BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Simulation, optimisation and flexible scheduling of MSF desalination process under fouling. Optimal design and operation of MSF desalination process with brine heater and demister fouling, flexible design operation and scheduling under variable demand and seawater temperature using gPROMS.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    EAM_ HAWAIDI .php.pdf (2.790Mb)
    Download
    Publication date
    2013-07-24
    Author
    Hawaidi, Ebrahim A.M.
    Supervisor
    Mujtaba, Iqbal M.
    Keyword
    Modelling
    Optimisation
    Neural Networks
    Seawater temperature
    Freshwater demand
    Fouling
    Flexible scheduling
    gPROMS
    Multistage flash (MSF) desalination process
    Desalination
    Rights
    Creative Commons License
    The University of Bradford theses are licenced under a Creative Commons Licence.
    Institution
    University of Bradford
    Department
    School of Engineering, Design and Technology
    Awarded
    2011
    
    Metadata
    Show full item record
    Abstract
    Among many seawater desalination processes, the multistage flash (MSF) desalination process is a major source of fresh water around the world. The most costly design and operation problem in seawater desalination is due to scale formation and corrosion problems. Fouling factor is one of the many important parameters that affect the operation of MSF processes. This thesis therefore focuses on determining the optimal design and operation strategy of MSF desalinations processes under fouling which will meet variable demand of freshwater. First, a steady state model of MSF is developed based on the basic laws of mass balance, energy balance, and heat transfer equations with supporting correlations for physical properties. gPROMS software is used to develop the model which is validated against the results reported in the literature. The model is then used in further investigations. Based on actual plant data, a simple dynamic fouling factor profile is developed which allows calculation of fouling factor at different time (season of the year). The role of changing brine heater fouling factor with varying seawater temperatures (during the year) on the plant performance and the monthly operating costs for fixed water demand and fixed top brine temperature are then studied. The total monthly operation cost of the process are minimised while the operating parameters such as make up, brine recycle flow rate and steam temperature are optimised. It was found that the seasonal variation in seawater temperature and brine heater fouling factor results in significant variations in the operating parameters and operating costs. The design and operation of the MSF process are optimized in order to meet variable demands of freshwater with changing seawater temperature throughout the day and throughout the year. On the basis of actual data, the neural network (NN) technique has been used to develop a correlation for calculating dynamic freshwater demand/consumption profiles at different times of the day and season. Also, a simple polynomial based dynamic seawater temperature correlation is developed based on actual data. An intermediate storage tank between the plant and the client is considered. The MSF process model developed earlier is coupled with the dynamic model for the storage tank and is incorporated into the optimization framework within gPROMS. Four main seasons are considered in a year and for each season, with variable freshwater demand and seawater temperature, the operating parameters are optimized at discrete time intervals, while minimizing the total daily costs. The intermediate storage tank adds flexible scheduling and maintenance opportunity of individual flash stages and makes it possible to meet variable freshwater demand with varying seawater temperatures without interrupting or fully shutting down the plant at any-time during the day and for any season. Finally, the purity of freshwater coming from MSF desalination plants is very important when the water is used for industrial services such as feed of boiler to produce steam. In this work, for fixed water demand and top brine temperature, the effect of separation efficiency of demister with seasonal variation of seawater temperatures on the final purity of freshwater for both cleaned and fouled demister conditions is studied. It was found that the purity of freshwater is affected by the total number of stages. Also to maintain the purity of freshwater product, comparatively large number of flash stage is required for fouled demister.
    URI
    http://hdl.handle.net/10454/5629
    Type
    Thesis
    Qualification name
    PhD
    Collections
    Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.