Tensile and fracture behaviour of isotropic and die-drawn polypropylene-clay nanocomposites. Compounding, processing, characterization and mechanical properties of isotropic and die-drawn polypropylene/clay/polypropylene maleic anhydride composites

View/ Open
TENSILE AND FRACTURE BEHAVIOUR OF ISOTROPIC AND DIE-DRAWN PO.pdf (14.52Mb)
Download
Publication date
2010Author
Al-Shehri, Abdulhadi S.Supervisor
Sweeney, JohnCoates, Philip D.
Caton-Rose, Philip D.
Keyword
Tensile modulusVideo-extensometer
Fracture toughness
Die-drawing
Oriented polymers
Polypropylene
Nanocomposites
Polypropylene maleic anhydride
Rights

The University of Bradford theses are licenced under a Creative Commons Licence.
Institution
University of BradfordDepartment
School of Engineering, Design and TechnologyAwarded
2010
Metadata
Show full item recordAbstract
As a preliminary starting point for the present study, physical and mechanical properties of polypropylene nanocomposites (PPNCs) for samples received from Queen's University Belfast have been evaluated. Subsequently, polymer/clay nanocomposite material has been produced at Bradford. Mixing and processing routes have been explored, and mechanical properties for the different compounded samples have been studied. Clay intercalation structure has received particular attention to support the ultimate objective of optimising tensile and fracture behaviour of isotropic and die-drawn PPNCs. Solid-state molecular orientation has been introduced to PPNCs by the die-drawing process. Tensile stress-strain measurements with video-extensometry and tensile fracture of double edge-notched tensile specimens have been used to evaluate the Young¿s modulus at three different strain rates and the total work of fracture toughness at three different notch lengths. The polymer composite was analyzed by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, wide angle x-ray diffraction, and transmission electron microscopy. 3% and 5% clay systems at various compatibilizer (PPMA) loadings were prepared by three different mixing routes for the isotropic sheets, produced by compression moulding, and tensile bars, produced by injection moulding process. Die-drawn oriented tensile bars were drawn to draw ratio of 2, 3 and 4. The results from the Queen's University Belfast samples showed a decrement in tensile strength at yield. This might be explained by poor bonding, which refers to poor dispersion. Voids that can be supported by intercalated PP/clay phases might be responsible for improvement of elongation at break. The use of PPMA and an intensive mixing regime with a two-step master batch process overcame the compatibility issue and achieved around 40% and 50% increase in modulus for 3% and 5% clay systems respectively. This improvement of the two systems was reduced after drawing to around 15% and 25% compared with drawn PP. The work of fracture is increased either by adding nanoclay or by drawing to low draw ratio, or both. At moderate and high draw ratios, PPNCs may undergo either an increase in the size of microvoids at low clay loading or coalescence of microvoids at high clay loading, eventually leading to an earlier failure than with neat PP. The adoption of PPMA loading using an appropriate mixing route and clay loading can create a balance between the PPMA stiffness effect and the degree of bonding between clay particles and isotropic or oriented polymer molecules. Spherulites size, d-spacing of silicate layers, and nanoparticles distribution of intercalated microtactoids with possible semi-exfoliated particles have been suggested to optimize the final PPNCs property.Type
ThesisQualification name
PhDCollections
Related items
Showing items related by title, author, creator and subject.
-
Shear-induced crystallization morphology and mechanical property of high density polyethylene in micro-injection moldingLin, X.; Caton-Rose, Philip D.; Ren, D.Y.; Wang, K.S.; Coates, Philip D. (2013)The advances of the polymer melt flow-induced crystallization behaviour and its influence on mechanical properties of high density polyethylene (HDPE) in micron injection (MI) were studied in the present paper. Analysis of mechanical performance, including yield stress and elongation at break, for samples adopted from different regions in a molded plaque showed that a higher injection speed, a higher mold temperature and a longer cooling time could effectively enhance the yield stress but negatively promoted the ductility. Then, the mechanisms of such variation of mechanical performance and the factors affecting it were investigated by means of differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and polarized light microscopy (PLM). The super high shear rate during cavity feeding in MI molding not only induced a typical three-layered structure but also developed a highly oriented fibrously morphological structure in the skin layer. However, such fully oriented morphology was much negative in the interlayer and even could not be observed in the core layer. The results from SEM and PLM observations indicated that the orientation morphology varied significantly through the plaque's cross-section and thickness of the each layer changed with the process parameters and geometric position, and finally led to variation of the mechanical performance.
-
Effect of processing parameters on the morphology development during extrusion of polyethylene tape: An in-line small-angle X-ray scattering (SAXS) studyHeeley, E.L.; Gough, Timothy D.; Hughes, D.J.; Bras, W.; Rieger, J.; Ryan, A.J. (2013-11)The in-line development of crystalline morphology and orientation during melt extrusion of low density polyethylene (LDPE) tape at nil and low haul-off speeds has been investigated using Small-Angle X-Ray Scattering (SAXS). The processing parameters, namely haul-off speed and distance down the tape-line have been varied and the resulting crystalline morphology is described from detailed analysis of the SAXS data. Increasing haul-off speed increased orientation in the polymer tape and the resulting morphology could be described in terms of regular lamellar stacking perpendicular to the elongation direction. In contrast, under nil haul-off conditions the tape still showed some orientation down the tape-line, but a shish-kebab structure prevails. The final lamellae thickness (similar to 50 angstrom) and bulk crystallinity (similar to 20%), were low at, for all processing conditions investigated, which is attributed to the significant short-chain branching in the polymer acting as point defects limiting lamellae crystal growth. (C) 2013 Elsevier Ltd. All rights reserved.
-
Die geometry induced heterogeneous morphology of polypropylene inside the die during die-drawing processLyu, D.; Sun, Y.; Thompson, Glen P.; Lu, Y.; Caton-Rose, Philip D.; Lai, Y.; Coates, Philip D.; Men, Y. (2019-04)The morphology distribution of isotactic-polypropylene (iPP) shaped through a die during hot stretching process was investigated via wide-angle X-ray diffraction technique. The evolution of micro-structures in the outer layer (layer closer to the die wall) and the inner layer (layer in the center of die) of die-drawn iPP were both recorded. It turned out that the difference of morphology distribution between outer and inner layers changes with the distance from the die entrance to exit. In general, a larger difference between outer and inner layers could be found at the intermediate deformation region inside the die while such difference disappeared at both of the entrance and exit regions of die. These behaviors could be interpreted as a result of the existence of a heterogeneous distribution of force field inside the die, which was caused by the die geometry and inclination of the drawing force. This work showed that the heterogeneous force field inside the die could be revealed through analyzing the morphology of a die-drawn sample.