BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Partial least squares structural equation modelling with incomplete data. An investigation of the impact of imputation methods.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    THESIS PHD JB MOHD JAMIL.pdf (2.092Mb)
    Download
    Publication date
    2013-11-28
    Author
    Mohd Jamil, J.B.
    Supervisor
    Wallace, James
    Keyword
    Missing data
    Partial least squares
    Structural equation modelling
    Neural networks
    Imputation methods
    Incomplete data
    Rights
    Creative Commons License
    The University of Bradford theses are licenced under a Creative Commons Licence.
    Institution
    University of Bradford
    Department
    School of Management
    Awarded
    2012
    
    Metadata
    Show full item record
    Abstract
    Despite considerable advances in missing data imputation methods over the last three decades, the problem of missing data remains largely unsolved. Many techniques have emerged in the literature as candidate solutions. These techniques can be categorised into two classes: statistical methods of data imputation and computational intelligence methods of data imputation. Due to the longstanding use of statistical methods in handling missing data problems, it takes quite some time for computational intelligence methods to gain profound attention even though these methods have analogous accuracy, in comparison to other approaches. The merits of both these classes have been discussed at length in the literature, but only limited studies make significant comparison to these classes. This thesis contributes to knowledge by firstly, conducting a comprehensive comparison of standard statistical methods of data imputation, namely, mean substitution (MS), regression imputation (RI), expectation maximization (EM), tree imputation (TI) and multiple imputation (MI) on missing completely at random (MCAR) data sets. Secondly, this study also compares the efficacy of these methods with a computational intelligence method of data imputation, ii namely, a neural network (NN) on missing not at random (MNAR) data sets. The significance difference in performance of the methods is presented. Thirdly, a novel procedure for handling missing data is presented. A hybrid combination of each of these statistical methods with a NN, known here as the post-processing procedure, was adopted to approximate MNAR data sets. Simulation studies for each of these imputation approaches have been conducted to assess the impact of missing values on partial least squares structural equation modelling (PLS-SEM) based on the estimated accuracy of both structural and measurement parameters. The best method to deal with particular missing data mechanisms is highly recognized. Several significant insights were deduced from the simulation results. It was figured that for the problem of MCAR by using statistical methods of data imputation, MI performs better than the other methods for all percentages of missing data. Another unique contribution is found when comparing the results before and after the NN post-processing procedure. This improvement in accuracy may be resulted from the neural network¿s ability to derive meaning from the imputed data set found by the statistical methods. Based on these results, the NN post-processing procedure is capable to assist MS in producing significant improvement in accuracy of the approximated values. This is a promising result, as MS is the weakest method in this study. This evidence is also informative as MS is often used as the default method available to users of PLS-SEM software.
    URI
    http://hdl.handle.net/10454/5728
    Type
    Thesis
    Qualification name
    PhD
    Collections
    Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.