Generator Maintenance Scheduling Models in Power Systems. Integrated Cost Models for Generator Maintenance Strategy under Market Environment.
Publication date
2010-05-28T15:30:41ZAuthor
Al-Arfaj, Khalid A.Supervisor
Dahal, Keshav P.Keyword
Dergulated systemsPower systems
Generator maintenance scheduling
Maintenance costs
Opportunity costs
Customer goodwill
Genetic algorithm (GA)
Analytical Hierarchy Process (AHP)
Reliability Centred Maintenance (RCM)
Modelling
Rights
The University of Bradford theses are licenced under a Creative Commons Licence.
Institution
University of BradfordDepartment
Department of ComputingAwarded
2009
Metadata
Show full item recordAbstract
Change from a regulated to deregulated structure means that, the centralized maintenance system is not valid any more. In the surveyed published literature, there is not a single model which incorporates all maintenance cost components to analyze the effect of different maintenance strategies for generator companies (GENCOs). The work enclosed in this thesis demonstrates that there is a considerable requirement for accurately modelling cost components of the maintenance model, to be used in maintenance scheduling for deregulated power system, in order to attain a superior schedule with major financial and operational impact. This research investigates and models most cost factors that affect the maintenance activities of the deregulated GENCOs, and demonstrates the utilization of the developed cost models in maintenance scheduling. It also presents the data gathering process for the developed maintenance cost model. A generator maintenance scheduling model that considers direct and indirect maintenance costs, opportunity costs (i.e. loss of customer goodwill), effective maintenance strategies, failures, and interruptions is developed. A Genetic Algorithm (GA) based approach is employed to achieve maintenance schedules to various generators maintenance scenarios. An Analytical Hierarchy Process (AHP) approach is proposed for modelling customer goodwill. The maintenance model was redeveloped under the Reliability Centred Maintenance (RCM) strategy to analyze the effect of a maintenance strategy on maintenance costs. Case studies are presented to demonstrate the utilisation of the developed models.The investigation shows that the market prices, opportunity costs and maintenance strategy have an effect on the final maintenance schedule. The research demonstrates that the cost components are critical factors to achieve an effective maintenance schedule, and they must be considered and carefully modelled in order to reflect more realistic situation for maintenance scheduling of generator units in deregulation environment.Type
ThesisQualification name
PhDCollections
Related items
Showing items related by title, author, creator and subject.
-
Selective maintenance for multi-state systems considering the benefits of repairing multiple components simultaneouslyDao, Cuong; Zuo, M.J. (Springer, 2015-01)Many industrial systems such as aircrafts, ships, manufacturing systems, etc. are required to perform several missions with finite breaks between missions. Maintenance is only available within the breaks. Due to the limitation of resources, all components in the system may not be maintained as desired. The selective maintenance problem helps the decision makers figure out what critical components to select and how to perform maintenance on these components. This paper studies the selective maintenance for multi-state series-parallel systems with the benefit of repairing multiple components simultaneously. Both time and cost savings can be acquired when several components are simultaneously repaired in a selective maintenance strategy. As the number of repaired components increases, the saved time and cost will also increase due to the share of setting up between components and another additional reduction amount from the repair of multiple identical components. A non-linear optimization model is developed to find the most reliable system subjected to time and cost constraints. Genetic algorithm is used to solve the optimization model. An illustrative example will be provided.
-
A Fuzzy Criticality Assessment System of Process Equipment for Optimized Maintenance Management.Qi, Hong Sheng; Alzaabi, R.N.; Wood, Alastair S.; Jani, M. (2015-01)In modern chemical plants, it is essential to establish an effective maintenance strategy which will deliver financially driven results at optimised conditions, that is, minimum cost and time, by means of a criticality review of equipment in maintenance. In this article, a fuzzy logic-based criticality assessment system (FCAS) for the management of a local company’s equipment maintenance is introduced. This fuzzy system is shown to improve the conventional crisp criticality assessment system (CCAS). Results from case studies show that not only can the fuzzy logic-based system do what the conventional crisp system does but also it can output more criticality classifications with an improved reliability and a greater number of different ratings that account for fuzziness and individual voice of the decision-makers.
-
Fuzzy criticality assessment for process equipments maintenanceQi, Hong Sheng; Liu, Q.; Wood, Alastair S.; Alzaabi, R.N. (2012)Criticality-based maintenance (CBM) is a prioritized approach to the maintenance of (industrial) process equipment. CBM requires personnel with a thorough knowledge of the process/equipment under scrutiny. In this paper a criticality assessment system that is implemented by a local company (which represents the expertise and knowledge of the company experts) is reviewed and fuzzy logic theory is applied to improve the system's capability and reliability. The quality of the fuzzy system is evaluated based on several case studies. The results show that the fuzzy logic based system does not only what the conventional system does, but also outperforms in terms of reliability and has a unique ranking capability.