the distractor ratio is varied.Version
No full-text in the repositoryCitation
McIlhagga WH (2013) A clustering model for item selection in visual search. Journal of Vision. 13(3): 20, 1-15.Link to Version of Record
https://doi.org/10.1167/13.3.20Type
Articleae974a485f413a2113503eed53cd6c53
https://doi.org/10.1167/13.3.20