BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Display statistics

    Bone morphogenetic protein signaling suppresses wound-induced skin repair by inhibiting keratinocyte proliferation and migration

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Publication date
    2014
    Author
    Lewis, Christopher J.
    Mardaryev, Andrei N.
    Poterlowicz, Krzysztof
    Sharova, T.Y.
    Aziz, A.
    Sharpe, David T.
    Botchkareva, Natalia V.
    Sharov, A.A.
    Keyword
    REF 2014; Bone morphogenetic protein; Skin repair; Keratinocyte proliferation
    
    Metadata
    Show full item record
    Abstract
    Bone morphogenetic protein (BMP) signaling plays a key role in the control of skin development and postnatal remodeling by regulating keratinocyte proliferation, differentiation, and apoptosis. To study the role of BMPs in wound-induced epidermal repair, we used transgenic mice overexpressing the BMP downstream component Smad1 under the control of a K14 promoter as an in vivo model, as well as ex vivo and in vitro assays. K14-caSmad1 (transgenic mice overexpressing a constitutively active form of Smad1 under K14 promoter) mice exhibited retarded wound healing associated with significant inhibition of proliferation and increased apoptosis in healing wound epithelium. Furthermore, microarray and quantitative real-time reverse-transcriptase-PCR (qRT-PCR) analyses revealed decreased expression of a number of cytoskeletal/cell motility-associated genes including wound-associated keratins (Krt16, Krt17) and Myosin VA (Myo5a), in the epidermis of K14-caSmad1 mice versus wild-type (WT) controls during wound healing. BMP treatment significantly inhibited keratinocyte migration ex vivo, and primary keratinocytes of K14-caSmad1 mice showed retarded migration compared with WT controls. Finally, small interfering RNA (siRNA)-mediated silencing of BMPR-1B in primary mouse keratinocytes accelerated cell migration and was associated with increased expression of Krt16, Krt17, and Myo5a compared with controls. Thus, this study demonstrates that BMPs inhibit keratinocyte proliferation, cytoskeletal organization, and migration in regenerating skin epithelium during wound healing, and raises a possibility for using BMP antagonists for the management of chronic wounds.
    URI
    http://hdl.handle.net/10454/6067
    Citation
    Lewis, C. J., Mardaryev, A. N., Poterlowicz, K., Sharova, T. Y., Aziz, A., Sharpe, D. T., Botchkareva, N. V., Sharov, A. A. (2014) Bone morphogenetic protein signaling suppresses wound-induced skin repair by inhibiting keratinocyte proliferation and migration. Journal of Investigative Dermatology. 134(3): 827-37.
    Link to publisher’s version
    http://dx.doi.org/10.1038/jid.2013.419
    Type
    Article
    Collections
    Life Sciences Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2021)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.