• CMOS design enhancement techniques for RF receivers. Analysis, design and implementation of RF receivers with component enhancement and component reduction for improved sensitivity and reduced cost, using CMOS technology.

      Not named; Logan, Nandi (University of BradfordSchool of Engineering, Design and Technology, 2010)
      Silicon CMOS Technology is now the preferred process for low power wireless communication devices, although currently much noisier and slower than comparable processes such as SiGe Bipolar and GaAs technologies. However, due to ever-reducing gate sizes and correspondingly higher speeds, higher Ft CMOS processes are increasingly competitive, especially in low power wireless systems such as Bluetooth, Wireless USB, Wimax, Zigbee and W-CDMA transceivers. With the current 32 nm gate sized devices, speeds of 100 GHz and beyond are well within the horizon for CMOS technology, but at a reduced operational voltage, even with thicker gate oxides as compensation. This thesis investigates newer techniques, both from a systems point of view and at a circuit level, to implement an efficient transceiver design that will produce a more sensitive receiver, overcoming the noise disadvantage of using CMOS Silicon. As a starting point, the overall components and available SoC were investigated, together with their architecture. Two novel techniques were developed during this investigation. The first was a high compression point LNA design giving a lower overall systems noise figure for the receiver. The second was an innovative means of matching circuits with low Q components, which enabled the use of smaller inductors and reduced the attenuation loss of the components, the resulting smaller circuit die size leading to smaller and lower cost commercial radio equipment. Both these techniques have had patents filed by the University. Finally, the overall design was laid out for fabrication, taking into account package constraints and bond-wire effects and other parasitic EMC effects.
    • A Connection Admission Control Framework for UMTS based Satellite Systems.An Adaptive Admission Control algorithm with pre-emption control mechanism for unicast and multicast communications in satellite UMTS.

      Hu, Yim Fun; Halliwell, Rosemary A.; Pillai, Anju (University of BradfordSchool of Engineering, Design and Technology, 2012-11-02)
      In recent years, there has been an exponential growth in the use of multimedia applications. A satellite system offers great potential for multimedia applications with its ability to broadcast and multicast a large amount of data over a very large area as compared to a terrestrial system. However, the limited transmission capacity along with the dynamically varying channel conditions impedes the delivery of good quality multimedia service in a satellite system which has resulted in research efforts for deriving efficient radio resource management techniques. This issue is addressed in this thesis, where the main emphasis is to design a CAC framework which maximizes the utilization of the scarce radio resources available in the satellite and at the same time increases the performance of the system for a UMTS based satellite system supporting unicast and multicast traffic. The design of the system architecture for a UMTS based satellite system is presented. Based on this architecture, a CAC framework is designed consisting of three different functionalities: the admission control procedure, the retune procedure and the pre-emption procedure. The joint use of these functionalities is proposed to allow the performance of the system to be maintained under congestion. Different algorithms are proposed for different functionalities; an adaptive admission control algorithm, a greedy retune algorithm and three pre-emption algorithms (Greedy, SubSetSum, and Fuzzy). A MATLAB simulation model is developed to study the performance of the proposed CAC framework. A GUI is created to provide the user with the flexibility to configure the system settings before starting a simulation. The configuration settings allow the system to be analysed under different conditions. The performance of the system is measured under different simulation settings such as enabling and disabling of the two functionalities of the CAC framework; retune procedure and the pre-emption procedure. The simulation results indicate the CAC framework as a whole with all the functionalities performs better than the other simulation settings.
    • Load balancing in heterogeneous wireless communications networks. Optimized load aware vertical handovers in satellite-terrestrial hybrid networks incorporating IEEE 802.21 media independent handover and cognitive algorithms.

      Pillai, Prashant; Hu, Yim Fun; Ali, Muhammad (University of BradfordSchool of Engineering, Design and Technology, 2014-05-02)
      Heterogeneous wireless networking technologies such as satellite, UMTS, WiMax and WLAN are being used to provide network access for both voice and data services. In big cities, the densely populated areas like town centres, shopping centres and train stations may have coverage of multiple wireless networks. Traditional Radio Access Technology (RAT) selection algorithms are mainly based on the ¿Always Best Connected¿ paradigm whereby the mobile nodes are always directed towards the available network which has the strongest and fastest link. Hence a large number of mobile users may be connected to the more common UMTS while the other networks like WiMax and WLAN would be underutilised, thereby creating an unbalanced load across these different wireless networks. This high variation among the load across different co-located networks may cause congestion on overloaded network leading to high call blocking and call dropping probabilities. This can be alleviated by moving mobile users from heavily loaded networks to least loaded networks. This thesis presents a novel framework for load balancing in heterogeneous wireless networks incorporating the IEEE 802.21 Media Independent Handover (MIH). The framework comprises of novel load-aware RAT selection techniques and novel network load balancing mechanism. Three new different load balancing algorithms i.e. baseline, fuzzy and neural-fuzzy algorithms have also been presented in this thesis that are used by the framework for efficient load balancing across the different co-located wireless networks. A simulation model developed in NS2 validates the performance of the proposed load balancing framework. Different attributes like load distribution in all wireless networks, handover latencies, packet drops, throughput at mobile nodes and network utilization have been observed to evaluate the effects of load balancing using different scenarios. The simulation results indicate that with load balancing the performance efficiency improves as the overloaded situation is avoided by load balancing.
    • Radio Resource Management for Satellite UMTS. Dynamic scheduling algorithm for a UMTS-compatible satellite network.

      Hu, Yim Fun; Chan, Pauline M.L.; Min, Geyong; Xu, Kai J. (University of BradfordSchool of Engineering Design and Technology, 2013-11-20)
      The third generation of mobile communication systems introduce interactive Multicast and Unicast multimedia services at a fast data rate of up to 2 Mbps and is expected to complete the globalization of the mobile telecommunication systems. The implementation of these services on satellite systems, particularly for broadcast and multicast applications to complement terrestrial services is ideal since satellite systems are capable of providing global coverage in areas not served by terrestrial telecommunication services. However, the main bottleneck of such systems is the scarcity of radio resources for supporting multimedia applications which has resulted in the rapid growth in research efforts for deriving efficient radio resource management techniques. This issue is addressed in this thesis, where the main emphasis is to design a dynamic scheduling framework and algorithm that can improve the overall performance of the radio resource management strategy of a UMTS compatible satellite network, taking into account the unique characteristics of wireless channel conditions. This thesis will initially be focused on the design of the network and functional architecture of a UMTS -compatible satellite network. Based on this architecture, an effective scheduling framework is designed, which can provide different types of resource assigning strategies. A functional model of scheduler is defined to describe the behaviours and interactions between different functional entities. An OPNET simulation model with a complete network protocol stack is developed to validate the performance of the scheduling algorithms implemented in the satellite network. Different types of traffic are considered for the OPNET simulation, such as the Poisson Process, ONOFF Source and Self Similar Process, so that the performance of scheduling algorithm can be analyzed for different types of services. A novel scheduling algorithm is proposed to optimise the channel utilisation by considering the characteristics of the wireless channel, which are bursty and location dependent. In order to overcome the channel errors, different code rates are applied for the user under different channel conditions. The proposed scheduling algorithm is designed to give higher priority to users with higher code rate, so that the throughput of network is optimized and at the same time, maintaining the end users¿ service level agreements. The fairness of the proposed scheduling algorithm is validated using OPNET simulation. The simulation results show that the algorithm can fairly allocate resource to different connections not only among different service classes but also within the same service class depending on their QoS attributes.