BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Towards the Development of an Efficient Integrated 3D Face Recognition System. Enhanced Face Recognition Based on Techniques Relating to Curvature Analysis, Gender Classification and Facial Expressions.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    thesis updated.pdf (3.743Mb)
    Download
    Publication date
    2012-01-25
    Author
    Han, Xia
    Supervisor
    Ugail, Hassan
    Yap, Moi Hoon
    Keyword
    2D/3D face recognition
    Curvature estimation
    Gender classification
    Facial profile
    Facial expressions
    Geometric descriptors
    Rights
    Creative Commons License
    The University of Bradford theses are licenced under a Creative Commons Licence.
    Institution
    University of Bradford
    Department
    Department of Electronic Imaging and Media Communication
    Awarded
    2011
    
    Metadata
    Show full item record
    Abstract
    The purpose of this research was to enhance the methods towards the development of an efficient three dimensional face recognition system. More specifically, one of our aims was to investigate how the use of curvature of the diagonal profiles, extracted from 3D facial geometry models can help the neutral face recognition processes. Another aim was to use a gender classifier employed on 3D facial geometry in order to reduce the search space of the database on which facial recognition is performed. 3D facial geometry with facial expression possesses considerable challenges when it comes face recognition as identified by the communities involved in face recognition research. Thus, one aim of this study was to investigate the effects of the curvature-based method in face recognition under expression variations. Another aim was to develop techniques that can discriminate both expression-sensitive and expression-insensitive regions for ii face recognition based on non-neutral face geometry models. In the case of neutral face recognition, we developed a gender classification method using support vector machines based on the measurements of area and volume of selected regions of the face. This method reduced the search range of a database initially for a given image and hence reduces the computational time. Subsequently, in the characterisation of the face images, a minimum feature set of diagonal profiles, which we call T shape profiles, containing diacritic information were determined and extracted to characterise face models. We then used a method based on computing curvatures of selected facial regions to describe this feature set. In addition to the neutral face recognition, to solve the problem arising from data with facial expressions, initially, the curvature-based T shape profiles were employed and investigated for this purpose. For this purpose, the feature sets of the expression-invariant and expression-variant regions were determined respectively and described by geodesic distances and Euclidean distances. By using regression models the correlations between expressions and neutral feature sets were identified. This enabled us to discriminate expression-variant features and there was a gain in face recognition rate. The results of the study have indicated that our proposed curvature-based recognition, 3D gender classification of facial geometry and analysis of facial expressions, was capable of undertaking face recognition using a minimum set of features improving efficiency and computation.
    URI
    http://hdl.handle.net/10454/5347
    Type
    Thesis
    Qualification name
    PhD
    Collections
    Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.