BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    •   Bradford Scholars
    • Life Sciences
    • Life Sciences Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Control of crystal nucleation: Insights from molecular simulation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Publication date
    2008
    Author
    Anwar, Jamshed
    Keyword
    Crystallisation
    Crystal Growth Inhibitors
    Molecular Dynamics Simulation
    Crystal Nucleation
    Peer-Reviewed
    Yes
    
    Metadata
    Show full item record
    Abstract
    There is considerable interest, both fundamental and technological, in understanding how additives and impurities influence nucleation, and in being able to modulate nucleation in a predictable way using designer auxiliary molecules. Notable applications involving auxiliaries include the control of nucleation in proteins, inhibition of urinary stone formation, inhibition of ice formation in living tissues during cryoprotection, prevention of blockages in oil and gas pipelines due to wax precipitation, and gas hydrate formation. Despite the immense interest, our understanding of how these molecules exert their effect is still rudimentary, partially because the molecular level processes involved are inaccessible to experiment. We have investigated mechanisms of action of nucleation additives and have derived explicit rules for designing additive molecules for modulating crystal nucleation. The mechanisms of action and the design features have been derived using molecular simulation of simple model systems. Our studies reveal that an effective nucleation inhibitor should have a strong interaction with the solute and have a structure that is able to disrupt the periodicity characterizing the emerging nucleus. Disruption can be achieved by steric effects resulting from structural differences between the additive and solute molecules, the additive possessing extensive degrees of freedom, or via a strong energetic interaction with the solute. Additive molecules that have an amphiphilic character and end up at the solute/solvent interface can inhibit, retard or promote nucleation depending on their specific structure and interactions with the solute and solvent and the given supersaturation, and these specific features and the link with the supersaturation will be discussed. These findings will help to rationalize the mechanisms of action of known nucleation inhibitors and modulators. They will also serve as a framework for rationally identifying or designing additive molecules for either inhibiting or promoting nucleation in specific systems.
    URI
    http://hdl.handle.net/10454/4750
    Version
    No full-text available in the repository
    Citation
    Anwar, J. (2008). Control of crystal nucleation: Insights from molecular simulation. European Journal of Pharmaceutical Sciences. Vol. 34, No. 1, Suppl. 1, p. S11.
    Link to publisher’s version
    http://dx.doi.org/10.1016/j.ejps.2008.02.024
    Type
    Article
    Collections
    Life Sciences Publications

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.