Performance modelling and analysis of congestion control mechanisms for communication networks with quality of service constraints. An investigation into new methods of controlling congestion and mean delay in communication networks with both short range dependent and long range dependent traffic.

View/ Open
Rasha_Thesis_final_2010.pdf (2.109Mb)
Download
Publication date
2012-05-24Author
Fares, Rasha H.A.Supervisor
Woodward, Mike E.Keyword
Performance modellingCongestion control
Communication networks
Network traffic
Active Queue Management (AQM)
Quality of Service (QoS)
Telecommunication networks
Traffic models
Control strategy algorithm
Institution
University of BradfordDepartment
Department of Computing, School of Computing, Informatics and MediaAwarded
2010
Metadata
Show full item recordAbstract
Active Queue Management (AQM) schemes are used for ensuring the Quality of Service (QoS) in telecommunication networks. However, they are sensitive to parameter settings and have weaknesses in detecting and controlling congestion under dynamically changing network situations. Another drawback for the AQM algorithms is that they have been applied only on the Markovian models which are considered as Short Range Dependent (SRD) traffic models. However, traffic measurements from communication networks have shown that network traffic can exhibit self-similar as well as Long Range Dependent (LRD) properties. Therefore, it is important to design new algorithms not only to control congestion but also to have the ability to predict the onset of congestion within a network. An aim of this research is to devise some new congestion control methods for communication networks that make use of various traffic characteristics, such as LRD, which has not previously been employed in congestion control methods currently used in the Internet. A queueing model with a number of ON/OFF sources has been used and this incorporates a novel congestion prediction algorithm for AQM. The simulation results have shown that applying the algorithm can provide better performance than an equivalent system without the prediction. Modifying the algorithm by the inclusion of a sliding window mechanism has been shown to further improve the performance in terms of controlling the total number of packets within the system and improving the throughput. Also considered is the important problem of maintaining QoS constraints, such as mean delay, which is crucially important in providing satisfactory transmission of real-time services over multi-service networks like the Internet and which were not originally designed for this purpose. An algorithm has been developed to provide a control strategy that operates on a buffer which incorporates a moveable threshold. The algorithm has been developed to control the mean delay by dynamically adjusting the threshold, which, in turn, controls the effective arrival rate by randomly dropping packets. This work has been carried out using a mixture of computer simulation and analytical modelling. The performance of the new methods that haveType
ThesisQualification name
PhDCollections
Related items
Showing items related by title, author, creator and subject.
-
Network Coding for Multihop Wireless Networks: Joint Random Linear Network Coding and Forward Error Correction with Interleaving for Multihop Wireless NetworksHu, Yim Fun; Pillai, Prashant; Susanto, Misfa (University of BradfordFaculty of Engineering and Informatics. School of Electrical Engineering and Computer Science, 2015)Optimising the throughput performance for wireless networks is one of the challenging tasks in the objectives of communication engineering, since wireless channels are prone to errors due to path losses, random noise, and fading phenomena. The transmission errors will be worse in a multihop scenario due to its accumulative effects. Network Coding (NC) is an elegant technique to improve the throughput performance of a communication network. There is the fact that the bit error rates over one modulation symbol of 16- and higher order- Quadrature Amplitude Modulation (QAM) scheme follow a certain pattern. The Scattered Random Network Coding (SRNC) system was proposed in the literature to exploit the error pattern of 16-QAM by using bit-scattering to improve the throughput of multihop network to which is being applied the Random Linear Network Coding (RLNC). This thesis aims to improve further the SRNC system by using Forward Error Correction (FEC) code; the proposed system is called Joint RLNC and FEC with interleaving. The first proposed system (System-I) uses Convolutional Code (CC) FEC. The performances analysis of System-I with various CC rates of 1/2, 1/3, 1/4, 1/6, and 1/8 was carried out using the developed simulation tools in MATLAB and compared to two benchmark systems: SRNC system (System-II) and RLNC system (System- III). The second proposed system (System-IV) uses Reed-Solomon (RS) FEC code. Performance evaluation of System IV was carried out and compared to three systems; System-I with 1/2 CC rate, System-II, and System-III. All simulations were carried out over three possible channel environments: 1) AWGN channel, 2) a Rayleigh fading channel, and 3) a Rician fading channel, where both fading channels are in series with the AWGN channel. The simulation results show that the proposed system improves the SRNC system. How much improvement gain can be achieved depends on the FEC type used and the channel environment.
-
An Exposition of Performance-Security Trade-offs in RANETs Based on Quantitative Network ModelsMiskeen, Guzlan M.A.; Kouvatsos, Demetres D.; Habib Zadeh, Esmaeil (2013)Security mechanisms, such as encryption and authentication protocols, require extra computing resources and therefore, have an adverse effect upon the performance of robotic mobile wireless ad hoc networks (RANETs). Thus, an optimal performance and security trade-off should be one of the main aspects that should be taken into consideration during the design, development, tuning and upgrading of such networks. In this context, an exposition is initially undertaken on the applicability of Petri nets (PNs) and queueing networks (QNs) in conjunction with their generalisations and hybrid integrations as robust quantitative modelling tools for the performance analysis of discrete flow systems, such as computer systems, communication networks and manufacturing systems. To overcome some of the inherent limitations of these models, a novel hybrid modelling framework is explored for the quantitative evaluation of RANETs, where each robotic node is represented by an abstract open hybrid G-GSPN_QN model with head-of-line priorities, subject to combined performance and security metrics (CPSMs). The proposed model focuses on security processing and state-based control and it is based on an open generalised stochastic PN (GSPN) with a gated multi-class 'On-Off' traffic and mobility model. Moreover, it employs a power consumption model and is linked in tandem with an arbitrary QN consisting of finite capacity channel queues with blocking for 'intra' robot component-to-component communication and 'inter' robot-to-robot transmission. Conclusions and future research directions are included.
-
A Hybrid Topological-Stochastic Partitioning Method for Scaling QoS Routing Algorithms.Woodward, Mike E.; Gao, Feng (2007)This paper presents a new partitioning strategy with the objective of increasing scalability by reducing computational effort of routing in networks. The original network is partitioned into blocks (subnetworks) so that there is a bi-directional link between any two blocks. When there is a connection request between a pair of nodes, if the nodes are in the same block, we only use the small single block to derive routings. Otherwise we combine the two blocks where the two nodes locate and in this way the whole network will never be used. The strategy is generic in that it can be used in any underlying routing algorithms in the network layer and can be applied to any networks with fixed topology such as fixed wired subnetworks of the Internet. The performance of this strategy has been investigated by building a simulator in Java and a comparison with existing stochastic partitioning techniques is shown to give superior performance in terms of trade-off in blocking probability (the probability of failure to find a path between source and destination satisfying QoS constraints) and reduction of computational effort.