BRADFORD SCHOLARS

    • Sign in
    View Item 
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    •   Bradford Scholars
    • University of Bradford eTheses
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of Bradford ScholarsCommunitiesAuthorsTitlesSubjectsPublication DateThis CollectionAuthorsTitlesSubjectsPublication Date

    My Account

    Sign in

    HELP

    Bradford Scholars FAQsCopyright Fact SheetPolicies Fact SheetDeposit Terms and ConditionsDigital Preservation Policy

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The alkaline hydrolysis of esters in aqueous-organic solvent mixtures. The effects of solvents and of the activity coefficients of reactants on the kinetics of the alkaline hydrolysis of methyl acetate in aqueous dioxan, aqueous dimethyl sulphoxide and aqueous diglyme (bis (2-methoxyethyl ) ether) mixtures as solvents.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    View/Open
    Kazempour.pdf (13.27Mb)
    Download
    Publication date
    2010-06-30T09:03:36Z
    Author
    Kazempour, Abdol Rassoul
    Supervisor
    Diaper, John
    Keyword
    Methyl acetate
    Alkaline hydrolysis
    Aqueous-organic solvent mixtures
    Activity coefficients
    Bronsted-Bjerrum equation
    Residual activity coefficient ratio
    Rights
    Creative Commons License
    The University of Bradford theses are licenced under a Creative Commons Licence.
    Institution
    University of Bradford
    Department
    Postgraduate School of Studies in Chemistry
    Awarded
    1978
    
    Metadata
    Show full item record
    Abstract
    Values of the rate constant for the alkaline hydrolysis of methyl acetate in various aqueous-organic solvent mixtures (dimethyl sulfoxide 0<x40.2, dioxane 0 <, x., < 0.2, methyl ethyl ketone 0<x<0.06 and diglyme, i. e. ether-bis (2-methyloxethyl) 0x<0.10) have been determined for the temperatures 15 0 C, 25 0C and 35 0C conductometrically. To interpret these results the approach adapted is to experimentally determine the activity coefficient of the ester (YE ) and the activity of the water (aH20', mechanistically, at least one molecule of water is involved in the rate-determining step) and then to use the Bronsted-Bjerrum equation to determine the residual activity coefficient ratio of the participating ions, y (Yf - for Oil the transition state). Values of YE and aH 20 have been determined by a transpiration method, using gas-chromatographic analysis of the vapours of solutions of methyl acetate in aqueous-organic solvent mixtures of dir. ethyl sulfoxide, dioxane, methyl ethyl ketone and diglyme in the same composition ranges as above, tetrahydrofuran 04x org z<, 0.15, methanol, ethanol and tert-butanol in t1h6e range 04x0.20'at 25oC. These results indicate that on changing org the solvent composition YE varies by a larger factor than is predicted for the ratio YOH-/yýO_ by the Debye-Iluckel approach, and hence is the dominant factor in determining the effects of solvent composition on the rates of the hydrolysis. This is in contradiction to the assumptions of the electrostatic theories of Laidler and Eyring, and of Amis and Jaffe. The gas-chromatographic results also indicate that whilst the concentration of the water varies in each mixture studied, the activity coefficient varies in the opposite way to produce almost constant values of aý, 0* Using the transpiratioii/gas-chromatogralýlic method, the thermodynamic properties of the ternary systems, methyl acetate-water-organic Solvcat, using the organic solvents mentioned above (excepting, diglyme) have been investigated, and the results indicate that the variation of *ýE with solvent composition, for the dilute solutions of ester used, can be estimated from the thermodynamic properties of the binary water-organic solvent mixtures, using the Gibbs-Dahem equation. Single ion activity coefficients in the literature for small negative ions, to represent the OH_ ion, and for large ions, to rep-resent the transition state ion, have been used to explain the experimentally fomd variation of the residual activity coefficient -ratio with solvent composition. Hence, it is concluded that the importance of the parameters involved in the hydrolysis of esters - an ion-molecule reaction - in aqueousorganic solvent mixtures are in the order of Ymolecule > aH 20> YOH_/YM+ -> (dielectric constant), and that the nonelectrostatic effects -- thermodynamic effects - are more important in these studies than the electrostatic effects. From a preliminary investigation of the data in the literature the thermodynamic approach also yields a valid interpretation of the effect of solvent composition on the rates of the acid hydrolysis of esters.
    URI
    http://hdl.handle.net/10454/4352
    Type
    Thesis
    Qualification name
    PhD
    Collections
    Theses

    entitlement

     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Temperature-dependent structure and dynamics of highly-branched poly(N -isopropylacrylamide) in aqueous solution

      Al-Baradi, A.M.; Rimmer, Stephen; Carter, Steven; de Silva, J.P.; King, S.M.; Maccarini, M.; Farago, B.; Noirez, L.; Geoghegan, M. (2018-02)
      Small-angle neutron scattering (SANS) and neutron spin-echo (NSE) have been used to investigate the temperature-dependent solution behaviour of highly-branched poly(N-isopropylacrylamide) (HB-PNIPAM). SANS experiments have shown that water is a good solvent for both HB-PNIPAM and a linear PNIPAM control at low temperatures where the small angle scattering is described by a single correlation length model. Increasing the temperature leads to a gradual collapse of HB-PNIPAM until above the lower critical solution temperature (LCST), at which point aggregation occurs, forming disperse spherical particles of up to 60 nm in diameter, independent of the degree of branching. However, SANS from linear PNIPAM above the LCST is described by a model that combines particulate structure and a contribution from solvated chains. NSE was used to study the internal and translational solution dynamics of HB-PNIPAM chains below the LCST. Internal HB-PNIPAM dynamics is described well by the Rouse model for non-entangled chains.
    • Thumbnail

      Investigation of molecular and mesoscale clusters in undersaturated glycine aqueous solutions

      Zimbitas, G.; Jawor-Baczynska, A.; Vesga, M.J.; Javid, Nadeem; Moore, B.D.; Parkinson, J.; Sefcik, J. (2019-10)
      In this work DLS, NTA, SAXS and NMR were used to investigate populations, size distributions and structure of clusters in undersaturated aqueous solutions of glycine. Molecular and colloidal scale (mesoscale) clusters with radii around 0.3-0.5 nm and 100–150 nm, respectively, were observed using complementary experimental techniques. Molecular clusters are consistent with hydrated glycine dimers present in equilibrium with glycine monomers in aqueous solutions. Mesoscale clusters previously observed in supersaturated glycine solutions appear to be indefinitely stable, in mutual equilibrium within mesostructured undersaturated solutions across all glycine concentrations investigated here, down to as low as 1 mg/g of water.
    • Thumbnail

      Raman spectroscopic and potentiometric studies of acidity level and dissociation of citric acid in aqueous solution

      Elbagerma, Mohamed A.; Alajtal, Adel I.; Edwards, Howell G.M.; Azimi, G.H.; Verma, K.D.; Scowen, Ian J. (2015)
      The dissociation constant is one of the most important characteristics of a pharmaceutical chemical moiety which has to be estimated with accuracy. The development of in-situ speciation methods in solutions with parallel measurements using Raman spectroscopy (molecular) and pH (macroscopic) for the identification, characterization, and quantitative determination of citric acid species in aqueous solution by numerical data treatment using a multiwavelength curve fitting program over a range of pH values is described. As a result, the first, second and third stepwise dissociation constants of citric acid have been evaluated as 3.02±0.06, 4.78±0.06 and 6.02±0.04, respectively. From these data over the pH range 2.38-6.16 an excellent agreement with literature values was achieved.
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.