The role of peripheral visual cues in planning and controlling movement :|ban investigation of which cues provided by different parts of the visual field influence the execution of movement and how they work to control upper and lower limb motion.

Publication date
2013-11-22Author
Graci, ValentinaSupervisor
Bloj, MarinaKeyword
Peripheral visual cuesCentral visual cues
Online control
Feedforward control
Visual exproprioception
Visual exteroception
Locomotion
Obstacle crossing
Postural stability
Reaching and grasping
Adaptive gait
Rights

The University of Bradford theses are licenced under a Creative Commons Licence.
Institution
University of BradfordDepartment
Bradford School of Optometry and Vision ScienceAwarded
2010
Metadata
Show full item recordAbstract
Visual cues have previously been classified as visual exproprioceptive, when defining the relative position of the body within the environment and are continuously updated while moving (online), and visual exteroceptive when describing static features of the environment which are typically elaborated offline (feedforward). However peripheral visual cues involved in the control of movement have not previously been clearly defined using this classification. Hence the role played by peripheral visual cues in the planning and/or online control of movement remains unclear. The aim of this thesis was to provide a systematic understanding of the importance of peripheral visual cues in several types of movement, namely overground locomotion, adaptive gait, postural stability and reaching and grasping. 3D motion capture techniques were used to collect limb and whole body kinematics during such movements. Visual peripheral cues were manipulated by visual field occlusion conditions or by the employment of point-lights in a dark room. Results showed that the visual cues provided by different parts of the peripheral visual field are mainly used for online fine tuning of limb trajectory towards a target (either a floor-based obstacle or an object to grasp). The absence of peripheral visual cues while moving disrupted the spatio-temporal dynamic relationship between subject and target and resulted in increased margins of safety between body and target and increased time and variability of several dependent measures. These findings argue in favour of the classification of peripheral visual cues as visual exproprioceptive.Type
ThesisQualification name
PhDCollections
Related items
Showing items related by title, author, creator and subject.
-
Central Visual Field Sensitivity Data from Microperimetry with Spatially Dense SamplingAstle, A.T.; Ali, I.; Denniss, Jonathan (2016-12)Microperimetry, also referred to as fundus perimetry or fundus-driven perimetry, enables simultaneous acquisition of visual sensitivity and eye movement data. We present sensitivity data collected from 60 participants with normal vision using gaze-contingent perimetry. A custom designed spatially dense test grid was used to collect data across the visual field within 13° of fixation. These data are supplemental to a study in which we demonstrated a spatial interpolation method that facilitates comparison of acquired data from any set of spatial locations to normative data and thus screening of individuals with both normal and non-foveal fixation (Denniss and Astle, 2016)[1].
-
Utility of Peripheral Visual Cues in Planning and Controlling Adaptive GaitGraci, Valentina; Elliott, David B.; Buckley, John G. (2010-01)The purpose of this article is to determine the relative importance to adaptive locomotion of peripheral visual cues provided by different parts of the visual field. Twelve subjects completed obstacle crossing trials while wearing goggles that provided four visual conditions: upper visual field occlusion, lower visual field occlusion (LO), circumferential peripheral visual field occlusion (CPO), and full vision. The obstacle was either positioned as a lone structure or within a doorframe. Given that subjects completed the task safely without cues from the lower or peripheral visual field, this suggests that subjects used exteroceptive information provided in a feed-forward manner under these conditions. LO and CPO led to increased foot placement distance from the obstacle and to increased toe clearance over the obstacle with a reduced crossing-walking velocity. The increased variability of dependent measures under LO and CPO suggests that exproprioceptive information from the peripheral visual field is generally used to provide online control of lower limbs. The presence of the doorframe facilitated lead-foot placement under LO by providing exproprioceptive cues in the upper visual field. However, under CPO conditions, the doorframe led to a further reduction in crossing velocity and increase in trail-foot horizontal distance and lead-toe clearance, which may have been because of concerns about hitting the doorframe with the head and/or upper body. Our findings suggest that exteroceptive cues are provided by the central visual field and are used in a feed-forward manner to plan the gait adaptations required to safely negotiate an obstacle, whereas exproprioceptive information is provided by the peripheral visual field and used online to “fine tune” adaptive gait. The loss of the upper and lower peripheral visual fields together had a greater effect on adaptive gait compared with the loss of the lower visual field alone, likely because of the absence of lamellar flow visual cues used to control egomotion.
-
Video extraction for fast content access to MPEG compressed videosJiang, Jianmin; Weng, Y. (2009-06-09)As existing video processing technology is primarily developed in the pixel domain yet digital video is stored in compressed format, any application of those techniques to compressed videos would require decompression. For discrete cosine transform (DCT)-based MPEG compressed videos, the computing cost of standard row-by-row and column-by-column inverse DCT (IDCT) transforms for a block of 8 8 elements requires 4096 multiplications and 4032 additions, although practical implementation only requires 1024 multiplications and 896 additions. In this paper, we propose a new algorithm to extract videos directly from MPEG compressed domain (DCT domain) without full IDCT, which is described in three extraction schemes: 1) video extraction in 2 2 blocks with four coefficients; 2) video extraction in 4 4 blocks with four DCT coefficients; and 3) video extraction in 4 4 blocks with nine DCT coefficients. The computing cost incurred only requires 8 additions and no multiplication for the first scheme, 2 multiplication and 28 additions for the second scheme, and 47 additions (no multiplication) for the third scheme. Extensive experiments were carried out, and the results reveal that: 1) the extracted video maintains competitive quality in terms of visual perception and inspection and 2) the extracted videos preserve the content well in comparison with those fully decompressed ones in terms of histogram measurement. As a result, the proposed algorithm will provide useful tools in bridging the gap between pixel domain and compressed domain to facilitate content analysis with low latency and high efficiency such as those applications in surveillance videos, interactive multimedia, and image processing.