BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Crystal structure prediction. A molecular modellling study of the solid state behaviour of small organic compounds.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    Aldi Asmadi - PhD Thesis 2010.pdf (13.50Mb)
    Download
    Publication date
    2010-10-01T15:27:59Z
    Author
    Asmadi, Aldi
    Supervisor
    Leusen, Frank J.J.
    Kendrick, John
    Keyword
    Computational chemistry
    Crystal engineering
    Polymorphs
    Molecular mechanics
    Quantum mechanics
    Crystal structure
    Crystal lattices
    Organic compounds
    Polymorphism
    Rights
    Creative Commons License
    The University of Bradford theses are licenced under a Creative Commons Licence.
    Institution
    University of Bradford
    Department
    School of Pharmacy
    Awarded
    2010
    
    Metadata
    Show full item record
    Abstract
    The knowledge of the packing behaviour of small organic compounds in crystal lattices is of great importance for industries dealing with solid state materials. The properties of materials depend on how the molecules arrange themselves in a crystalline environment. Crystal structure prediction provides a theoretical approach through the application of computational strategies to seek possible crystal packing arrangements (or polymorphs) a compound may adopt. Based on the chemical diagrams, this thesis investigates polymorphism of several small organic compounds. Plausible crystal packings of those compounds are generated, and their lattice energies are minimised using molecular mechanics and/or quantum mechanics methods. Most of the work presented here is conducted using two software packages commercially available in this field, Polymorph Predictor of Materials Studio 4.0 and GRACE 1.0. In general, the computational techniques implemented in GRACE are very good at reproducing the geometries of the crystal structures corresponding to the experimental observations of the compounds, in addition to describing their solid state energetics correctly. Complementing the CSP results obtained using GRACE with isostructurality offers a route by which new potential polymorphs of the targeted compounds might be crystallised using the existing experimental data. Based on all calculations in this thesis, four new potential polymorphs for four different compounds, which have not yet been determined experimentally, are predicted to exist and may be obtained under the right crystallisation conditions. One polymorph is expected to crystallise under pressure. The remaining three polymorphs might be obtained by using a seeding technique or the utilisation of suitable tailor made additives.
    URI
    http://hdl.handle.net/10454/4441
    Type
    Thesis
    Qualification name
    PhD
    Collections
    Theses

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.