• Cell engineering of human bone monolayers and the effect of growth factors and microcontact printed ECM proteins on wound healing. The role of ECM proteins, TGF¿-1, 2 and 3 and HCl/BSA in cellular adhesion, wound healing and imaging of the cell surface interface with the widefield surface plasmon microscope.

      Youseffi, Mansour; Denyer, Morgan C.T.; Sefat, Farshid (University of BradfordDivision of Medical Engineering, School of Engineering, Design and Technology, 2013-12-06)
      Bone repair is modulated by different stimuli. There is evidence that the Transforming Growth Factor-beta (TGF-¿) super-family of cytokines have significant effects on bone structure by regulating the replication and differentiation of chondrocytes, osteoblasts and osteoclasts. There is also significant evidence that interactions with extracellular matrix molecules also influence cell behaviour. This study aimed at determining the role of the TGF-¿s, Collagen type I, Fibronectin and Laminin in bone cell behaviour. To do this MG63 bone cells were used to examine cell adhesion and alignment to different micro-contact printed ECM protein patterns of different widths. The study also aimed at examining how TGF-¿1, 2 and 3 and their solvent and carrier (HCl and BSA, respectively) effected cell surface interactions, cell morphology, cell proliferation and integrin expression. Finally, this study also aimed at examining how the TGF-¿s and their solvent and carrier influenced wound closure in an in vitro wound closure model and how TGF-¿s influence ECM secretion and integrin expression. 5, 10, 25, 50 and 100¿m wide repeat gratings of Collagen type I, Fibronectin and Laminin patterns were stamp patterned onto glass slides and plated with MG63 cells at 50,000 cells per coverslip. Cells on the fibronectin pattern attached and elongated soon after seeding, but did not adhere readily to collagen and laminin and appeared more rounded until 18hrs after seeding. Cells aligned significantly well on the 50¿m and 100¿m wide fibronectin patterned coverslips with mean angles of alignment ~7.87¿ ¿ 3.06SD and 6.45¿ ¿ 5.08SD, respectively, compared to those with smaller width (p<0.001). In comparison, cells aligned less readily to the other two ECM proteins, showing optimal alignments of 9.66¿ ¿ 4.18SD and 14.36¿ ¿ 1.57SD to the 50¿m wide collagen and laminin patterns, respectively. Differences in cell length mirrored those of alignment, with cells acquiring the greatest length when showing the greatest degree of alignment. The results indicate that MG63 cells responded significantly better to 50 and 100¿m wide fibronectin patterns compared to those with smaller width (p<0.001) indicating that the cells may attach mostly via fibronectin specific integrins. Cell surface attachment was examined via a trypsinisation assay in which the time taken to trypsinise cells from the surface provided a means of assessing the strength of attachment. The results indicated that treatment with the solvent (HCl), TGF-¿1, 2 and 3 all decreased cell attachment, but this effect was significantly greater in the case of HCl and TGF-¿3 (p<0.001). However, there were significant differences in trypsinisation rates between HCl and TGF-¿3 (p<0.001). The wound healing response to the TGF-¿s and their solvent/carrier was also investigated in 300¿m ± 10-30¿m SD wide model wounds induced in fully confluent monolayers of MG63 bone cells. The results indicated that TGF-¿3 and HCl significantly enhance wound closure when compared against negative controls, TGF-¿1 and TGF-¿2 treatment (p<0.001). It was also found that TGF-¿1 and TGF-¿2 treatment significantly improved wound closure rate in comparison to the controls (p<0.001). Experiments were performed to determine if the HCl effects on wound closure were dose dependent. Cells were incubated with 20¿M, 40¿M, 80¿M and 160¿M concentrations of HCl prior to wounding and wound closure rates were recorded. Wound closure was dependent on HCl dose with the 80¿M and 160¿M concentrations inducing increases in wound closure rates that were both significantly greater than those induced by 20¿M, 40¿M and control treatments (p<0.001). However, there were significant differences in wound closure between the 80¿M and 160¿M treatment groups after 30hrs of treatment (p<0.001). The effect of different TGF-¿ isomers and their combinations on proliferation rate and cell length of human bone cells were also assessed. The results suggest that cell morphology changes were observed significantly more in cells treated with TGF-¿(2+3) and TGF-¿(1+3) (p<0.001). Any cell treated with TGF-¿1, TGF-¿(1+2) and TGF-¿(1+2+3) showed significantly less elongation compared to the control and other TGF-¿ isomers. In terms of proliferation rate, TGF-¿3 and TGF-¿(2+3) increased cell numbers more than TGF-¿1, TGF-¿2 and other combinations. TGF-¿1 and its combinations did not show significant proliferation and attachment compared to the control due to perhaps its inhibitory effect in contact with human bone cells. Immunostaining indicated that treatment with TGF-¿3 significantly promoted the secretion of collagen type I and anti-human fibronectin in addition to integrin (¿3 and ¿1) expression. Statistically TGF-¿3 and their combinations showed significant differences in number of cells stained for collagen type I, anti-human fibronectin, ¿3 and ¿1integrin. Any cell treated with TGF-¿1 or any combination with TGF-¿1 showed significantly lower cell number stained with the same proteins and integrins (p<0.001). Imaging with WSPR allowed observation of the focal contacts without the need for immunostaining. WSPR images revealed guided cells with high contrast band like structures at the border of cells distal to the edge of guidance cue to which they aligned and with less concentrically formed band like features across the cell body. It is believed that the high contrast features are associated with the formation of focal contacts on the edge of the cells distal to the edge of fibronectin patterns, which suggests that cell guidance is aided by a decrease in cell attachment along a guidance feature. The WSPR experiments also indicated that TGF-¿s influenced the distribution of focal contacts. In the case of TGF-¿1 treated cells the bright high contrast regions were intense but only arranged around the periphery of the cell. In TGF-¿2 and TGF-¿3 cells the bright contrast regions were weaker but again mostly localised around the periphery. These findings supported the earlier trypsinisation results.
    • The effect of synthetic cannabinoids on wound healing of chondrocytes monolayers and pseudo 3D cartilage tissue. Effect of different concentrations of synthetic cannabinoids WIN55, 212-2, URB602 and HU-308 with and without their antagonists on wound healing of chondrocyte monolayers and pseudo 3D cartilage tissue.

      Youseffi, Mansour; Denyer, Morgan C.T.; Abdeldayem, Ali I.A. (University of BradfordDivision of Medical Engineering, School of Engineering, Design and Technology, 2014-05-07)
      Studies have been conducted to highlight the anti-inflammatory and immunosuppressive properties of cannabinoids and also their potentials for cartilage repair and regeneration. Various wound healing techniques can be used to investigate the mechanisms of chondrocyte repair in monolayers or three dimensional tissue constructs. The effect of different concentrations of the synthetic cannabinoids WIN55, 212-2 (WIN-2), URB602 and HU-308 with and without their antagonists on the wound healing of chondrocyte monolayers was investigated using a simple scratch assay model. The three cannabinoids were found to increase wound healing of chondrocyte monolayers, but at different rates. WIN55, 212-2 at a concentration of 1μM had the highest effect of increasing both migration and proliferation of chondrocytes cultured in a chondrogenic media, which increased the rate of wound closure. It was also found that treating the cells with 2μM of any of the cannabinoids lead to a decrease in cell proliferation and the rate of wound closure. These findings were further investigated, by studying the effect of WIN-2 on nitric oxide (NO) and matrix metalloproteinase-2 (MMP-2) expressed by wounded chondrocyte monolayers. Moreover, expression of collagen type-I, collagen type-II, fibronectin and S100 proteins were detected using immunofluorescence and verified quantitatively using ELISA based techniques, following treatment with 1μM and 2μM of WIN-2, for both 2D monolayers and 3D sheets. Treating chondrocytes with 1μM of WIN-2 significantly increased collagen type-II, fibronectin and S100, and significantly reduced collagen type-I compared to control groups in monolayers and chondrocyte cell sheets. On the other hand, both concentrations of WIN-2 significantly reduced the expression of the inflammation markers NO, and MMP-2, in a dose dependent manner. These findings highlight the potential use of the synthetic cannabinoid for improving the rate of wound closure as well as acting as an antiinflammatory agent, which could be used to enhance tissue engineering protocols aimed at cartilage repair.
    • The role of photoreceptors in human skin physiology; potential targets for light-based wound healing treatments. Identification of opsins and cryptochromes and the effect of photobiomodulation on human skin and in cultured primary epidermal keratinocytes and dermal fibroblasts

      Thornton, M. Julie; Botchkarev, Vladimir A.; Castellano-Pellicena, Irene (University of BradfordCentre for Skin Sciences, Faculty of Life Sciences, 2017)
      The positive effect of photobiomodulation in wound healing has previously been reported, however there is a considerable lack of knowledge regarding the molecular mechanisms involved, and no consensus on light parameters. Cytochrome c oxidase (CCO) is established as the main photoreceptor in cells, but light also induces nitric oxide (NO), production of reactive oxygen species (ROS) and activation of ion channels. Emerging new molecular targets include the GPCRs opsins (OPNs) and the circadian clock transcription factors, cryptochromes (CRYs). Localisation of OPN1-SW, OPN3, OPN5, CRY1 and CRY2 was seen in female facial and abdominal human skin. Furthermore, expression of these photoreceptors was retained in primary epidermal keratinocytes and dermal fibroblasts in culture; both cell types expressed OPN1-SW, OPN3, CRY1 and CRY2, at the mRNA and protein level. OPN2 was only expressed in cultured dermal fibroblasts, while in line with in situ expression, OPN5 was only expressed in cultured keratinocytes. The photoreceptor-expressing cultured epidermal keratinocytes demonstrated a dose- and wavelength- dependent response in both metabolic activity and cell migration in a scratch-wound assay. Specifically, low dose (2 J/cm2) blue light (447 nm) increased metabolic activity, but it did not impact keratinocyte migration. In contrast, high dose (30 J/cm2) blue light had no effect on metabolism, but inhibited migration of epidermal keratinocytes. Red light (655 nm) at 30 J/cm2 stimulated metabolic activity but did not modulate migration, while a higher dose of 60 J/cm2 had no effect on keratinocyte metabolic activity. In order to study OPN3 and CRY1 function, they were silenced in keratinocytes using siRNA; additionally 8 μM KL001 was used to stabilize CRY1. KL001 inhibited migration, and induced KRT1 and KRT10, an effect which was abrogated by knockdown of OPN3. Interestingly, knockdown of OPN3 upregulated CRY1 expression, while KL001 upregulated OPN3 expression, indicating a regulation by OPN3 of the molecular epidermal clock. Low levels of blue light increased early differentiation of epidermal keratinocytes, which was mediated by OPN3 and circadian clock mechanisms. However, low levels of blue light decreased keratinocyte DNA synthesis, which was mediated by circadian clock independently of OPN3. Translation of parameters ex vivo showed increasing re-epithelialisation and induction of OPN3 and CRY1 expression following exposure to 2 J/cm2 of blue light; however high doses of blue light inhibited re-epithelialisation. Red light, also increased re-epithelialisation, but had no effect on OPN3 or CRY1 expression. In conclusion, photoreceptors are expressed in human skin and they mediate DNA synthesis, migration and differentiation of epidermal keratinocytes. Furthermore, low dose of blue light interacts with OPN3 to induce epidermal differentiation, through the regulation of the circadian clock. A better understanding of the molecular mechanisms behind the photobiomodulation response in vitro will help to develop light based therapies for human wound healing. Interestingly, selected light parameters translated to human ex vivo skin showed a beneficial effect of low doses of blue (2 J/cm2) and red (30 J/cm2) light in re-epithelialisation.
    • The role of the SWI/SNF ATP dependent chromatin remodelling complex in the regulation of the human hair follicle cell proliferation and control of the human cutaneous wound healing

      Fessing, Michael Y.; Botchkareva, Natalia V.; Kellett, Carl W. (University of BradfordFaculty of Life sciences, 2018)
      Epigenetic regulation of gene expression occurs at a number of levels including covalent DNA and histone modifications, nucleosome positioning and ATP-dependent chromatin remodelling as well as higher order chromatin folding and 3D genome organisation. ATP-dependent chromatin remodelling complexes modulate nucleosome structure, positioning and chromatin de-compaction and are involved in gene activation and repression. SWI/SNF ATP-dependent chromatin remodelling complexes contain either BRG1 or BRM as the core ATPase together with other common and variable subunits. BRG1 is required for terminal epidermal differentiation in mice and humans and for hair follicle stem cell activation during mouse hair follicle regeneration and cutaneous wound healing. However, the role of SWI/SNF complexes in human hair growth and wound healing remain unknown. Here it is demonstrated that genes encoding SWI/SNF complex subunits are expressed in human hair follicles. It also highlights that siRNA mediated suppression of SWI/SNF complexes in hair follicle culture has no effect on hair growth, or anagen-catagen transition in the short term, but a significant increase in proliferation of the outer root sheath keratinocytes was seen. The data also documents the expression of several SWI/SNF subunits in human epidermis and that siRNA mediated SMARCA4 gene suppression in primary human keratinocyte monolayers defined the requirements of BRG1 for wound closure through control of cell migration, but not proliferation. In summary, this data revealed a diverse SWI/SNF complex subunit composition in human epidermis and hair follicle, and an essential role of the core complex ATPase BRG1 in keratinocyte migration during wound closure and re-epithelisation.
    • The roles of vitamin D in cutaneous wound healing: In vitro and ex vivo studies of the effect of 1,25(OH)2D3 and its precursors on human dermal fibroblasts and epidermal keratinocytes in cutaneous wound healing

      Thornton, M. Julie; Graham, Anne M.; Tay, Jing Q.
      In humans, the epidermis is the main site for the synthesis of Vitamin D3 (cholecalciferol) from 7-dehydrocholesterol. Cholecalciferol undergoes further hydroxylation in the liver and kidney to produce the active form of the circulating hormone 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3). In target cells, 1,25(OH)2D3 interacts with the specific intracellular vitamin D receptor (VDR), a member of the nuclear receptor superfamily. However, epidermal keratinocytes, in addition to being target cells, have enzymes required for autocrine production of 1,25(OH)2D3. They can convert cholecalciferol to 1,25(OH)2D3 via 25-hydroxylase (CYP2R1) and 1α-hydroxylase (CYP27B1). Another enzyme, 24-hydroxylase (CYP24A1), regulates local levels by inactivating 1,25(OH)2D3. While recent studies have shown that absence of VDR or 1,25(OH)2D3 impairs formation of granulation tissue during wound healing in mice, little is known about the autocrine and paracrine regulation of biologically active vitamin D3 by human dermal fibroblasts during cutaneous wound healing. Primary cultures of human keratinocytes and fibroblasts expressed VDR and all the cytochrome enzymes necessary for autocrine production of vitamin D. The relative expression of VDR mRNA was higher in dermal fibroblasts than donor-matched keratinocytes. In contrast, epidermal keratinocytes had a higher mRNA expression of vitamin D3 metabolising enzymes. A scratch wound assay confirmed that 1,25(OH)2D3 stimulated keratinocyte migration, but paradoxically inhibited fibroblast migration as early as 4h, yet neither cholecalciferol nor 25-hydroxyvitamin D3 had any effect. VDR knockdown using small interfering RNA (siRNA) abolished the inhibitory effect of 1,25(OH)2D3 on fibroblast migration, demonstrating the requirement for the VDR in this response. Immunofluorescent staining revealed that 1,25(OH)2D3 increased nuclear VDR protein expression, without a corresponding increase in VDR mRNA transcription only in mechanically wounded dermal fibroblasts, indicating activation of the receptors. Incubation with either 1,25(OH)2D3, cholecalciferol or 25(OH)D3 up-regulated CYP24A1 transcription. This response was most pronounced with 1,25(OH)2D3, suggesting a tightly regulated feedback control on 1,25(OH)2D3 bioavailability within the dermis. In addition, cholecalciferol also increased CYP2R1 and CYP27B1 mRNA expression in scratched dermal fibroblasts, providing evidence for autocrine regulation of 1,25(OH)2D3 by dermal fibroblasts. Expression of α-SMA protein was up-regulated in cultured dermal fibroblasts following scratching, which was down-regulated in the presence of 1,25(OH)2D3. These observations suggest that 1,25(OH)2D3 may restrict differentiation of wounded dermal fibroblasts into pro-fibrotic myofibroblasts. 1,25(OH)2D3 also down-regulated MMP-2 secretion and collagen type I to III ratio in scratched dermal fibroblasts. Using a human ex vivo wound healing model, it was demonstrated that 1,25(OH)2D3, but not cholecalciferol, stimulated the rate of wound closure. In summary, this study has confirmed that human dermal fibroblasts express the transcriptional machinery for autocrine production of 1,25(OH)2D3, and a higher VDR expression suggests they are more responsive than keratinocytes. Changes in CYP and VDR expression in the presence of cholecalciferol, 25-hydroxyvitamin D3 or 1,25(OH)2D3 indicate fine-tuning of the bioavailability of vitamin D in the dermis after wounding. Down-regulation of α-SMA, MMP-2 secretion and the collagen type I to III ratio by 1,25(OH)2D3 highlight an important role for 1,25(OH)2D3 in modulating wound healing and the scarring process.