BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    •   Bradford Scholars
    • Engineering and Informatics
    • Engineering and Informatics Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    High-Stress Shear-Induced Crystallization in Isotactic Polypropylene and Propylene/Ethylene Random Copolymers

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Publication date
    2013
    Author
    Ma, Z.
    Fernandez-Ballester, L.
    Cavallo, D.
    Gough, Timothy D.
    Peters, G.W.M.
    Keyword
    Crystallisation; Isotactic polypropylene; iPP; Random copolymers; RACO; REF 2014
    Peer-Reviewed
    Yes
    
    Metadata
    Show full item record
    Abstract
    Crystallization of an isotactic polypropylene (iPP) homopolymer and two propylene/ethylene random copolymers (RACO), induced by high-stress shear, was studied using in situ synchrotron wide-angle X-ray diffraction (WAXD) at 137 °C. The “depth sectioning” method (Fernandez-Ballester Journal of Rheology 2009, 53 (5), 1229−1254) was applied in order to isolate the contributions of different layers in the stress gradient direction and to relate specific structural evolution to the corresponding local stress. This approach gives quantitative results in terms of the specific length of fibrillar nuclei as a function of the applied stress. As expected, crystallization becomes faster with increasing stress—from the inner to the outer layer—for all three materials. Stress-induced crystallization in a RACO with 7.3 mol % ethylene content was triggered at only 1 °C below its nominal melting temperature. The comparison of iPP and RACO’s with 3.4 and 7.3 mol % ethylene monomer reveals the effect of ethylene defects on high-stress shear induced crystallization at 137 °C. It is found that, for a given applied stress, the specific nuclei length formed by flow increases with ethylene content—which is attributed to a greater high molecular weight tail. However, the linear growth rate is significantly reduced by the presence of ethylene comonomers and it is found that this effect dominates the overall crystallization kinetics. Finally, a time lag is found between development of parent lamellae and the emergence of daughter lamellae, consistent with the concept of daughter lamellae nucleated by homoepitaxy on the lateral faces of existing parent lamellae.
    URI
    http://hdl.handle.net/10454/6074
    Version
    No full-text in the repository
    Citation
    Ma Z, Fernandez-Ballester L, Cavallo D, Gough T and Peters GWM (2013) High-Stress Shear-Induced Crystallization in Isotactic Polypropylene and Propylene/Ethylene Random Copolymers. Macromolecules. 46(7): 2671-2680.
    Link to publisher’s version
    http://dx.doi.org/10.1021/ma302518c
    Type
    Article
    Collections
    Engineering and Informatics Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.